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Abstract: This article deals with finite-time quenching for the system of coupled semi-linear heat
equations ut = uxx + f (v) and vt = vxx + g(u), for (x, t) ∈ (0, 1)× (0, T), where f and g are given
functions. The system has the homogeneous Neumann boundary conditions and the bounded
nonnegative initial conditions that are compatible with the boundary conditions. The existence
result is established by using the method of upper and lower solutions. We obtain sufficient
conditions for finite time quenching of solutions. The quenching set is also provided. From the
quenching set, it implies that the quenching solution has asymmetric profile. We prove the blow-up
of time-derivatives when quenching occurs. We also find the criteria to identify simultaneous and
non-simultaneous quenching of solutions. For non-simultaneous quenching, the corresponding
quenching rate of solutions is given.
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1. Introduction

Since the study of quenching phenomena for the parabolic equations was begun in 1975
by Kawarada [1], a lot of works along this direction, its generalization and its variation have been
contributed. For example, in 2002, De Pablo et al. [2] studied the coupled parabolic system

ut = uxx − v−p, (x, t) ∈ (0, 1)× (0, T),
vt = vxx − u−q, (x, t) ∈ (0, 1)× (0, T),

}
(1)

subject to the Neumann boundary conditions and initial conditions

ux(0, t) = ux(1, t) = vx(0, t) = vx(1, t) = 0, t ∈ (0, T),

u(x, 0) = u0(x) > 0 and v(x, 0) = v0(x) > 0, x ∈ [0, 1].

In Reference [2], the solution u or v of Equation (1) is said to quench in a finite time if there exists
Tq < ∞ such that u or v exists in the classical sense and is positive for all 0 ≤ t < Tq, while

lim inf
t→Tq

min
0≤x≤1

{u(x, t)} = 0 or lim inf
t→Tq

min
0≤x≤1

{v(x, t)} = 0.
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The System (1) is said to quench simultaneously if both u and v quench at the same finite time Tq.
However, if only one of the solutions quenches in a finite time Tq, then it is called non-simultaneous
quenching. The main results of [2] can be summarized as follows.

• If p, q ≥ 1, then any quenching solutions of (1) is simultaneous; if p ≤ 1 ≤ q, then any quenching
solutions of (1) is non-simultaneous with u being strictly positive; if p, q ≤ 1, then there exists
(u0, v0) such that simultaneous quenching occurs.

• If quenching is non-simultaneous, and, for instance, v is the unique quenching component,
then v(0, t) ∼ (Tq − t). Otherwise:

(a) u(0, t) ∼ (Tq − t)
p−1
pq−1 , v(0, t) ∼ (Tq − t)

q−1
pq−1 if p, q > 1 or p, q < 1;

(b) u(0, t), v(0, t) ∼ (Tq − t)
1
2 if p = q = 1;

(c) u(0, t) ∼ (Tq − t)
∣∣log(Tq − t)

∣∣ p
p−1 , v(0, t) ∼

∣∣log(Tq − t)
∣∣ −1

p−1 if p > q = 1.

Note that f ∼ g means there exist finite positive constants c1 and c2 such
that c1g(x) ≤ f (x) ≤ c2g(x), for all x ∈ D f ∩ Dg. Furthermore, the blow-up of ut and vt at the
quenching time were also proved. Since they can prove that ut and vt are decreasing functions of t,
the blow-up of them means ut → −∞ and vt → −∞ as t approaches the quenching time.

In 2016, Pei and Li [3] worked on the coupled parabolic system

ut(x, t) = ∆u− f (v(x, t)), (x, t) ∈ Ω× (0, T),
vt(x, t) = ∆v− f (u(x, t)), (x, t) ∈ Ω× (0, T),

}
,

where T > 0 and Ω ⊂ Rn is a bounded domain with smooth boundary subject to the Dirichlet
boundary conditions and initial conditions

u = v = 1, (x, t) ∈ ∂Ω× (0, T) and u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

They derived the quenching rate in the case of non-simultaneous quenching.
Later, in 2019, Chan [4] studied the semi-linear parabolic system

ut − ∆u =
a

1− v(0, 0, t)
, in D× (0, Γ),

vt − ∆v =
b

1− u(0, 0, t)
, in D× (0, Γ),

 ,

subject to the Dirichlet boundary conditions and initial conditions

u(x, y, t) = v(x, y, t) = 0, on ∂D× (0, Γ) and u(x, y, 0) = v(x, y, 0) = 0, on D,

where D = (−1, 1)× (−1, 1), Γ ∈ (0, ∞], and a, b are positive constants such that a ≤ b. The definition
of quenching was different from References [2,3]. In Reference [4], the solution u or v is said to quench
if there exists a finite time Γ such that

max
(x,y)∈D

{u(x, y, t)} → 1− or max
(x,y)∈D

{v(x, y, t)} → 1− as t→ Γ−.

He proved that the solutions quench simultaneously and approximated critical values a∗ and b∗.
This a∗ and b∗ associate with the existence of the solutions of their steady state system.

Let T > 0. In this article, we consider the system of coupled semi-linear heat equations

ut(x, t) = uxx(x, t) + f (v(x, t)), (x, t) ∈ (0, 1)× (0, T),
vt(x, t) = vxx(x, t) + g(u(x, t)), (x, t) ∈ (0, 1)× (0, T),

}
, (2)
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subject to the Neumann boundary conditions

ux(0, t) = ux(1, t) = 0 and vx(0, t) = vx(1, t) = 0, t ∈ (0, T]

and the initial conditions

u(x, 0) = u0(x) and v(x, 0) = v0(x), x ∈ [0, 1].

We assume that the initial conditions are nonnegative, bounded, smooth, and compatible with
the boundary conditions. Let c be a positive constant. The given functions f and g are positive
and satisfy the following conditions:

Hypothesis 1. f (s), g(s) ∈ C2([0, c));

Hypothesis 2. lims→c− f (s) = ∞ and lims→c− g(s) = ∞;

Hypothesis 3. f ′(s) > 0 and g′(s) > 0 f or s ∈ [0, c);

Hypothesis 4. f ′′(s) ≥ 0 and g′′(s) ≥ 0 f or s ∈ [0, c).

Throughout this work, we assume that u0(x) < c, v0(x) < c, and they satisfy

u′′0 (x) + f (v0(x)) > 0, (3)

v′′0 (x) + g(u0(x)) > 0, (4)

u′0(x) > 0, (5)

v′0(x) > 0. (6)

The solutions of the System (2) are said to quench simultaneously in a finite time if there exists
Tq < ∞ such that

max
0≤x≤1

{u(x, t)} → c− and max
0≤x≤1

{v(x, t)} → c− as t→ T−q .

However, if either max0≤x≤1 {u(x, t)} → c− or max0≤x≤1 {v(x, t)} → c− as t → T−q , we say
that the quenching is non-simultaneous. The time Tq is called the quenching time of (2).

This article is organized as follows. In Section 2, we prove the comparison principles for heat
inequlity and system of coupled heat inequalities involving the Neumann boundary conditions.
In Section 3, we prove the existence of solutions to our problem. In Section 4, we determine conditions
under which we are guaranteed the queching in a finite time. We also prove that the time derivatives
become unbounded when quenching occurs. The quenching set is also provided. In Section 5,
we characterize when simultaneous or non-simultaneous quenching are possible. We also give
the quenching rates when non-simultaneous quenching occurs. Section 6 closes with disscussion
and conclusion.

2. Comparison Principles

The aim of this section is to establish two comparison principles. We modify the idea
of Reference [5] to obtain the proof of Theorem 1. We note that the boundary conditions of the
problem in Theorem 1 are different from those of Reference [5].
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Theorem 1. Let Θ(x, t) ∈ C
(
[0, 1]× [0, T]

)
∩ C2,1((0, 1)× (0, T)

)
be a function satisfying

Θt(x, t)−Θxx(x, t) ≥ 0, (x, t) ∈ (0, 1)× (0, T),
Θx(0, t) ≤ 0 and Θx(1, t) ≥ 0, t ∈ [0, T],
Θ(x, 0) ≥ 0, x ∈ [0, 1].

 (7)

Then, Θ(x, t) ≥ 0 in [0, 1]× [0, T].

Proof. Let λ > 0 and n ∈ N. Define Ψ(x, t) = e−λtΘ(x, t) and Ψn(x, t) = Ψ(x, t) + 1
n in [0, 1]× [0, T].

For (x, t) ∈ (0, 1)× (0, T), we have

∂

∂t
Ψn(x, t) = e−λtΘt(x, t)− λe−λtΘ(x, t)

≥ e−λtΘxx(x, t)− λΨ(x, t)

=
∂2

∂x2 Ψn(x, t)− λΨn(x, t) +
λ

n

>
∂2

∂x2 Ψn(x, t)− λΨn(x, t),

and

∂

∂x
Ψn(x, t) =

∂

∂x
Ψ(x, t) = e−λt ∂

∂x
Θ(x, t).

By the boundary and initial conditions in Equation (7), we have ∂
∂x Ψn(0, t) ≤ 0, ∂

∂x Ψn(1, t) ≥ 0,
t ∈ [0, T] and Ψn(x, 0) ≥ 0, x ∈ [0, 1].

For each n ∈ N, suppose that Ψn(x, t) has a negative minimum m at some point (xk, tk) ∈
[0, 1]× [0, T].

If (xk, tk) ∈ [0, 1]× {0}, then, by the initial condition in (7), Ψn(x, 0) ≥ 0 for x ∈ [0, 1]. This gives
a contradiction.

If (xk, tk) ∈ (0, 1)× (0, T), then
∂

∂t
Ψn(xk, tk) = 0 and

∂2

∂x2 Ψn(xk, tk) ≥ 0. This gives

λΨn(xk, tk) ≥ λΨn(xk, tk)−
∂2

∂x2 Ψn(xk, tk) =
∂

∂t
Ψn(xk, tk)−

∂2

∂x2 Ψn(xk, tk) + λΨn(xk, tk) > 0,

which implies that Ψn(xk, tk) > 0. We have a contradiction.
If (xk, tk) ∈ {0}× (0, T], then there exists a neighborhood H of {0}× (0, T] such that Ψn(x, t) > m

for all (x, t) ∈ H. Then, by Theorem 14 [6] (p. 47), ∂
∂x Ψn(0, t) > 0 for all t ∈ (0, T]. We have

a contradiction.
If (xk, tk) ∈ {1}× (0, T], then there exists a neighborhood H of {1}× (0, T] such that Ψn(x, t) > m

for all (x, t) ∈ H. Then, by Theorem 14 [6] (p. 47), ∂
∂x Ψn(1, t) < 0 for all t ∈ (0, T], where we have,

again, a contradiction.
Hence, Ψn(x, t) ≥ 0 in [0, 1] × [0, T]. By letting n → ∞, we can conclude that Ψ(x, t) ≥ 0 in

[0, 1]× [0, T]. Therefore, Θ(x, t) ≥ 0 in [0, 1]× [0, T].
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Theorem 2. Let F, G be non-negative functions and Θ(x, t), Ψ(x, t) ∈ C
(
[0, 1]× [0, T]

)
∩ C2,1((0, 1)× (0, T)

)
be functions satisfying

Θt(x, t)−Θxx(x, t) + F(x, t)Ψ(x, t) ≥ 0, (x, t) ∈ (0, 1)× (0, T),
Ψt(x, t)−Ψxx(x, t) + G(x, t)Θ(x, t) ≥ 0, (x, t) ∈ (0, 1)× (0, T),
Θx(0, t) ≤ 0 and Θx(1, t) ≥ 0, t ∈ [0, T],
Ψx(0, t) ≤ 0 and Ψx(1, t) ≥ 0, t ∈ [0, T],
Θ(x, 0) ≥ 0 and Ψ(x, 0) ≥ 0, x ∈ [0, 1].


(8)

Then, Θ(x, t) ≥ 0 and Ψ(x, t) ≥ 0 in [0, 1]× [0, T].

Proof. Define Φ(x, t) = e−2t−x2
Θ(x, t) and Ξ(x, t) = e−2t−x2

Ψ(x, t) in [0, 1] × [0, T]. Suppose that
Φ(x, t) has a negative minimum m at some point (xk, tk) ∈ [0, 1]× [0, T]. Without loss of generality,
let m = Φ(xk, tk) ≤ min(x,t)∈[0,1]×[0,T] Ξ(x, t).

If (xk, tk) ∈ [0, 1]× {0}, then, by the initial condition in Equation (8), we must have Φ(x, 0) ≥ 0
for all x ∈ [0, 1]. This directs to a contradiction.

If (xk, tk) ∈ (0, 1)× (0, T), then for all (x, t) ∈ (0, 1)× (0, T), we have

Φt(x, t) = e−2t−x2
Θt(x, t)− 2e−2t−x2

Θ(x, t)

and

Φxx(x, t) = e−2t−x2
Θxx(x, t)− 4xe−2t−x2

Θx(x, t) + 4x2e−2t−x2
Θ(x, t)− 2e−2t−x2

Θ(x, t).

Thus, for all (x, t) ∈ (0, 1)× (0, T),

Φxx(x, t) + 4xΦx(x, t)−Φt(x, t) + 4x2Φ(x, t) + F(x, t)Ξ(x, t) ≥ 0

and

Ξxx(x, t) + 4xΞx(x, t)− Ξt(x, t) + 4x2Ξ(x, t) + G(x, t)Φ(x, t) ≥ 0.

Since Φ(xk, tk) = m, Φ(x, t)−m > 0 and Ξ(x, t)−m > 0 on the boundaries (x, t) ∈ {0, 1}× (0, T].
By the initial conditions in Equation (8), we have Φ(x, 0)−m > 0 and Ξ(x, 0)−m > 0, for all x ∈ [0, 1].
Then, by Theorem 15 [7], (p. 191) Φ(x, t) > m and Ξ(x, t) > m for all (x, t) ∈ (0, 1)× (0, T). This gives
a contradiction.

If (xk, tk) ∈ {0} × (0, T], then there exists a neighborhood H of {0} × (0, T] such that Φ(x, t) > m
for all (x, t) ∈ H. Thus, by Theorem 15 [7] (p. 191), ∂

∂x Φ(0, t) > 0 for all t ∈ (0, T]. However, it can be
directly calculated that Φx(0, t) = e−2tΘx(0, t) ≤ 0 for all t ∈ (0, T]. We have a contradiction.

If (xk, tk) ∈ {1} × (0, T], then there exists a neighborhood H of {1} × (0, T] such that Φ(x, t) > m
for all (x, t) ∈ H. Thus, by Theorem 15 [7] (p. 191), ∂

∂x Φ(1, t) < 0 for all t ∈ (0, T]. However, it can
be directly calculated that Φx(1, t) = e−2t−1(Θx(1, t)− 2Θ(1, t)) > 0 for all t ∈ (0, T]. We have, again,
a contradiction.

Therefore, Φ(x, t) ≥ 0 and Ξ(x, t) ≥ 0 in [0, 1]× [0, T], which implies Θ(x, t) ≥ 0 and Ψ(x, t) ≥ 0
in [0, 1]× [0, T].

3. Existence of Solutions

In this section, we use the technique of upper and lower solutions to investigate the existence
result of our problem.
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Definition 1. A pair of functions (ũ, ṽ) is called an upper solution of Equation (2) for (x, t) ∈ [0, 1]× [0, T]
if ũ, ṽ ∈ C

(
[0, 1]× [0, T]

)
∩ C2,1((0, 1)× (0, T)

)
and (ũ, ṽ) satisfies

ũt(x, t) ≥ ũxx(x, t) + f (ṽ(x, t)), (x, t) ∈ (0, 1)× (0, T),

ṽt(x, t) ≥ ṽxx(x, t) + g(ũ(x, t)), (x, t) ∈ (0, 1)× (0, T),

ũx(0, t) = ũx(1, t) = 0 and ṽx(0, t) = ṽx(1, t) = 0, t ∈ [0, T],

ũ(x, 0) ≥ u0(x) and ṽ(x, 0) ≥ v0(x), x ∈ [0, 1].

Similarly, a lower solution (û, v̂) of (2) is defined by reversing all inequalities in Definition 1.

We modify the proof of Lemma 2.1 in Reference [8] to obtain Lemma 1. We note here that the
forcing terms appeared in Lemma 1 are more general than those in Reference [8].

Lemma 1. Let (ũ, ṽ) and (û, v̂) be a positive upper solution and a non-negative lower solution of the System (2)
for (x, t) ∈ [0, 1]× [0, T], respectively. Then, ũ ≥ û and ṽ ≥ v̂ in [0, 1]× [0, T]. In particular, if (u∗, v∗) is a
solution of (2), then ũ ≥ u∗ ≥ û and ṽ ≥ v∗ ≥ v̂ in [0, 1]× [0, T].

Proof. Let W(x, t) = ũ(x, t)− û(x, t) and Z(x, t) = ṽ(x, t)− v̂(x, t) in [0, 1]× [0, T]. Then,

Wt(x, t) = ũt(x, t)− ût(x, t) ≥ ũxx(x, t)− ûxx(x, t) + f (ṽ(x, t))− f (v̂(x, t))

for all (x, t) ∈ (0, 1)× (0, T). This gives

Wt(x, t) ≥Wxx(x, t) + f (ṽ(x, t))− f (v̂(x, t)) = Wxx(x, t) + a(x, t)Z(x, t)

for all (x, t) ∈ (0, 1)× (0, T), where a(x, t) = f (ṽ(x,t))− f (v̂(x,t))
ṽ(x,t)−v̂(x,t) if ṽ(x, t) 6= v̂(x, t); otherwise, a(x, t) = 0.

Similarly, for (x, t) ∈ (0, 1)× (0, T), we have

Zt(x, t) = ṽt(x, t)− v̂t(x, t) ≥ ṽxx(x, t)− v̂xx(x, t) + g(ũ(x, t))− g(û(x, t)).

This gives

Zt(x, t) ≥ Zxx(x, t) + g(ũ(x, t))− g(û(x, t)) = Zxx(x, t) + b(x, t)W(z, t)

for all (x, t) ∈ (0, 1)× (0, T), where b(x, t) = g(ũ(x,t))−g(û(x,t))
ũ(x,t)−û(x,t) if ũ(x, t) 6= û(x, t); otherwise, b(x, t) = 0.

At the boundaries x = 0 and x = 1, we have

Wx(0, t) = ũx(0, t)− ûx(0, t) = 0 and Wx(1, t) = ũx(1, t)− ûx(1, t) = 0,

Zx(0, t) = ṽx(0, t)− v̂x(0, t) = 0 and Zx(1, t) = ṽx(1, t)− v̂x(1, t) = 0.

By the initial conditions of the upper and lower solutions, we obtain

W(x, 0) = ũ(x, 0)− û(x, 0) ≥ u0(x)− u0(x) = 0,

Z(x, 0) = ṽ(x, 0)− v̂(x, 0) ≥ v0(x)− v0(x) = 0

for all x ∈ [0, 1]. By Theorem 2, we have W(x, t) ≥ 0 and Z(x, t) ≥ 0 for (x, t) ∈ [0, 1]× [0, T], which
implies ũ(x, t) ≥ û(x, t) and ṽ(x, t) ≥ v̂(x, t) for all (x, t) ∈ [0, 1]× [0, T].

Next, let us define two monotone sequences of functions
{

u(k), v(k)
}

and
{

u(k), v(k)
}

for k ∈ N
which we refer them as the maximal and the minimal sequences, respectively, where the initial guesses
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are (u(0), v(0)) = (ũ, ṽ) and (u(0), v(0)) = (û, v̂) and those maximal and minimal sequences satisfy
the linear problem (9) and the boundary and initial conditions thereafter.

u(k)
t (x, t) = u(k)

xx (x, t) + f (v(k−1)(x, t)), (x, t) ∈ (0, 1)× (0, T),
v(k)t (x, t) = v(k)xx (x, t) + g(u(k−1)(x, t)), (x, t) ∈ (0, 1)× (0, T),

}
, (9)

subject to the boundary conditions

u(k)
x (0, t) = u(k)

x (1, t) = 0 and v(k)x (0, t) = v(k)x (1, t) = 0, t ∈ (0, T]

and the initial conditions

u(k)(x, 0) = u0(x) and v(k)(x, 0) = v0(x), x ∈ [0, 1],

where k ∈ N.

Lemma 2. The two sequences
{

u(k), v(k)
}

and
{

u(k), v(k)
}

possess the monotone property

(û, v̂) ≤ (u(k), v(k)) ≤ (u(k+1), v(k+1)) ≤ (u(k+1), v(k+1)) ≤ (u(k), v(k)) ≤ (ũ, ṽ)

for all (x, t) ∈ [0, 1]× [0, T] and k ∈ N. Here, (a, b) ≤ (c, d) implies a ≤ c and b ≤ d.

Proof. Let W(x, t) = ũ(x, t) − u(1)(x, t) and Z(x, t) = ṽ(x, t) − v(1)(x, t) in [0, 1] × [0, T]. We have
by Equation (9) and (u(0), v(0)) = (ũ, ṽ) that, for (x, t) ∈ (0, 1)× (0, T),

Wt(x, t)−Wxx(x, t) = ũt(x, t)− ũxx(x, t)− f (ṽ(x, t)) ≥ 0,

Zt(x, t)− Zxx(x, t) = ṽt(x, t)− ṽxx(x, t)− g(ũ(x, t)) ≥ 0.

Since ũx(0, t) = ũx(1, t) = u(1)
x (0, t) = u(1)

x (1, t) = 0 and ṽx(0, t) = ṽx(1, t) = v(1)x (0, t) =

v(1)x (1, t) = 0 for t ∈ (0, T], we have

Wx(0, t) = Wx(1, t) = 0 and Zx(0, t) = Zx(1, t) = 0

for t ∈ (0, T]. Since ũ(x, 0) ≥ u0(x) = u(1)(x, 0) and ṽ(x, 0) ≥ v0(x) = v(1)(x, 0) for x ∈ [0, 1], we have

W(x, 0) = ũ(x, 0)− u0(x) ≥ 0 and Z(x, 0) = ṽ(x, 0)− v0(x) ≥ 0

for x ∈ [0, 1]. By Theorem 1, we have W(x, t) ≥ 0 and Z(x, t) ≥ 0 for (x, t) ∈ [0, 1]× [0, T]. This gives

u(1)(x, t) ≤ ũ(x, t) and v(1)(x, t) ≤ ṽ(x, t) for (x, t) ∈ [0, 1]× [0, T].

Similarly, using the property of a lower solution and Theorem 1 we obtain

u(1)(x, t) ≥ û(x, t) and v(1)(x, t) ≥ v̂(x, t) for (x, t) ∈ [0, 1]× [0, T].

The next step is obtained by the mathematical induction. Let

W(1)(x, t) = u(1)(x, t)− u(1)(x, t) and Z(1)(x, t) = v(1)(x, t)− v(1)(x, t)
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for all (x, t) ∈ [0, 1]× [0, T]. Then, for all (x, t) ∈ (0, 1)× (0, T), we have

W(1)
t (x, t) = u(1)

t (x, t)− u(1)
t (x, t) = u(1)

xx (x, t) + f (ṽ(x, t))− u(1)
xx (x, t)− f (v̂(x, t)),

Z(1)
t (x, t) = v(1)t (x, t)− v(1)t (x, t) = v(1)xx (x, t) + g(ũ(x, t))− v(1)xx (x, t)− g(û(x, t))

Therefore, for (x, t) ∈ (0, 1)× (0, T), we have

W(1)
t (x, t)−W(1)

xx (x, t) = f (ṽ(x, t))− f (v̂(x, t)) ≥ 0

and

Z(1)
t (x, t)− Z(1)

xx (x, t) = g(ũ(x, t))− g(û(x, t)) ≥ 0.

Since u(1)
x (0, t) = u(1)

x (0, t) = u(1)
x (1, t) = u(1)

x (1, t) = 0 and
v(1)x (0, t) = v(1)x (0, t) = v(1)x (1, t) = v(1)x (1, t) = 0 for t ∈ (0, T], we have

W(1)
x (0, t) = W(1)

x (1, t) = 0 and Z(1)
x (0, t) = Z(1)

x (1, t) = 0

for t ∈ (0, T]. Since u(1)(x, 0) = u0(x) = u(1)(x, 0) and v(1)(x, 0) = v0(x) = v(1)(x, 0) for x ∈ [0, 1],
we have

W(1)(x, 0) = 0 and Z(1)(x, 0) = 0

for all x ∈ [0, 1]. By Theorem 1, W(1)(x, t) ≥ 0 and Z(1)(x, t) ≥ 0 for (x, t) ∈ [0, 1] × [0, T].
Thus, u(1)(x, t) ≤ u(1)(x, t) and v(1)(x, t) ≤ v(1)(x, t) for all (x, t) ∈ [0, 1]× [0, T]. Therefore, for all
(x, t) ∈ [0, 1]× [0, T], we obtain

(û, v̂) ≤ (u(1), v(1)) ≤ (u(1), v(1)) ≤ (ũ, ṽ.)

Next, let k ≥ 2 be an integer and assume

(u(k−1), v(k−1)) ≤ (u(k), v(k)) ≤ (u(k), v(k)) ≤ (u(k−1), v(k−1))

for all (x, t) ∈ [0, 1]× [0, T].

Let W(k)(x, t) = u(k)(x, t)− u(k+1)(x, t) and Z(k)(x, t) = v(k)(x, t)− v(k+1)(x, t) in [0, 1]× [0, T].
Then,

W(k)
t (x, t) = u(k)

t (x, t)− u(k+1)
t (x, t) = u(k)

xx (x, t) + f (v(k−1)(x, t))− u(k+1)
xx (x, t)− f (v(k)(x, t)),

Z(k)
t (x, t) = v(k)t (x, t)− v(k+1)

t (x, t) = v(k)xx (x, t) + g(u(k−1)(x, t))− v(k+1)
xx (x, t)− g(u(k)(x, t)),

and

W(k)
xx (x, t) = u(k)

xx (x, t)− u(k+1)
xx (x, t) and Z(k)

xx (x, t) = v(k)xx (x, t)− v(k+1)
xx (x, t).

By the induction hypothesis, f and g being increasing functions, we can conclude that,
for (x, t) ∈ (0, 1)× (0, T),

W(k)
t (x, t)−W(k)

xx (x, t) = f (v(k−1)(x, t))− f (v(k)(x, t)) ≥ 0,

Z(k)
t (x, t)− Z(k)

xx (x, t) = g(u(k−1)(x, t))− g(u(k))(x, t)) ≥ 0.
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Since u(k)
x (0, t) = u(k)

x (1, t) = u(k+1)
x (0, t) = u(k+1)

x (1, t) = 0
and v(k)x (0, t) = v(k)x (1, t) = v(k+1)

x (0, t) = v(k+1)
x (1, t) = 0 for t ∈ (0, T], we have

W(k)
x (0, t) = W(k)

x (1, t) = 0 and Z(k)
x (0, t) = Z(k)

x (1, t) = 0

for t ∈ (0, T]. Since u(k)(x, 0) = u0(x) = u(k+1)(x, 0) and v(k)(x, 0) = v0(x) = v(k+1)(x, 0) for x ∈ [0, 1],
we have for x ∈ [0, 1] that

W(k)(x, t) = 0 and Z(k)(x, 0) = 0.

By Theorem 1, W(k)(x, t) ≥ 0 and Z(k)(x, t) ≥ 0 for all (x, t) ∈ [0, 1] × [0, T]. This gives
u(k+1)(x, t) ≤ u(k)(x, t) and v(k+1)(x, t) ≤ v(k)(x, t) for all (x, t) ∈ [0, 1]× [0, T]. By using a similar
argument, we obtain u(k+1)(x, t) ≥ u(k)(x, t) and v(k+1)(x, t) ≥ v(k)(x, t) for all (x, t) ∈ [0, 1]× [0, T],
also u(k+1)(x, t) ≥ u(k+1)(x, t) and v(k+1)(x, t) ≥ v(k+1)(x, t) for all (x, t) ∈ [0, 1]× [0, T]. The result
follows from the mathematical induction.

We have from Lemma 2 that the sequences
{

u(k)} and
{

v(k)
}

are monotone decreasing and are
bounded from below, while the sequence

{
u(k)} and

{
v(k)

}
are monotone increasing and are bounded

from above. Therefore, the pointwise limits of sequences exist and we arrive at the conclusion that the
solutions u and v to the System (2) exist.

4. Finite-Time Quenching of (u, v) and Blow-Up of (ut, vt)

In this section, we provide the sufficient conditions to guarantee quenching in a finite time of the
System (2). First, we prove that the solutions u and v are increasing in space and increasing in time.

Lemma 3.

(i) If the initial conditions satisfy (5) and (6), then ux(x, t) ≥ 0 and vx(x, t) ≥ 0 for (x, t) ∈ [0, 1]× [0, T).
(ii) If the initial conditions satisfy (3) and (4), then ut(x, t) ≥ 0 and vt(x, t) ≥ 0 for (x, t) ∈ [0, 1]× [0, T).

Proof.

(i) Assume that u0(x) and v0(x) satisfy (5) and (6), respectively. For any fixed τ ∈ (0, T), let us define
W(x, t) = ux(x, t) and Z(x, t) = vx(x, t) in [0, 1]× [0, τ]. We have by (2) that

Wt(x, t) = (ut)x(x, t) = uxxx(x, t) + f ′(v(x, t))vx(x, t) = Wxx(x, t) + f ′(v(x, t))Z(x, t),

Zt(x, t) = (vt)x(x, t) = vxxx(x, t) + g′(u(x, t))ux(x, t) = Zxx(x, t) + g′(u(x, t))W(x, t),

for all (x, t) ∈ (0, 1)× (0, T). Since ux(0, t) = ux(1, t) = 0 and vx(0, t) = vx(1, t) = 0, we have

W(0, t) = W(1, t) = 0 and Z(0, t) = Z(1, t) = 0

for t ∈ (0, T]. By Equations (5) and (6), W(x, 0) = u′0(x) > 0 and Z(x, 0) = v′0(x) > 0, x ∈ [0, 1].
Then, by Theorem 15 [7] (p. 191), ux(x, t) = W(x, t) ≥ 0 and vx(x, t) = Z(x, t) ≥ 0 for (x, t) ∈
[0, 1]× [0, T).

(ii) Assume (3) and (4) hold. For any fixed τ ∈ (0, T), define W(x, t) = ut(x, t) and Z(x, t) = vt(x, t)
in [0, 1]× [0, τ]. We have by (2) that

Wt(x, t) = (ut)t(x, t) = uxxt(x, t) + f ′(v(x, t))vt(x, t) = Wxx(x, t) + f ′(v(x, t))Z(x, t),

Zt(x, t) = (vt)t(x, t) = vxxt(x, t) + g′(u(x, t))ut(x, t) = Zxx(x, t) + g′(u(x, t))W(x, t),
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for all (x, t) ∈ (0, 1) × (0, T). Differentiating W(x, t) and Z(x, t) with respect to x, we have
by Equation (2) that

Wx(x, t) = (ut)x(x, t) = uxxx(x, t) + f ′(v(x, t))vx(x, t),

Zx(x, t) = (vt)x(x, t) = vxxx(x, t) + g′(u(x, t))ux(x, t).

Since ux(0, t) = ux(1, t) = 0 and vx(0, t) = vx(1, t) = 0, we have

Wx(0, t) = Wx(1, t) = 0 and Zx(0, t) = Zx(1, t) = 0,

for t ∈ (0, τ]. By Equations (3) and (4), W(x, 0) = u′′0 (x) + f (v0(x)) > 0
and Z(x, 0) = v′′0 (x) + g(u0(x)) > 0. By Theorem 2, ut(x, t) = W(x, t) ≥ 0 and
vt(x, t) = Z(x, t) ≥ 0 for all (x, t) ∈ [0, 1] × [0, T).

By modifying the proof of Theorem 2 of Reference [9] and extending the forcing terms in their
proof to more general forcing functions, the result of quenching in a finite time can be established.

Theorem 3.

(i) If the initial conditions satisfy Equation (3), then u quenches in a finite time.
(ii) If the initial conditions satisfy Equation (4), then v quenches in a finite time.

Proof. We will give the proof of (i). The proof of (ii) can be done in a similar manner. Assume that
u0(x) and v0(x) satisfy (3). Then,

∫ 1
0 f (v0(x)) > 0. Define m(t) =

∫ 1
0 (c− u(x, t))dx, t ∈ [0, T]. We have

by Leibniz’s rule, (2), the boundary conditions, and f being an increasing function that

m′(t) = −
∫ 1

0
ut(x, t)dx = −

∫ 1

0

(
uxx(x, t) + f (v(x, t))

)
dx = −

∫ 1

0
f (v(x, t))dx ≤ −

∫ 1

0
f (v0(x))dx. (10)

Integrating Equation (10) with respect to t from 0 to t, we obtain

m(t) ≤ m(0)− t
∫ 1

0
f (v0(x))dx, t ∈ [0, T]. (11)

From (11), there exists a finite time t = Tq such that m(Tq) = 0. Therefore, u(x, t) quenches
in a finite time.

Theorem 4.

(i) If the initial conditions satisfy Equations (3) and (5), then x = 1 is the only quenching point of u(x, t).
(ii) If the initial conditions satisfy Equations (4) and (6), then x = 1 is the only quenching point of v(x, t).

Proof. We will give the proof of (i). The proof of (ii) can be done by using a similar argument. For any
fixed b1 ∈ (0, 1), b2 ∈ (b1, 1) and τ ∈ (0, T). Let ε > 0 and define G(x, t) = ux(x, t) − ε(x − b1)

in [b1, b2]× [0, τ]. Then,

Gt(x, t)− Gxx(x, t) = f ′(v(x, t))vx(x, t) ≥ 0 for (x, t) ∈ (b1, b2)× (0, τ).

Furthermore, if ε is small enough, then

G(b1, t) = ux(b1, t) > 0 and G(b2, t) = ux(b2, t)− ε(b2 − b1) > 0 for t ∈ [0, τ],

G(x, 0) = ux(x, 0)− ε(x− b1) > 0 for x ∈ [b1, b2].
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By Theorem 15 [7] (p. 191), we obtain

ux(x, t) > ε(x− b1) for (x, t) ∈ [b1, b2]× [0, T). (12)

Integrating (12) with respect to x from b1 to b2, we have

u(b1, t) < u(b2, t)− ε(b2 − b1)
2

2
for t ∈ [0, T).

Therefore, u(x, t) does not quench in (0, 1). Next, we have to show that u(0, t) does not quench
at Tq. Suppose u(0, t)→ c as t→ Tq . Then, there exists δ > 0 such that ux(η, Tq) < 0 where η ∈ (0, δ).
By Lemma 3 (ii), we have a contradiction. Therefore, u(x, t) does not quench in [0,1). The theorem
is proved.

The next Lemma will be used to prove that the time-derivatives blow up at the quenching time.

Lemma 4. If the initial conditions satisfy Equations (3) and (4), then there exists δ > 0 such that

ut(x, t) ≥ δ f (v(x, t)), vt(x, t) ≥ δg(u(x, t)), (x, t) ∈ [0, 1]× (0, T).

Proof. For any fixed τ1 ∈ (0, τ2) and τ2 ∈ (0, T) define W(x, t) = ut(x, t) − δ f (v(x, t))
and Z(x, t) = vt(x, t)− δg(u(x, t)) for (x, t) ∈ [0, 1]× [τ1, τ2]. Then,

Wt(x, t) = utt(x, t)− δ f ′(v(x, t))vt(x, t),

and

Wxx(x, t) = utxx(x, t)− δ f ′(v(x, t))vxx(x, t)− δ f ′′(v(x, t))(vx(x, t))2.

Therefore,

Wt(x, t)−Wxx(x, t) = utt − δ f ′(v)vxx − δ f ′(v)g(u)− utxx + δ f ′(v)vxx + δ f ′′(v)(vx)
2

= uxxt + f ′(v)vt − δ f ′(v)g(u)− utxx + δ f ′′(v)(vx)
2

= f ′(v)
(
vt − δg(u)

)
+ δ f ′′(v)(vx)

2

≥ f ′(v)Z(x, t)

for (x, t) ∈ (0, 1)× (τ1, τ2). Similarly, we have

Zt(x, t) = vtt(x, t)− δg′(u(x, t))ut(x, t)

and

Zxx(x, t) = vtxx(x, t)− δg′(u(x, t))uxx(x, t)− δg′′(u(x, t))(ux(x, t))2.

Therefore,

Zt(x, t)− Zxx(x, t) = vtt − δg′(u)uxx − δg′(u) f (v)− vtxx + δg′(u)uxx + δg′′(u)(ux)
2

= vxxt + g′(u)ut − δg′(u) f (v)− vtxx + δg′′(u)(ux)
2

= g′(u)
(
ut − δ f (v)

)
+ δg′′(u)(ux)

2

≥ g′(u)W(x, t)
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for all (x, t) ∈ (0, 1)× (τ1, τ2). Since ux(0, t) = ux(1, t) = 0 and vx(0, t) = vx(1, t) = 0, we have

Wx(0, t) = Wx(1, t) = 0 and Zx(0, t) = Zx(1, t) = 0, t ∈ [τ1, τ2].

By Equations (3) and (4), we have

W(x, 0) = u′′0 (x)− f (v0(x))− δ f (v0(x)) and Z(x, 0) = v′′0 (x)− g(u0(x))− δg(u0(x)), x ∈ [0, 1].

If δ is small enough, then W(x, 0) ≥ 0 and Z(x, 0) ≥ 0. By Theorem 2, we derive that

W(x, t) ≥ 0 and Z(x, t) ≥ 0, (x, t) ∈ [0, 1]× [τ1, τ2].

Therefore, ut(x, t) ≥ δ f (v(x, t)) and vt(x, t) ≥ δg(u(x, t)) in [0, 1]× (0, T).

Next, we prove that the time derivatives blow up when quenching occurs. Blow-up of time
derivatives means ut → ∞ and vt → ∞ as t approaches the quenching time.

Theorem 5. Let the initial conditions satisfy Equations (5) and (6).

(i) If v quenches in a finite time Tq, then ut(1, t) blows up at Tq.
(ii) If u quenches in a finite time Tq, then vt(1, t) blows up at Tq.

Proof. We give the proof of (i). One can prove (ii) by using a similar argument. If v quenches in a finite
time Tq, then v quenches only at x = 1 by Theorem 4. Thus, v(1, t) → c− as t → T−q . By Lemma 4,
we have

ut(1, t) ≥ δ f (v(1, t)).

By the hypothesis of f , we can conclude that ut(1, t)→ ∞ as t→ T−q .

5. Simultaneous and Non-Simultaneous Quenching

In this section, we provide sufficient conditions for simultaneous and non-simultaneous
quenching. Moreover, if quenching is non-simultaneous, we give the esimates of the quenching rates.

Theorem 6.

(i) If g is integrable on [0, c), for any initial condition v0(x), there exists an initial condition u0(x) such that
u quenches in a finite time Tq while v does not quench at Tq.

(ii) If f is integrable on [0, c), for any initial condition u0(x), there exists an initial condition v0(x) such that
v quenches in a finite time Tq while u does not quench at Tq.

Proof. We only give the proof of (i). One can prove (ii) by using a similar argument. Assume that
g is integrable on [0, c). Let v0(x) be fixed. Thus, by Theorem 3, u quenches at a finite time Tq.
By Equation (11), we have

∫ 1

0
(c− u(x, t))dx ≤

∫ 1

0
(c− u0(x))dx− t

∫ 1

0
f (v0(x))dx, t ∈ [0, T].

At the quenching time Tq, we have

Tq

∫ 1

0
f (v0(x))dx ≤ c−

∫ 1

0
u0(x)dx.
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For any fixed τ ∈ (0, T), let us define W(x, t) = vt(x, t) in [0, 1] × [0, τ]. We have by
Equation (2) that

Wt(x, t) = (ut)t(x, t) = uxxt + f ′(v(x, t))vt(x, t) = Wxx(x, t) + f ′(v(x, t))vt(x, t)

for (x, t) ∈ (0, 1)× (0, τ). By Lemma 3 (ii), we have Wt(x, t)−Wxx(x, t) ≥ 0 for (x, t) ∈ (0, 1)× (0, τ).
By the boundary conditions of Equation (2), we have

Wx(0, t) = 0 and Wx(1, t) = 0.

for t ∈ (0, T]. By (4), we have W(x, 0) ≥ f (v0(x)) for x ∈ [0, 1]. By Theorem 1, we obtain

W(x, t) ≥ f (v0(x)), (x, t) ∈ [0, 1]× [0, T].

Therefore,

ut(x, t)− f (v0(x)) ≥ 0, (x, t) ∈ [0, 1]× [0, T]. (13)

Integrating Equation (13) from t to Tq, we obtain

u(x, t) ≤ c− f (v0(x))(Tq − t), (x, t) ∈ [0, 1]× [0, Tq]. (14)

By Equations (2) and (14), we have

vt(x, t) ≤ vxx(x, t) + g(c− f (v0(x))(Tq − t)), (x, t) ∈ [0, 1]× [0, Tq].

We consider the following problem with the solution v∗(x, t),

v∗t (x, t) = g(c− f (v0(x))(Tq − t)), t ∈ (0, T),
v∗(x, 0) = max

x∈[0,1]
v0(x), x ∈ [0, 1].

 (15)

Integrating the differential equation in Equation (15) from 0 to t, we obtain

v(x, t) ≤ v∗(x, 0) +
∫ t

0
g(c− f (v0(x))(Tq − τ))dτ (16)

for (x, t) ∈ [0, 1]× [0, Tq]. From (16), if u0(x) is small enough, we have

v(x, Tq) ≤ v∗(x, 0) + lim
t→T−q

∫ t

0
g(c− f (v0(x))(Tq − τ))dτ < c, x ∈ [0, 1].

Theorem 7. If f and g are not integrable on [0, c), then simultaneous quenching occurs in a finite time.

Proof. We will prove the contrapositive version: “if non-simultaneous quenching occurs in a finite
time, then f or g is integrable on [0, c).” Assume non-simultaneous quenching occurs in a finite time
Tq and u is the only solution that quenches at a finite time Tq. Suppose, for the sake of contradiction,
that g is not integrable on [0, c). By Lemma 4,

vt(1, t) ≥ δg(u(1, t)), t ∈ (0, Tq). (17)
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Integrating Equation (17) from 0 to t, we obtain

v(1, t)− v(1, 0) ≥ δ
∫ t

0
g((u(1, τ))dτ.

Then,

lim
t→T−q

v(1, t)− v(1, 0) ≥ δ lim
t→T−q

∫ t

0
g((u(1, τ))dτ.

This is a contradiction; hence, g must be integrable on [0, c). Similary, if we assume
non-simultaneous quenching occurs, and v is the only solution that quenches in a finite time, then we
have that f is integrable on [0, c).

Theorem 7 implies that, if both f and g are not integrable on [0, c), then quenching is simultaneous
for every pair of initial conditions (u0(x), v0(x)). Next, we impose one more condition to Theorem 6
so that non-simultaneous quenching occurs for every pair of initial conditions (u0(x), v0(x)). In order
to prove the next theorem, let us give the remarks about the estimates of the time derivatives as follows.

At x = 1, by Lemma 3 (i) and Lemma 4, we have

δ f (v(1, t)) ≤ ut(1, t) ≤ f (v(1, t)),
δg(u(1, t)) ≤ vt(1, t) ≤ g(u(1, t)).

}
. (18)

Therefore, û(t) = u(1, t) and v̂(t) = v(1, t) behave as solutions of the system

û′(t) = f (v̂(t)), t ∈ (0, T),
v̂′(t) = g(û(t)), t ∈ (0, T).

}
. (19)

Theorem 8.

(i) If f is integrable on [0, c) and g is not integrable on [0, c), then u(x, t) < c for (x, t) ∈ [0, 1]× [0, Tq].
(ii) If g is integrable on [0, c) and f is not integrable on [0, c), then v(x, t) < c for (x, t) ∈ [0, 1]× [0, Tq].

Proof. We give the proof of (i). The proof of (ii) can be done by using a similar argument. Suppose u
quenches in a finite time Tq. By Equation (18) and the positivity of g(û(t)) for t ∈ [0, T], we have

δg(û(t)) f (v̂(t)) ≤ g(û(t))û′(t) ≤ g(û(t)) f (v̂(t)),

for t ∈ (0, T). By Equation (19), we have

δ f (v̂(t))v̂′(t) ≤ g(û(t))û′(t) ≤ f (v̂(t))v̂′(t), (20)

for t ∈ (0, T). Integrating Equation (20) from 0 to t, we obtain

∫ t

0
g(û(τ))dû(τ) =

∫ t

0
g(û(τ))û′(τ)dτ ≤ δ

∫ t

0
f (v̂(τ))v̂′(τ)dτ = δ

∫ t

0
f (v̂(τ))dv̂(τ).

As t approaches the quenching time Tq, we have

lim
t→T−q

∫ t

0
g(û(τ))dû(τ) ≤ δ lim

t→T−q

∫ t

0
f (v̂(τ))dv̂(τ).

Since u quenches in a finite time Tq, this is a contradiction. The theorem is proved.

Theorem 9.
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(i) If quenching is non-simultaneous and u is the only solution that quenches at Tq, then

c−
∫ Tq

t
f (v(1, τ))dτ ≤ u(1, t) ≤ c− δ f (v0(x))(Tq − t).

(ii) If quenching is non-simultaneous and v is the only solution that quenches at Tq, then

c−
∫ Tq

t
g(u(1, τ))dτ ≤ v(1, t) ≤ c− δg(u0(x))(Tq − t).

Proof. We give the proof of (i). The proof of (ii) can be done by using a similar argument.
Assume non-simultaneous quenching occurs and u is the only solution that quenches in a finite
time Tq. Hence, u quenches only at x = 1. By Lemma 4,

ut(1, t) ≥ δ f (v(1, t)),

for t ∈ (0, T). By Lemma 3 and f being an increasing function, we have

ut(1, t) ≥ δ f (v0(x)), (21)

for t ∈ (0, T). Integrating Equation (21) with respect to t from t to Tq, we obtain

u(1, Tq)− u(1, t) ≥ δ f (v0(x))(Tq − t).

Since u(1, t)→ c− as t→ T−q , this gives the upper estimate of u(1, t) as

u(1, t) ≤ c− δ f (v0(x))(Tq − t). (22)

Next, we find the lower estimate of u(1, t). From the System (2) and (18), we have

ut(1, t) ≤ f (v(1, t)), (23)

for t ∈ (0, T). Integrating Equation (23) with respect to t from t to Tq, we obtain

u(1, Tq)− u(1, t) ≤
∫ Tq

t
f (v(1, τ))dτ.

Since u(1, t)→ c− as t→ T−q , we have the lower estimate of u(1, t) as

u(1, Tq)−
∫ Tq

t
f (v(1, τ))dτ ≤ u(1, t). (24)

Therefore, combing of Equations (22) and (24), we have the quenching rate of u(1, t) as t
approaches Tq.

Theorem 9 implies that, if non-simultaneous quenching occurs, then the rate at which the
quenched solution approaches zero is of linear order.

6. Discussion and Conclusions

We studied the system of coupled semi-linear heat equations. The existence result is proved
by using comparison principles and the technique of upper and lower solutions. Under proper
conditions, we prove that the finite time quenching occurs to the system, and we also provide the
queching set. We obtain the sufficient conditions for simultaneous and non-simultaneous quenching.
The blow-up of time derivatives of the solutions at the queching point are proved. Moreover,
we observe that the integrability of f or g plays an important role to prevent one of the solutions from
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quenching in a finite time. For non-simultaneous quenching, we give the estimates of the quenching
rates. Finally, we propose that our future research is to extend our study to the n-dimensional domain.
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