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Abstract: In this paper, particle swarm optimization is incorporated into an improved bacterial
foraging optimization algorithm, which is applied to classifying imbalanced data to solve the problem
of how original bacterial foraging optimization easily falls into local optimization. In this study,
the borderline synthetic minority oversampling technique (Borderline-SMOTE) and Tomek link are
used to pre-process imbalanced data. Then, the proposed algorithm is used to classify the imbalanced
data. In the proposed algorithm, firstly, the chemotaxis process is improved. The particle swarm
optimization (PSO) algorithm is used to search first and then treat the result as bacteria, improving the
global searching ability of bacterial foraging optimization (BFO). Secondly, the reproduction operation
is improved and the selection standard of survival of the cost is improved. Finally, we improve
elimination and dispersal operation, and the population evolution factor is introduced to prevent the
population from stagnating and falling into a local optimum. In this paper, three data sets are used to
test the performance of the proposed algorithm. The simulation results show that the classification
accuracy of the proposed algorithm is better than the existing approaches.

Keywords: particle swarm optimization; improved bacterial foraging optimization; imbalanced data

1. Introduction

In machine learning the imbalanced distribution of categories is called an imbalanced problem.
When conventional algorithms are directly applied to this problem, the classification results tend to be
biased towards most classes, resulting in a few classes not being correctly identified. Moreover, most of
the traditional algorithms train classifiers based on the maximization of overall accuracy, meaning
they ignore the misclassification of a few samples, thus affecting the classification results of traditional
classifiers [1–3]. However, in many practical applications, a few samples are often more valuable than
most samples, such as in bank fraud user identification, medical cancer diagnosis, and network hacker
intrusion [4–9].

Imbalanced data mining is an important problem in data mining. Various algorithms, including k
nearest neighbor (KNN), decision tree (DT), artificial neural network (ANN), and the genetic algorithm
(GA), have been recommended for data mining [10–17]. However, these algorithms usually assume
that datasets are distributed evenly among different classes and that some classes may be ignored.
In the literature, some methods for dealing with imbalanced data have been proposed. These methods
include adjusting the size of training datasets, cost-sensitive classifiers, and snowball methods [18–20].
These methods may result in the loss of information in general rules and the incorrect classification of
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additional classes. Ultimately, they can lead to an over-matching of data and poor performance due to
having too many specific rules. Traditional optimization methods can no longer solve the complex
problems faced by many datasets. In recent years, people have proposed a hybrid intelligent system to
improve the accuracy of data mining rather than use a separate method. The hybrid method combines
the best results of various systems to improve the accuracy [21–23].

Particle swarm optimization (PSO) was first invented by Dr. Eberhart and Dr. Kennedy [24,25].
It is a population-based heuristic algorithm used for simulating social behavior, such as birds clustering
to promising locations, in order to find accurate targets in multi-dimensional space. PSO uses groups
of individuals (called particles) to perform searches as with evolutionary algorithms, and particles
can be updated from each iteration to the other [26–30]. In order to find the optimal solution, each
particle changes its search direction based on two factors: its best previous location (pbest) and all other
members’ best locations (gbest) [31–34]. Shi et al. called pbest the cognitive part and gbest the social
part [35].

The bacterial foraging optimization (BFO) algorithm is a bionic intelligent algorithm which was
proposed by Passino in 2002 according to Escherichia coli in the human intestine [36,37]. The bacterial
foraging chemotaxis process makes its local search ability stronger, but the global search ability of
bacteria foraging can only be achieved by elimination and dispersal, and the global search ability is
not strong enough to be limited by elimination and dispersal probability; thus it easily to falls into a
local search optimal problem. In this paper, the incorporation of particle swarm optimization into an
improved bacterial foraging optimization algorithm applied to the classification of imbalanced data is
proposed. The borderline synthetic minority oversampling technique (Borderline-SMOTE) and Tomek
link are used to pre-process imbalanced data. Thereafter, the proposed algorithm is used to classify
imbalanced data.

Because PSO has a strong global search ability, individual effect, and group effect, PSO is
incorporated into the improvement of the chemotaxis process of the improved BFO algorithm.
The proposed algorithm improves the global searching ability and efficiency through the strong
global search ability of PSO. In addition to embedding PSO into the BFO algorithm’s chemotaxis
process to improve the BFO algorithm’s vulnerability to local optimization, in the improved replication
operation, the crossover operator is introduced into the replication parent to increase the diversity
of the population, while retaining the best individual. In the improved elimination and dispersion
operation, the population evolution factor fevo is proposed, and (1 − fevo) is introduced to replace the
Ped in the original BFO algorithm so as to prevent the population from falling into a local optimum and
achieving evolution stagnation. The purpose of this study was to improve the classification accuracy
of ovarian cancer microarray data and to improve the practicability and accuracy of doctors’ judgment
of ovarian cancer microarray data.

This paper is organized as follows: Section 2 reviews PSO and BFO. Section 3 shows the proposed
algorithms. Section 4 presents the experimental results and discussion. This section also describes an
in-depth comparison of the proposed algorithm with other methods. Finally, a conclusion is given.

2. A Brief Description of Bacterial Foraging Optimization and Particle Swarm Optimization

In this paper, the bacterial foraging optimization algorithm is improved. Firstly, PSO is incorporated
into the BFO chemotaxis process to improve the chemotaxis process. For this reason, this section
introduces the basic concepts of bacterial foraging optimization and particle swarm optimization.

2.1. Bacterial Foraging Optimization

Passino introduced bacteria foraging optimization as a solution to distributed optimization and
control problems. It is an evolutionary algorithm and a global random search algorithm. The BFO
algorithm mainly solves the optimization problem by using four process iterative calculations:
chemotaxis, swarming, reproduction, elimination, and dispersal [38]. In the chemotaxis process,
there are two basic movements of E. coli in the process of foraging, namely, swimming and tumbling.
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Usually, in areas with poor environmental conditions (for example, toxic areas), bacteria may tumble
more frequently, and in areas with a good environment, they will swim more often. Let P( j, k, l) ={
θi( j, k, l)

∣∣∣i = 1, 2, . . . S
}

indicate the ith bacterium in the population of the S bacteria at the jth chemotaxis
process, kth reproduction process, and lth elimination and dispersal process. Let L(i, j, k, l) be the cost
at the location θ( j, k, l) of the ith bacterium. When the bacterial population size is S and Nc is the length
of the bacteria in one direction of the chemotactic operation, the chemotaxis operation of each step of
the ith bacterium is expressed as

θi( j + 1, k, l) = θi( j, k, l) + α(i)
δ(i)√
δT(i)δ(i)

(1)

where α(i) > 0 represents the step unit of the forward swimming and δ(i) represents a unit vector in
the random direction vector after the tumbling. In the swarming process, in addition to searching for
food in their own way, each bacterial individual receives an appeal signal from other individuals in
the population; that is, the individual will swim to the center of the population and will also receive
a repulsive force signal from nearby individuals to maintain a safe distance between it and other
individuals. Hence, the decision-making behavior of each bacterial individual in BFO which finds
food is affected by two factors. The first is its own information, that is, the purpose of individual
foraging to maximize the energy acquired by the individual in unit time, and the other is information
from other individuals, that is, foraging information transmitted by other bacteria in the population.
The mathematical expression is described as

Lcc(θ, P( j, k, l)) =
s∑

i=1
Li

cc

(
θ, θi( j, k, l)

)
=

s∑
i=1

[
−xattract exp(−yattract

p∑
m=1

(
θm − θi

m

)2
]

+
s∑

i=1

[
−xrepellent exp(−yrepellent

p∑
m=1

(
θmθi

m

)2
] (2)

where Lcc(θ, P( j, k, l))denotes the penalty for the actual cost function, S is the number of bacteria, θm is
the location of the fittest bacterium, and xattract, xrepellent, yattract, and yrepellent are different coefficients.
The swarming process is minimized mathematically.

Lsw(i, j, k, l) = L(i, j, k, l) + Lcc(θ, P( j, k, l)) (3)

In the swarming process, the number of biologically-motivated choices is expressed as Ns. In the
reproduction process, according to the strength of the foraging ability of the bacteria, the appropriate
cost L is selected; that is, L ranks the sum of the cost of all the locations experienced by the ith bacteria
in the chemotaxis operation, and the elimination ranks 50% later. The number of bacteria in the
population, the reproduction process of the remaining bacteria, and the new individuals generated by
themselves which are identical to themselves have the same foraging ability and the same location,
and the replication operation maintains the invariance of the population size. After Nre reproduction
steps the elimination and dispersal process occurs, where Ned is the number of steps of elimination
and dispersal. These operations occur with a certain probability Ped. When the individual bacteria
meet the probability Ped of elimination and dispersal, the individual dies and randomly generates a
new individual at any location in the solution space. These new bacteria may have different bacterial
foraging capabilities than the original bacteria, conducive to jumping out of the local optimal solution.
A flow diagram of bacteria foraging optimization is presented in Figure 1.
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Figure 1. A flow diagram of bacterial foraging optimization (BFO).

2.2. Particle Swarm Optimization

PSO is a bionic algorithm used for the study of birds searching for food in nature. It regards birds
as a particle in space, and a bird swarm is subject to PSO [39,40]. A single particle carries corresponding
information—i.e., its own velocity and location—and determines the distance and direction of its
motion according to the corresponding information of the particle itself. The PSO is used to initialize
a group of particles which are randomly distributed into a solution space to be searched and then
iterated according to a given equation. The equation of the mature particle swarm optimization
algorithm includes two optimum concepts. The first is the local optimum pbest and the other is the
global optimum gbest. The local optimum is the best solution obtained by each particle in the search,
and the global optimum is the best solution obtained by this particle swarm. The PSO algorithm has
the characteristics of memory, using positive feedback adjustment; the principle of the algorithm is
simple, the parameters are few, and the applicability is good. The formulae of PSO are Equations (4)
and (5), as described.

vt+1
i = wvt

i + c1 × randt
1 ×

(
xpbest

i − xt
i

)
+ c2 × randt

2 ×
(
xgbest

− xt
i

)
(4)

xt+1
i = xt

i + vt+1
i (5)
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In Equation (4), vt
i and vt+1

i denote the velocity of the ith particle in iterations t and t + 1, w is the
inertia weight, c1 and c2 are learning factors, randt

1 and randt
2 are random numbers between [0, 1] in

iteration t, xpbest
i is the best location of the ith particle, and xgbest is the best location of fitness found by

all particles in the population. In Equation (5), xt
i and xt+1

i denote the location of the ith particle in
iterations t and t + 1. A flow chart of PSO is shown in Figure 2.
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Figure 2. A flow chart of the particle swarm optimization (PSO) algorithm.

3. The Proposed Algorithm

In this paper, the incorporation of particle swarm optimization into an improved bacterial foraging
optimization algorithm applied to the classification of imbalanced data is proposed. Three datasets are
used for testing the performance of the proposed algorithm. One consists of ovarian cancer microarray
data, and the other two, obtained from the UCI repository, are a spam email dataset and zoo dataset.
The ovarian cancer microarray data were obtained from Taiwan’s university. There are 9600 features in
the microarray data of ovarian cancer, which were collected from China Medical University Hospital,
with an imbalance ratio of about 1:20 [41,42]. The instances of microarray data we used included
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ovarian tissue, vaginal tissue, cervical tissue, and myometrium, including six benign ovarian tumors
(BOT), 10 ovarian tumors (OVT), and 25 ovarian cancers (OVCA). The spam email dataset and zoo
dataset were obtained from the UCI repository [43]. For the spam email dataset, there were 4601 emails
with 58 features, as shown in Table 1, and the imbalance ratio was about 1:1.54. For the zoo dataset,
there were 101 instances with 17 features, as shown in Table 2, and the imbalance ratio was about 1:25.

Table 1. The 58 features of the spam email dataset.

Number Meaning Range Maximum Value

1–48 Frequency of occurrence of a particular word [0, 100] <100
49–54 Frequency of occurrence of a particular character [0, 100] <100
55 Travel length of capital letters [1, . . . ] 1102.5
56 Longest capital travel [1, . . . ] 9989
57 Total travel length of capital letters [1, . . . ] 15,841
58 Spam ID (1 for spam) [0, 1] 1

Table 2. The 17 features of the zoo dataset.

Number Feature Name Data Type

1 Animal name Continuous
2 Hair Nominal
3 Feathers Continuous
4 Eggs Nominal
5 Milk Nominal
6 Airborne Nominal
7 Aquatic Nominal
8 Predator Nominal
9 Toothed Nominal
10 Backbone Nominal
11 Breathes Nominal
12 Venomous Nominal
13 Fins Nominal
14 Legs Nominal
15 Tail Nominal
16 Domestic Nominal
17 Catsize Nominal

Figure 3 shows a flow chart of the proposed algorithm. In Figure 3, the used parameters are
set first. The approaches of the Borderline-SMOTE and Tomek link are used for pre-process data.
Thereafter, the improved BFO algorithm is applied to classify imbalanced data so as to solve the
shortcoming of falling into a local optimum in the original BFO algorithm.

In order to over-sample the minority instances, the Borderline-SMOTE is designed in the proposed
algorithm; the main idea of SMOTE is to balance classes by generating synthetic instances from the
minority class [44]. For the subset of minority instances mi, k nearest neighbors are obtained by
searching. The k nearest neighbors are defined as the smallest distance between the Euclidean distance
and mi, and n synthetic instances are randomly selected from them which are recorded as Y j, j = 1, 2,
. . . , n. This is done to create a new minority instance as in Equation (6) as described, where rand is the
random number between [0, 1].

mnew = mi + rand ∗
(

Y j −mi
)

(6)

In the proposed algorithm, as a data cleaning technology, the Tomek link is effectively applied to
eliminate the overlap in the sampling method [45]. The Tomek link is used to remove unnecessary
overlaps between classes until the nearest neighbor pairs at the minimum distance belong to the same
class. Suppose that the nearest neighbors (mi, m j) of a pair of minimal Euclidean distances belong to
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different classes. d(mi, m j) represents the Euclidean distance between mi and m j. If there is no instance
ml satisfying Equation (7), we call (mi, m j) a pair of Tomek link.

d( mi, ml) < d
(
mi, m j

)
or d

(
m j, ml

)
< d

(
mi, m j

)
(7)
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In this paper, the parameter k used for SMOTE was set to k = 3. After preprocessing data,
the solution of location θi was generated. Thereafter, the improved BFO algorithm was performed.
Aiming at the BFO algorithm shortcoming of falling into a local optimum, we propose the incorporation
of particle swarm optimization into an improved bacterial foraging optimization to solve these
problems. An improved BFO proposed algorithm improves the chemotaxis process, reproduction
process, and the elimination and dispersal process.

3.1. Improvement of Chemotaxis Process

The original BFO algorithm mainly searches within the process of chemotaxis. When the
chemotaxis searches the target area, the swimming and tumbling operation of the chemotaxis process
directly affects the effect of the algorithm. While a large swimming step makes the global search ability
strong, a small swimming step makes the local search ability strong. Because of the characteristics
of chemotaxis, the BFO algorithm has good local search ability because it can change direction in
chemotaxis, meaning the local search accuracy is very good. However, the global search ability of
bacteria can only rely on the elimination and dispersal operation process, and its global search ability
is not good.

Because PSO has strong memory and global search ability, individual effect, and group effect,
in this paper, the PSO is incorporated into the chemotaxis process of the original BFO so as to solve the
problem of how the original BFO algorithm easily falls into local optimization. By using particles to
search first and then treat particles as bacteria, the global search ability of the original BFO algorithm is
improved. The purpose of this study is to find an effective algorithm which combines the advantages
of PSO, including fast convergence speed, strong search ability, and the good classification effect of the
BFO algorithm, to improve the accuracy of imbalanced data.

3.2. Improvement of Reproduction Process

In the reproduction process of the original BFO algorithm, half of the good bacteria (S/2) are
replicated using the current bacterial position generation cost L as the basis for good or bad arrangement
in the bacterial population with a population size of S, and the sub-population generated by replication
replaces the other half of the bad bacteria in the original bacterial population.

Because each parent has one of the same offspring in the bacterial population with size S after
replication, the diversity of the population is reduced. In this paper, the cost of the current bacterial
location is used to rank the values as good and bad, and half of the excellent bacteria S/2 are reproduced.
The reproduced sub-population replaces the worse S/2 bacteria in the original bacterial population.
In order to increase the diversity of the population and prevent the loss of the best individual, a hybrid
operator is introduced into the parent individual (excluding the best parent individual) to cross with
the best individual. The hybrid equation is [46]

σ = σ+ rand ∗ (σbest − σ) (8)

where σ is the parent individual (excluding the best parent individual), σbest is the best parent individual,
and rand is the random number with entries on [0, 1].

3.3. Improvement of Elimination and Dispersal Process

The elimination–dispersal operation helps the BFO algorithm jump out of the local optimal
solution and find the global optimal solution. In the elimination–dispersal process of the original
BFO, elimination and dispersal is carried out according to the given fixed probability Ped without
considering the evolution of the population.
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In this paper, the elimination–dispersal operation is improved by introducing the population
evolution factor and elimination–dispersal is carried out according to the evolution of the population,
which is conducive to the effectiveness of the algorithm and prevents the population from falling into a
local optimum due to slow evolution. The formula of the population evolution factor fevo is

fevo =
Lgen − Lgen−1

Lgen−1 − Lgen−2 + rand
(9)

where Lgen represents the optimal generation cost at the iteration gen and rand prevents the denominator
from being 0. In this paper, (1 − fevo) is used to replace Ped as in the original BFO algorithm. When
fevo > 1, the evolution is accelerated. At this time, the evolution degree of the population is faster
and the population is in a fast and effective optimization state. Elimination–dispersal with a lower
elimination–dispersal probability (1 − fevo) can retain the current favorable location information. When
0 ≤ fevo < 1, the evolution slows down. When the evolution degree of the population is slow, the
population falls into a local optimum to a large extent. It is necessary for elimination–dispersal with a
high elimination–dispersal probability (1 − fevo) to jump out of the local optimum solution so as to
prevent the population from not evolving.

In order to overcome the shortcoming of the BFO algorithm easily falling into a local optimum and
uncertain orientation during the chemotaxis process, PSO is incorporated into the BFO algorithm in
this paper, that is to say, PSO is added to the chemotaxis process of each individual bacterium, which is
the cost of each bacterium according to PSO. For the improved chemotaxis process, PSO is performed
to obtain the updated location of the θi. The procedure of the proposed algorithm is detailed as follows.

(1) The particle swarm population of size S is initialized. Here, PSO is added to the chemotaxis
process of each individual bacterium, and the swarm population size S of PSO is the same
as that of the BFO algorithm. The initial velocity and position of each particle is randomly
generated. The maximum number of PSO iterations is T. The BFO algorithm parameters
Nc, Ns, Nre, Ned, xattract, xrepellent, yattract, and yrepellent are set. The number of BFO iterations is
Nc × Nre ×Ned .

(2) The cost L, defined as the classification accuracy of each particle, is calculated. The best location
of the ith particle xpbest

i and the best location of the cost xgbest for all particles in the population are
found. xpbest

i is updated and xgbest if xpbest
i and xgbest are improved.

(3) Equation (4) is applied to update the velocity vt+1
i and Equation (5) is applied to update the

location xt+1
i . In Equation (4), the velocity of each particle must be limited to the range of the set

maximum velocity vmax. If the velocity of each particle exceeds the limit, the velocity is expressed
as vmax.

(4) If the set termination condition is met, it will stop; otherwise, the process goes back to step 2.
The termination condition is usually to reach the best location xgbest of the cost for all particles in
the population, or to exceed the set PSO’s maximum number of iterations T. Through Equation
(4) and Equation (5) particles treated as bacteria, PSO is completed to obtain the updated position
xt+1

i . In other words, the PSO is performed to obtain the updated location of θi in the improved
chemotaxis process.

(5) In the swarming process, the cost of Lsw is evaluated by Equation (3).
(6) In the improved reproduction process, Equation (8) is performed to increase the diversity of the

population and avoid losing the best individual; in other words, the parent individual (excluding
the best parent individual) crosses the best individual.

(7) In the improved elimination–dispersal process, the population evolution factor fevo is used in
Equation (9). The new θi by PSO is generated according to (1 − fevo). In the improved BFO
algorithm, Ped is replaced with (1 − fevo).
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(8) If the maximum number of BFO iterations is met, the algorithm is over. Finally, we output the
classification accuracy results in this implementation.

The proposed algorithm is performed and cost L is defined as the classification accuracy. This
experiment used a classification accuracy based on the confusion matrix, which can test the performance
of the classification method. The confusion matrix is shown in Table 3.

Table 3. The confusion matrix.

Actual
Predicted

Actual Positive Active Negative

Predicted positive TP (true positive) FP (false positive)
Predicted negative FN(false negative) TN (true negative)

TP and FP represent the true positive class and the false positive class, respectively; FN and TN
represent the false negative class and the true negative class, respectively. When the predicted value is
a positive example, it is recorded as P (positive). When the predicted value is a negative example, it is
is recorded as N (negative). When the predicted value is the same as the actual value, it is recorded
as T (true). Finally, when the predicted value is opposite to the actual value, it is is recorded as F
(false). The four results of defining examples in the data set after model classification are TP: predicted
positive, actual positive actual; FP: predicted positive, actual negative; TN: predicted negative, actual
negative; and FN: predicted negative, actual positive. The classification accuracy calculation formula is

Classification accuracy = (TP + TN)/(TP + FN + FP + TN) × 100% (10)

The receiver operating characteristic curve (ROC curve) and area under the curve (AUC) can
test the performance of the classification results. This is because the ROC curve has a favorable
characteristic: when the distribution of positive and negative instances in the test dataset changes, the
ROC curve can remain unchanged. Class imbalance often occurs in the actual data set, i.e., there are
many more negative instances than positive instances (or vice versa) and the distribution of positive and
negative instances in the test data may change with time. The area under the ROC curve is calculated
as the evaluation method of imbalanced data. It can comprehensively describe the performance of
classifiers under different decision thresholds. The AUC calculation formula is

Area Under the Curve (AUC) =
1 +

(
TP

FP + FN

)
−

(
FP

TN + FP

)
2

(11)

4. Simulation Results and Discussion

In this study, our purpose was to obtain an effective algorithm with which to improve the
accuracy of imbalanced data. In order to verify the performance of the proposed algorithm, ovarian
cancer microarray data, a spam email dataset and a zoo dataset are used for simulation experiments.
The Borderline-SMOTE and Tomek link approaches are used for preprocess data to increase the
numbers of minority classes until they are the same number as the majority class. In the simulation
experiment, some parameters of the algorithm need to be determined. In this experiment, the BFO
algorithm parameters were set as S = 50, Nc = 100, Ns = 4, Nre = 4, Ned = 2, Ped = 0.25, xattract = 0.05,
xrepellent= 0.05, yattract = 0.05, yrepellent = 0.05, α(i) = 0.1, and i = 1, 2, . . . S. The number of BFO iterations
was Nc ×Nre ×Ned = 100× 4× 2 = 800. This study evaluated the results when adopting 10-fold cross
validation with random partitions. The maximum number of PSO iterations was set to 5000 and the
other parameters were set as inertia weight w = 0.6, learning factors c1 = c2 = 1.5, and maximum
velocity of each particle vmax= 2 [47].
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The parameter value of the algorithm is the key to the performance and efficiency of the algorithm.
In evolutionary algorithms there are no general methods for determining the optimal parameters of
the algorithm. Most parameters are selected by experience. There are many BFO and PSO parameters.
Knowing how to determine the optimal BFO and PSO parameters to optimize the performance of
the algorithm is a very complex optimization problem. In the parameter setting of PSO and BFO,
in order to jump off the local solution to find the global solution without spending a lot of calculation
time, we used empirical values.

4.1. Comparing and Analyzing the Classification Accuracy of the Proposed Algorithm and Other Methods

(1) In addition to the proposed algorithm, we also employ other existing approaches for comparison.
The approaches used include the support vector machine (SVM), DT, random forest (RF), KNN,
and BFO. The SVM is a learning system that uses a hypothesis space of linear function in
a high-dimensional feature space. DT uses partition information entropy minimization to
recursively partition the dataset into smaller subdivisions and then generate a tree structure. RF is
an ensemble learning method for classification that constructs multiple decision trees during
training time and outputs the class that depends on the majority of the classes. KNN is a method
used to classify objects based on the closest training examples in an n-dimensional pattern space.
The BFO algorithm is described in Section 2.1.

(2) Tables 4–6 list the classification performances of the ovarian cancer microarray data, spam email
dataset, and zoo dataset, respectively. From Table 4, the average classification accuracy in the
proposed algorithm for the ovarian cancer microarray data can be seen to be 93.47%. From Table 5,
the average classification accuracy of the proposed algorithm for the spam email dataset can be
seen to be 96.42%. As shown in Table 6, the average classification accuracy for the zoo dataset of
the proposed algorithm is 99.54%. From Tables 4–6, it is clearly evident that the proposed approach
has the best classification results given a fair comparison for all compared approaches. This is
because the performance of the classification for the three tested datasets can be found based
on intelligent information. In fact, the proposed approach has similar performance, meaning it
performs well in classification accuracy.

(3) In the comparison results it can be found that the classification accuracy of the original BFO
method in Table 4 was 89.93%, which is not better than the proposed algorithm classification
accuracy of 93.47%. In Table 5, the classification accuracy of the original BFO method can be
seen to be 94.27%, which is not better than the proposed algorithm classification accuracy of
96.42%. In Table 6, the classification accuracy of the original BFO method can be seen to be 94.38%,
which is not better than the proposed algorithm classification accuracy of 99.54%. Because the
original BFO algorithm can change direction in the chemotaxis operation, its local search ability is
better; the global search, however, can only rely on elimination and dispersal operation, and the
global search ability is not very good. Hence, the classification accuracy is not better than the
proposed algorithm.

(4) The proposed algorithm provides a better classification effect because PSO is incorporated into
the improved chemotaxis process. PSO has memory and global search abilities, so we first used
particles for global search and then treat these particles as bacteria, and the chemotaxis operation
improved the global search ability. The PSO algorithm introduced in this paper only uses its global
operation and uses the memory of PSO to improve the bacterial search ability. In the improved
reproduction operation, the crossover operator is introduced to the replica parent to increase the
diversity of the population while the best individual is retained. In the improved elimination and
dispersal operation, the (1 − fevo) replaces Ped in the original BFO, and is introduced to prevent
the population from dying and falling into a local optimum.
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Table 4. The classification accuracy for microarray data of ovarian cancer. Legend: RF, random forest;
SVM, support vector machine; DT, decision tree; KNN, k nearest neighbor.

Approaches Classification Accuracy

SVM 88.45%
DT 85.71%
RF 83.66%

KNN 80.88%
BFO 89.93%

The proposed algorithm 93.47%

Table 5. The classification accuracy for the spam email dataset.

Approaches Classification Accuracy

SVM 93.51%
DT 90.83%
RF 91.68%

KNN 90.64%
BFO 94.27%

The proposed algorithm 96.42%

Table 6. The classification accuracy for the zoo dataset.

Approaches Classification Accuracy

SVM 93.55%
DT 92.71%
RF 90.32%

KNN 91.46%
BFO 94.38%

The proposed algorithm 99.54%

4.2. Analysis of ROC and AUC

In this experiment, the area below the ROC is also called the AUC and is used to evaluate the
performance of the proposed approach. The value of the AUC is from 0 to 1.0, and the closer to
1.0, the better the effect of the model classifier. The value of the AUC is 0.979 for the ovarian cancer
microarray data, as shown in Figure 4. The value of the AUC is 0.987 for the spam email dataset, as
shown in Figure 5. The value of the AUC is 0.995 for the zoo data, as shown in Figure 6. Hence, the
experimental results show that the proposed algorithm has good classification performance.
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5. Conclusions

This paper has proposed the incorporation of particle swarm optimization into an improved bacterial
foraging optimization algorithm applied to the classification of imbalanced data. The Borderline-SMOTE
and Tomek link approaches were used to pre-process data. Thereafter, the intelligent improved BFO
was applied to the classification of imbalanced data so as to solve the shortcoming of falling into a local
optimum in the original BFO algorithm. Three datasets were used for testing the performance of the
proposed algorithm. The proposed algorithm includes an improved chemotaxis process, an improved
reproduction process, and an improved elimination and dispersal process. In this paper, the global
search ability of the BFO was improved by using particles to search and then treating particles as
bacteria in the improved chemotaxis process. After the improved chemotaxis, the swarming operations,
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improved reproduction operations, and improved elimination and dispersal operations were performed.
The average classification accuracy of the proposed algorithm for the ovarian cancer microarray data
was 93.47%. The average classification accuracies of the spam email dataset and the zoo dataset of
the proposed algorithm were 96.42% and 99.54%, respectively. The value of the AUC was 0.979 for
the ovarian cancer microarray data, 0.987 for the spam email dataset, and 0.995 for the zoo dataset.
The experimental results showed that the proposed algorithm in this research can achieve the best
accuracy in the classification of imbalanced data compared with existing approaches.

In this paper, PSO was introduced into an improved bacterial foraging optimization algorithm
and applied to the classification of imbalanced data. Based on the research results, we put forward the
following suggestions:

(1) Improvement of the algorithm’s operation: The key to implementing the optimization is the
operation of the algorithm. Designing an excellent operation plays an important role in improving
the performance and efficiency of the algorithm. In BFO, this will become a key area of research into
BFO to improve chemotaxis and reproduction and the elimination and dispersal operation process,
and to coordinate the local mining ability and global exploring ability of the processing algorithm.

(2) Selection of algorithm parameters: The parameter value of the algorithm is key to the performance
and efficiency of the algorithm. In evolutionary algorithms, there is no general method to
determine the optimal parameters of the algorithm. At present, there are many BFO parameters.
Determining the optimal parameters of BFO to optimize the performance of the algorithm itself is
a complex optimization problem.

(3) Combining with other algorithms: Combining the advantages of BFO and other algorithms to
propose more efficient algorithms is a valuable topic in BFO research.
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