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Abstract: In this paper, we extend Darbo’s fixed point theorem via weak JS-contractions in a Banach
space. Our results generalize and extend several well-known comparable results in the literature.
The technique of measure of non-compactness is the main tool in carrying out our proof. As an
application, we study the existence of solutions for a system of integral equations. Finally, we present
a concrete example to support the effectiveness of our results.
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1. Introduction and Preliminaries

The notion of a measure of non-compactness (shortly, MNC) was introduced by Kuratowski [1]
in 1930. This concept is a very useful tool in functional analysis, such as in metric fixed point theory
and operator equation theory in Banach spaces. This notion is also applied in studies of the existence
of solutions of ODE and PDE problems, integral and integro-differential equations, etc. For more
details, we refer the reader to [2–6]. In [7], the authors generalized the Darbo’s fixed point theorem via
the concept of the class of operators O( f ; .).

The aim of this paper is to generalize the Darbo’s fixed point theorem via weak JS-contractions in
a Banach space and to study the existence of solutions for the following system of integral equations:

κ1(η) = f
(

η, κ1(α(η)), κ2(α(η)),
∫ β(η)

0
g (η, $, κ1(α($)), κ2(α($))) d$

)

κ2(η) = f
(

η, κ2(α(η)), κ1(α(η)),
∫ β(η)

0
g (η, $, κ2(α($)), κ1(α($))) d$

) (1)

where η ∈ [0, T].
We introduce some notations and definitions which are used throughout this paper. Let R denotes

the set of real numbers and let R+ = [0,+∞). Let (E , ‖ · ‖) be a real Banach space. Moreover, B(η, r)
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denotes the closed ball centered at η with radius r. The symbol Br stands for the ball B(0, r). For Λ,
a nonempty subset of E , we denote by Λ and ConvΛ the closure and the closed convex hull of Λ,
respectively. Furthermore, let us denote by ME the family of nonempty bounded subsets of E , and by
NE , its subfamily consisting of all relatively compact subsets of E .

Definition 1 ([8]). A mapping µ : ME −→ R+ is said to be a measure of non-compactness in E if it satisfies
the following conditions:

1◦ The family kerµ = {Λ ∈ME : µ(Λ) = 0} is nonempty and kerµ ⊂ NE ;
2◦ Λ ⊂ Σ =⇒ µ(Λ) ≤ µ(Σ);
3◦ µ(Λ) = µ(Λ);
4◦ µ(ConvΛ) = µ(Λ);
5◦ µ(λΛ + (1− λ)Σ) ≤ λµ(Λ) + (1− λ)µ(Σ) for all λ ∈ [0, 1];
6◦ if {Λn} is a sequence of closed subsets from ME such that Λn+1 ⊂ Λn for n = 1, 2, . . . and if

lim
n→∞

µ(Λn) = 0, then Λ∞ = ∩∞
n=1Λn 6= ∅.

We denote by Θ the set of all functions θ : [0, ∞)→ [1, ∞) satisfying the following conditions:

θ1. θ is a continuous strictly increasing function;
θ2. for each sequence {tn} ⊆ (0, ∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0.

Let Φ be the class of all functions φ : [1, ∞)→ [0, ∞) satisfying the following properties:

φ1. φ is lower semi-continuous;
φ2. φ(1) = 0.
φ3. for each sequence {tn} ⊆ (1, ∞), lim

n→∞
φ(tn) = 0 if and only if lim

n→∞
tn = 1.

Remark 1 ([9]). It is clear that f (t) = t− n
√

t (n ≥ 1) belongs to Φ. Other examples are f (t) = et−1 − 1 and
f (t) = ln t.

Definition 2 ([9]). Let (Λ, d) be a metric space and Υ be a self-mapping on Λ. We say that Υ is a weak
JS-contraction if, for all η, $ ∈ Λ with d(Υη, Υ$) > 0, we have

θ
(
d(Υη, Υ$)

)
≤ θ

(
d(η, $)

)
− φ

(
θ(d(η, $))

)
(2)

where φ ∈ Φ and θ ∈ Θ.

Theorem 1 ([9]). Let (Λ, d) be a complete metric space. Let Υ : Λ → Λ be a self-mapping satisfying
the following assertions:

(i) Υ is a weak JS-contraction,
(ii) Υ is continuous.

Then, Υ has a unique fixed point.

Now we recall two important theorems playing a key role in the fixed point theory.

Theorem 2 ([10]). Let C be a nonempty, bounded, closed, and convex subset of a Banach space E . Then, each
continuous and compact map Υ : C → C has at least one fixed point in the set C.

Obviously, the above theorem is the well-known Schauder fixed point principle. Its generalization,
called Darbo’s fixed point theorem, is arranged as follows.
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Theorem 3 ([11]). Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let
Υ : C → C be a continuous mapping. Assume that there exists a constant K ∈ [0, 1) such that µ(ΥΛ) ≤ Kµ(Λ)

for any nonempty subset Λ of C, where µ is an MNC defined in E . Then, Υ has at least one fixed point in C.

2. Main Results

Now, we state one of the main results in this article, which extends and generalizes Darbo’s fixed
point theorem by using the concept of weak JS-contractions.

Theorem 4. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let Υ : C → C
be a continuous operator such that

θ
(
µ(Υ(Λ))

)
≤ θ

(
µ(Λ)

)
− φ

(
θ(µ(Λ))

)
(3)

for all Λ ⊆ C, where φ ∈ Φ, θ ∈ Θ, and µ is an arbitrary MNC. Then, Υ has at least one fixed point in C.

Proof. Define a sequence {Cn} such that C0 = C and Cn+1 = Conv(Υ(Cn)) for all n ∈ N.
If there exists an integer N ∈ N such that µ(CN) = 0, then CN is relatively compact, and the

Schauder fixed point theorem implies that Υ has a fixed point. So, we assume that µ(CN) > 0 for each
n ∈ N.
It is clear that {Cn}n∈N is a sequence of nonempty, bounded, closed and convex sets such that

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ Cn+1.

We know that {µ(Cn)}n∈N is a positive decreasing and bounded-below sequence of real numbers.
Thus, {µ(Cn)}n∈N is a convergent sequence. Suppose that lim

n→∞
µ(Cn) = r. Also, we have

µ(Cn+1) = µ(Conv(Υ(Cn))) = µ(Υ(Cn)).

In view of condition (3), we have

θ(µ(Cn+1)) = θ(µ(Υ(Cn)))

≤ θ(µ(Cn))− φ(θ(µ(Cn))). (4)

Taking the limsup in the above inequality, we have

lim sup
n→∞

θ(µ(Cn+1)) ≤ lim sup
n→∞

θ(µ(Cn))− lim inf
n→∞

φ(θ(µ(Cn))).

Therefore,
θ(r) ≤ θ(r)− φ(θ(r)).

Hence, φ(θ(r)) must be 0, which means that θ(r) = 1. Consequently, r = 0. Therefore,
limn→∞ µ(Cn) = 0. According to axiom (6◦) of Definition 1, we derive that the set C∞ =

⋂∞
n=1 Cn is a

nonempty, closed and convex set, that it is invariant under the operator Υ, and that it belongs to Kerµ.
Then, in view of the Schauder theorem, Υ has a fixed point.

Remark 2. We obtain the Darbo’s fixed point theorem if we take θ(t) = et, φ(t) = t− tλ in Theorem 4, where
λ ∈ (0, 1).

In [12], Bhaskar and Lakshmikantham introduced the notion of coupled fixed point and proved
some coupled fixed point theorems for some mappings, and discussed the existence and uniqueness of
solutions for periodic boundary value problems.
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Definition 3 ([12]). An element (η, $) ∈ E × E is called a coupled fixed point of the mapping Υ : E × E → E
if Υ(η, $) = η and Υ($, η) = $.

Theorem 5 ([6]). Suppose that µ1, µ2, . . . , µn are measures of non-compactness in Banach spaces E1, E2, . . . , En,
respectively. Moreover, assume that the function Γ : [0, ∞)n −→ [0, ∞) is convex and Γ(η1, . . . , ηn) = 0 if and
only if ηi = 0 for i = 1, 2, . . . , n. Then

µ̃(Λ) = Γ(µ1(Λ1), µ2(Λ2), . . . , µn(Λn))

defines a measure of non-compactness in E1 × E2 × . . .× En, where Λi denotes the natural projection of Λ into
Ei, for i = 1, 2, . . . , n.

From now on, we assume that θ is a subadditive mapping. For instance, a concave function
f : [0, ∞) → [0, ∞) with f (0) ≥ 0 is a subadditive function. θ(t) =

√
t + 1, θ(t) =

√
t + 1 and

θ(t) = 1 + ln(t + 1) are some subadditive functions which belong to Θ.

Theorem 6. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let Υ : C ×C → C
be a continuous function such that

θ
[
µ(Υ(Λ1 ×Λ2))

]
≤ 1

2
[
θ(µ(Λ1) + µ(Λ2))− φ(θ(µ(Λ1) + µ(Λ2)))

]
(5)

for all subsets Λ1, Λ2 of C, where µ is an arbitrary MNC and θ, φ are as in Theorem 4. In addition, we assume
that θ is a subadditive mapping. Then, Υ has at least one coupled fixed point.

Proof. We define the mapping Υ̃ : C2 → C2 by

Υ̃(η, $) = (Υ(η, $), Υ($, η)),

where C2 = C × C. It is clear that Υ̃ is continuous. We show that Υ̃ satisfies all of the conditions of
Theorem 4. Let Λ ⊂ C2 be a nonempty subset. We know that µ̃(Λ) = µ(Λ1) + µ(Λ2) is an MNC (see,
[8]), where Λ1 and Λ2 denote the natural projections of Λ into E . From (5), we have

θ[µ̃(Υ̃(Λ))] ≤ θ(µ̃(Υ(Λ1 ×Λ2)× Υ(Λ2 ×Λ1)))

= θ[µ(Υ(Λ1 ×Λ2)) + µ(Υ(Λ2 ×Λ1))]

≤ 1
2
[θ(µ(Λ1) + µ(Λ2))− φ(θ(µ(Λ1) + µ(Λ2)))]

+
1
2
[θ(µ(Λ2) + µ(Λ1))− φ(θ(µ(Λ2) + µ(Λ1)))]

= θ(µ̃(Λ))− φ(θ(µ̃(Λ))).

Now, from Theorem 4, we deduce that Υ̃ has at least one fixed point which implies that Υ has at least
one coupled fixed point.

Taking φ(t) = t− tλ (λ ∈ (0, 1)) in Theorem 6, we have the following result.

Corollary 1. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let Υ : C × C →
C be a continuous function such that

θ[µ(Υ(Λ1 ×Λ2))] ≤
1
2
(θ[µ(Λ1) + µ(Λ2)])

λ (6)

for all subsets Λ1, Λ2 of C, where µ is an arbitrary MNC, λ ∈ (0, 1) and the subadditive mapping θ is as in
Theorem 4. Then, Υ has at least one coupled fixed point.



Symmetry 2020, 12, 424 5 of 11

Corollary 2. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let Υ : C × C →
C be a continuous function such that

1 + ln[1 + µ(Υ(Λ1 ×Λ2))] ≤
[1 + ln(1 + µ(Λ1) + µ(Λ2))]

λ

2
(7)

for all subsets Λ1, Λ2 of C, where µ is an arbitrary MNC and λ ∈ (0, 1). Then, Υ has at least one coupled fixed
point.

Theorem 7. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let Υ : C ×C → C
be a continuous function such that

θ[µ(Υ(Λ1 ×Λ2))] ≤ θ(max{µ(Λ1), µ(Λ2)})− φ(θ(max{µ(Λ1), µ(Λ2)})) (8)

for all subsets Λ1, Λ2 of C, where µ is an arbitrary MNC and θ, φ are as in Theorem 4. In addition, we assume
that θ is a subadditive mapping. Then, Υ has at least one coupled fixed point.

Proof. We define the mapping Υ̃ : C2 → C2 by

Υ̃(η, $) = (Υ(η, $), Υ($, η)).

It is clear that Υ̃ is continuous. We show that Υ̃ satisfies all of the conditions of Theorem 4. We know
that µ̃(Λ) = max{µ(Λ1), µ(Λ2)} is an MNC (see, [8]), where Λ1 and Λ2 denote the natural projections
of Λ into E . Let Λ ⊂ C2 be a nonempty subset. From (8), we have

θ[µ̃(Υ̃(Λ))] ≤ θ(µ̃(Υ(Λ1 ×Λ2)× Υ(Λ2 ×Λ1)))

= θ[max{µ(Υ(Λ1 ×Λ2)), µ(Υ(Λ2 ×Λ1))}]
≤ max{θ[µ(Υ(Λ1 ×Λ2))], θ[µ(Υ(Λ2 ×Λ1))]}
≤ max{θ(max{µ(Λ1), µ(Λ2)})− φ(θ(max{µ(Λ1), µ(Λ2)})),

θ(max{µ(Λ2), µ(Λ1)})− φ(θ(max{µ(Λ2), µ(Λ1)}))}
= θ(max{µ(Λ1), µ(Λ2)})− φ(θ(max{µ(Λ1), µ(Λ2)}))
= θ(µ̃(Λ))− φ(θ(µ̃(Λ))).

Now, from Theorem 4, we deduce that Υ̃ has at least one fixed point which implies that Υ has at least
one coupled fixed point.

Corollary 3. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let Υ : C × C →
C be a continuous function such that

θ[µ(Υ(Λ1 ×Λ2))] ≤ (θ[max{µ(Λ1), µ(Λ2)}])λ (9)

for all subsets Λ1, Λ2 of C, where µ is an arbitrary MNC, λ ∈ (0, 1) and the subadditive mapping θ is as in
Theorem 4. Then, Υ has at least one coupled fixed point.

3. Application

In this section, as an application of Corollary 3, we study the existence of solutions for the system
of integral Equation (1).

Let the space Ξ := C(J ,R)(J = [0, T]) consists of all real valued functions which are bounded
and continuous on J equipped with the standard norm

‖η‖ = sup{|η(t)| : t ∈ J }.
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Recall that the modulus of continuity of a function η ∈ Ξ is defined by

ω(η, ε) = sup{|η(t)− η(s)| : t, s ∈ J , |t− s| ≤ ε}.

Since η is uniformly continuous on J , then ω(η, ε)→ 0 as ε→ 0, and the Hausdorff measure of
non-compactness for all bounded sets Ω of Ξ is

χ(Ω) = lim
ε→0

{
sup
η∈Ω

ω(η, ε)
}

.

(See [6], for more details).

Theorem 8. Suppose that the following assumptions are satisfied:

(i) α, β : J −→ J are continuous functions;
(ii) the function f : J ×R3 −→ R is continuous and

θ(| f (η, κ1, κ2, $)− f (η, ν1, ν2, ζ)|) ≤ (θ(max{|κ1 − ν1| , |κ2 − ν2|}+ |$− ζ|))λ,

where λ ∈ (0, 1) and θ is a subadditive mapping such that θ ∈ Θ;
(iii) N := sup{| f (η, 0, 0, 0)| : η ∈ J };
(iv) g : J ×J ×R2 −→ R is continuous and

G := sup
{ ∣∣∣∣∫ β(η)

0
g(η, $, κ1(α($)), κ2(α($)))d$

∣∣∣∣ : η, $ ∈ J , κ1, κ2 ∈ Ξ
}

;

(iv) there exists a positive solution r0 to the inequality

θ(r + G)λ + θ(N) ≤ r.

Then, the system of the integral Equation (1) has at least one solution in the space Ξ2.

Proof. Let us consider the operator
Υ : Ξ× Ξ −→ Ξ

with the formula

Υ(κ1, κ2)(η) = f (η, κ1(α(η)), κ2(α(η)), (10)∫ β(η)

0
g(η, $, κ1(α($)), κ2(α($)))d$).

We observe that for any η ∈ J , the function Υ is continuous. For arbitrary fixed η ∈ J , by applying
the assumptions (i)–(iv), we have
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θ(|Υ(κ1, κ2)(η)|) ≤ θ
(
| f (η, κ1(α(η)), κ2(α(η)),∫ β(η)

0
g(η, $, κ1(α($)), κ2(α($)))d$

− f (η, 0, 0, 0)|+ | f (η, 0, 0, 0)|
)

≤ θ
(

max{|κ1(α(η))|, |κ2(α(η))|}

+ |
∫ β(η)

0
g(η, $, κ1(α($)), κ2(α($)))d$|

)λ

+ θ(| f (η, 0, 0, 0)|)

≤ θ (max{‖κ1‖, ‖κ2‖}+ G)λ + θ(N).

Therefore,
θ(‖Υ(κ1, κ2)‖) ≤ θ (max{‖κ1‖, ‖κ2‖}+ G)λ + θ(N). (11)

Due to the inequality (11) and using (iv), the function Υ maps (B̄r0)
2 into (B̄r0). Now, we prove

that the operator Υ is a continuous operator on (B̄r0)
2. Let us arbitrarily fix ε > 0 and take

(κ1, κ2), (ν1, ν2) ∈ (B̄r0)
2 such that max{‖κ1 − ν1‖, ‖κ2 − ν2‖} < ε. Then, for all η ∈ J , we have

θ(|Υ(κ1, κ2)(η)− Υ(ν1, ν2)(η)|)

≤ θ
(
| f (η, κ1(α(η)), κ2(α(η)),

∫ β(η)

0
g(η, $, κ1(α($)), κ2(α($)))d$)

− f (η, ν1(α(η)), ν2(α(η)),
∫ β(η)

0
g(η, $, ν1(α($)), ν2(α($))d$)|

)
≤ θ

(
max{|κ1(α(η))− ν1(α(η))|, |κ2(α(η))− ν2(α(η))|}

+ |
∫ β(η)

0
[g(η, $, κ1(α($)), κ2(α($)))− g(η, $, ν1(α($)), ν2(α($)))]d$|

)λ

≤ θ(ε + β(T)ωT(g, ε))λ,

where

ωT(g, ε) = sup{|g(η, $, κ1, κ2)− g(η, $, ν1, ν2)| : η ∈ J , $ ∈ [0, β(T)],

κ1, κ2, ν1, ν2 ∈ [−r0, r0], max{‖κ1 − ν1‖, ‖κ2 − ν2‖} < ε}

and

β(T) = sup{β(η) : η ∈ J }.

Applying the continuity of g on J × [0, β(T)] × [−r0, r0]
2, we have ωT(g, ε) → 0 as ε → 0, hence

θ(ε + β(T)ωT(g, ε))λ → 1 as ε→ 0, which implies that Υ is a continuous function on (B̄r0)
2.

Now, we prove that Υ satisfies all conditions of Corollary 3. To do this, let Λ1 and Λ2 be nonempty
and bounded subsets of B̄r0 , and assume that T > 0 and ε > 0 are arbitrary constants. Let η1, η2 ∈ J ,
with |η2 − η1| ≤ ε and (κ1, κ2) ∈ Λ1 ×Λ2. Then, we have
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θ(|Υ(κ1, κ2)(η2)− Υ(κ1, κ2)(η1)|)

≤ θ
(
| f (η2, κ1(α(η2)), κ2(α(η2)),

∫ β(η2)

0
g(η2, $, κ1(α($)), κ2(α($))d$)

− f (η2, κ1(α(η1)), κ2(α(η1)),
∫ β(η2)

0
g(η2, $, κ1(α($)), κ2(α($))d$)|

+ | f (η2, κ1(α(η1)), κ2(α(η1)),
∫ β(η2)

0
g(η2, $, κ1(α($)), κ2(α($))d$)

− f (η1, κ1(α(η1)), κ2(α(η1)),
∫ β(η2)

0
g(η2, $, κ1(α($)), κ2(α($))d$)|

+ | f (η1, κ1(α(η1)), κ2(α(η1)),
∫ β(η2)

0
g(η2, $, κ1(α($)), κ2(α($))d$)

− f (η1, κ1(α(η1)), κ2(α(η1)),
∫ β(η2)

0
g(η1, $, κ1(α($)), κ2(α($))d$)|

+ | f (η1, κ1(α(η1)), κ2(α(η1)),
∫ β(η2)

0
g(η1, $, κ1(α($)), κ2(α($))d$)

− f (η1, κ1(α(η1)), κ2(α(η1)),
∫ β(η1)

0
g(η1, $, κ1(α($)), κ2(α($))d$)|

)
≤
(

θ
(

max{|κ1(α(η2))− κ1(α(η1))|, |κ2(α(η2))− κ2(α(η1))|}+ ωr0,G( f , ε)

+
∫ β(η2)

0
|g(η2, $, κ1(α($)), κ2(α($)))− g(η1, $, κ1(α($)), κ2(α($)))|d$

+ |
∫ β(η2)

0
g(η1, $, κ1(α($)), κ2(α($)))d$−

∫ β(η1)

0
g(η1, $, κ1(α($)), κ2(α($)))d$|

))λ

≤
(

θ
(

max{ω(κ1, ω(α, ε)), ω(κ2, ω(α, ε))}+ ωr0,G( f , ε) + β(T)ωr0(g, ε) + Ur0 ω(β, ε)
))λ

(12)

where

ω(α, ε) = sup{|α(η2)− α(η1)| : η1, η2 ∈ J , |η2 − η1| ≤ ε},

ω(κ1, ω(α, ε)) = sup{|κ1(η2)− κ1(η1)| : η1, η2 ∈ J , |η2 − η1| ≤ ω(α, ε)},

β(T) = sup{β(η) : η ∈ J },

Ur0 = sup{|g(η, $, κ1, κ2)| : η ∈ J , $ ∈ [0, β(T)], κ1, κ2 ∈ [−r0, r0]},

G = β(T) sup{|g(η, $, κ1, κ2)| : η ∈ J , $ ∈ [0, βΛ], κ1, κ2 ∈ [−r0, r0]},

ωr0,G( f , ε) = sup{| f (η2, κ1, κ2, z)− f (η1, κ1, κ2, z)| : η1, η2 ∈ J ,

|η2 − η1| ≤ ε, κ1, κ2 ∈ [−r0, r0], z ∈ [−G, G]},

ωr0(g, ε) = sup{|g(η2, $, κ1, κ2)− g(η1, $, κ1, κ2)| : η1, η2 ∈ J ,

|η2 − η1| ≤ ε, κ1, κ2 ∈ [−r0, r0], $ ∈ [0, β(T)]}.
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Since (κ1, κ2) is an arbitrary element of Λ1 ×Λ2 in (12), we have

θ(ω(Υ(Λ1 ×Λ2), ε)) ≤
(

θ
(

ωr0,G( f , ε) + max{ω(Λ1, ω(α, ε)), ω(Λ2, ω(α, ε))}

+ β(T)ωr0(g, ε) + Ur0 ω(β, ε)
))λ

,

and by the uniform continuity of f and g on the compact sets

[0, T]× [−r0, r0]× [−r0, r0]× [−G, G]

and
[0, T]× [0, β(T)]× [−r0, r0]× [−r0, r0]

respectively, we infer that ωr0,G( f , ε) −→ 0, ωr0(g, ε) −→ 0 and ω(β, ε) −→ 0 as ε −→ 0. Therefore,
we obtain

θ(µ[Υ(Λ1 ×Λ2)]) ≤ (θ(max {µ(Λ1), µ(Λ2)}))λ.

Thus, from Corollary 3, we deduce that the operator Υ has a coupled fixed point. Therefore, the system
of the functional integral Equation (1) has at least one solution in Ξ2.

Example 1. Consider the following system of integral equations:

η(t) = 1
2 e−t2

+ arctan η(t)+sinh−1 $(t)
8π+t8

+
1
8

∫ t

0

s2| sin η(s)|+
√

es(1 + η2(s))(1 + sin2 $(s))

et(1 + η2(s))(1 + sin2 $(s))
ds,

$(t) = 1
2 e−t2

+ arctan $(t)+sinh−1 η(t)
8π+t8

+
1
8

∫ t

0

s2| sin $(s)|+
√

es(1 + y2(s))(1 + sin2 η(s))

et(1 + $2(s))(1 + sin2 η(s))
ds.

(13)

We observe that the system of integral Equation (13) is a special case of (1) with Ξ = C([0, 1],R) and

α(t) = β(t) = t, t ∈ [0, 1],

f (t, η, $, p) =
1
2

e−t2
+

arctan η + sinh−1 $

8π + t8 +
p
8

,

g(t, s, η, $) =
s2| sin η|+

√
es(1 + η2)(1 + sin2 $)

et(1 + η2)(1 + sin2 $)
.

To solve this system, we need to verify the conditions (i)–(iv) of Theorem 8.
Let θ(t) =

√
t + 1 and λ = 1

2 . Condition (i) is clearly evident. On the other hand,
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θ(| f (t, η, $, m)− f (t, κ, ν, n)|)

≤

√
| arctan η − arctan κ|+ | sinh−1 $− sinh−1 ν|

8π + t8 +
|m− n|

8
+ 1

≤

√
arctan |η − κ|

8π
+

sinh−1 |$− ν|
8π

+
|m− n|

8
+ 1

≤
√
|η − κ|

8π
+
|$− ν|

8π
+
|m− n|

8
+ 1

≤
√

θ(max{|η − κ|, |$− ν|}+ |m− n|).

So, we find that f satisfies condition (ii) of Theorem 8. In addition,

N = sup{| f (t, 0, 0, 0)| : t ∈ [0, 1]} = sup{1
2

e−t2
: t ∈ [0, 1]} = 0.5.

Hence, condition (iii) of Theorem 8 is valid. Moreover, g is continuous on [0, 1]× [0, 1]×R2 and

G = sup
{∣∣∣ ∫ t

0

t2| sin η(s)|+
√

es(1 + η2(s))(1 + sin2 $(s))

et(1 + η2(s))(1 + sin2 $(s))
ds
∣∣∣

: t, s ∈ [0, 1], η, $ ∈ Ξ
}

< sup
t2

et ' 0.4.

Furthermore, it is easy to see that r ≥ 2.65 satisfies the inequality in condition (iv), i.e.,

θ(r + G)
1
2 + θ(N) =

√√
r + 0.4 + 1 +

√
1.5 ≤ r.

Consequently, all of the conditions of Theorem 8 are satisfied. Hence, the system of integral Equation (13) has at
least one solution which belongs to the space (C([0, 1],R))2.

4. Conclusions

There are many generalizations of Darbo’s fixed point theorem. Some authors have
made generalizations via certain contraction conditions. On the other hand, many authors have
generalized Darbo’s fixed point theorem by changing the domain of mappings which possess a fixed
point. In this paper, we used the notion of weak JS-contractions to verify that a mapping defined on
a nonempty, bounded, closed, and convex subset of a given Banach space has at least one fixed point.
We applied our results to prove the existence of solutions for a system of functional integral equations.
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