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Abstract: In this paper, we introduce an analytical approximate solution of nonlinear fractional
Volterra population growth model based on the Caputo fractional derivative and the Riemann
fractional integral of the symmetry order. The residual power series method and Adomain
decomposition method are implemented to find an approximate solution of this problem.
The convergence analysis of the proposed technique has been proved. A numerical example is
given to illustrate the method.
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1. Introduction

In recent years, fractional calculus appears frequently in the context of mathematical modeling in
various branches of science and engineering such as robotics [1], control theory [2], signal processing [3],
economics [4], viscoelasticity [5]. For more details and applications about fractional calculus, we refer
the reader to [6–9]. In most cases, the exact solutions for fractional nonlinear problems, if exist,
are not easy to find [10–13]. In order to describe the behavior of the unknowns of those systems,
many researchers usually perform some numerical or approximate analytical methods instead.
In this regard, some recent techniques are proposed for solving fractional functional equations.
Among them are sorts of integral transform methods which are well combined with the homotopy
analysis methods [14–19]. The Adomian decomposition method (ADM) [20] and the variational
iteration method [21,22] are also mentioned in many contexts. The residual power series method
(RPSM) is one of those techniques which quite suits nonlinear fractional differential equations [23–30].
Generalized from the classical power series method, the solution is written on the form of fractional
power series. However, the formula of all coefficients can be derived by enormous algebraic
manipulations. The main merit of the RPSM is that the series solution, in particular a truncated
series solution can be easily obtained.

The study of population growth model is one of the specific fields of science which is gaining
attention due to the limitation of resources on our planet. The Volterra model for population growth [31]
in a closed system is represented by the nonlinear Volterra integro-differential equation

κ
du
dt

= u− u2 − u
∫ t

0
u(τ)dτ, (1)

u(0) = a0, a0 > 0, (2)
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where u ≡ u(t) is the scaled population of identical individuals at a time t and a0 is an initial population.
The nondimensional parameter κ = c

ab is introduced to explain overall increasing or decreasing rate of
the population, where a > 0, b > 0 and c > 0 denote the birth rate coefficient, the crowding coefficient
and the toxicity coefficient, respectively [32].

In this study, we consider the following nonlinear fractional Volterra population growth model of
the form:

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1], (3)

subject to
u(0) = a0, a0 > 0. (4)

The derivative in the fractional Volterra population growth model (3) is in the Caputo sense and Iα

is the Riemann–Liouville fractional integral operator of order α. In order to keep the symmetry aspect,
we set the order of the derivative and the integral to be equal. Due to the nonlinear term in Equation (3),
solving this problem by RPSM is most likely cumbersome. In various method mentioned above the
well-known Adomian polynomials take their part to handle this difficulty. Actually, the Adomian
polynomials was introduced by George Adomian in 1988 [33] as a sequence of series of Maclaurin
type embedded in the ADM for nonlinear problems. The ADM has become a powerful technique
for analytic approximate solutions to initial value problems. Furthermore, according to [34–36] the
Adomian polynomials and the ADM itself can be combined well with other methods.

Motivated by the existing methods, the main objective of this paper is to study the nonlinear
fractional Volterra population growth model using the residual power series method and the Adomian
decomposition method. This method is called modified residual power series method (MRPSM).
The remaining sections of this paper are organized as follows. In Section 2, we present some
preliminaries of fractional calculus and the fractional power series. Applications of the MRPSM
to the nonlinear fractional Volterra population growth model are presented in Section 3. In Section 4,
the convergence analysis is investigated. In Section 5, the graphical result is also reported for different
values of fractional parameter. Finally, in Section 6 some conclusions are drawn.

2. Preliminaries

In this section, we give some preliminaries of fractional calculus and fractional power series [37,38],
which are further used in this paper.

Definition 1. Let u(t) ∈ Cn(0, ∞). The Caputo fractional derivative of order α > 0 is defined as

Dα
t u(t) =


1

Γ(n− α)

∫ t

0
(t− τ)n−α−1u(n)(τ)dτ, n− 1 < α < n,

u(n)(t), α = n ∈ N,

where n is the smallest integer greater than or equal to α and Γ(·) is the well-known Gamma function.

Theorem 1. The Caputo fractional derivative of the power function is as follows

Dα
t tp =


Γ(p + 1)

Γ(p− α + 1)
tp−α, n− 1 < α < n, p > n− 1, p ∈ R,

0, n− 1 < α < n, p ≤ n− 1, p ∈ N.

Definition 2. The Riemann–Liouville fractional integral operator Iα of order α > 0 is normally defined by

Iαu(t) =


1

Γ(α)

∫ t

0

u(τ)
(t− τ)1−α

dτ, α > 0,

u(t), α = 0.

where u(t) is a function defined on (0, t].
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Theorem 2. The Riemann–Liouville fractional integral operator of power function is given by

Iαtp =
Γ(p + 1)

Γ(p + α + 1)
tp+α.

The following definition and theorem related to the RPSM [38].

Definition 3. The fractional power series (FPS) about t = t0 is given by

∞

∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + · · · ,

where 0 ≤ n− 1 < α and t ≥ t0.

Theorem 3. Suppose that f has a fractional power series represent at t = t0 of the form

f (t) =
∞

∑
m=0

cm(t− t0)
mα,

where 0 ≤ n− 1 < α, t0 ≤ t < t0 + R and R is the radius of convergence.
If Dmα f (t), m = 0, 1, 2, . . . are continuous on (t0, t0 + R), then cm = Dmα f (t0)

Γ(1+mα)
.

3. Modified Residual Power Series Method (MRPSM) for Nonlinear Fractional Volterra
Population Growth Model

Consider the fractional nonlinear Volterra population growth model

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1], (5)

subject to
u(0) = a0, a0 > 0, (6)

where κ > 0 is a prescribed non-dimensional parameter and u(t) is the scaled population of identical
individuals at time t. The derivative in the fractional Volterra population growth model (5) is in the
Caputo sense and Iα is the Riemann–Liouville fractional integral operator of order α.

According to the RPSM, let u(t) be the solution of fractional Volterra population growth model of
the form:

u(t) =
∞

∑
n=0

antnα

Γ(1 + nα)
. (7)

Using the initial condition (6), we approximate u(t) in Equation (7) by

uk(t) = a0 +
k

∑
n=1

antnα

Γ(1 + nα)
, k = 1, 2, 3, ... . (8)

To find the residual power series (RPS) coefficient an, we solve the equation

D(n−1)α
t Resn(0) = 0, n = 1, 2, 3, ... , (9)

where Resk(t) is the kth residual function and is defined by

Resk(t) = κDα
t uk(t)− uk(t) + u2

k(t) + uk(t)Iαuk(t). (10)

Since the fractional Volterra population growth model (5) has a nonlinear term F(u) = u2(t),
the Adomian polynomials play their role in dealing with it.
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Let

uk(t) =
k

∑
i=0

vi, (11)

where v0 = a0 and

vi =
aitiα

Γ(1 + iα)
, i = 1, 2, 3, ..., k. (12)

Let

F(uk(t)) =
k

∑
n=0

An, (13)

be a nonlinear operator where An are called Adomian polynomials and can be determined from
the formula

An =
1
n!

[
dn

dλn [F(
n

∑
i=0

λivi)]

]
λ=0

. (14)

From Equation (11), we can rewritten the nonlinear polynomials u2
k(t) as

F(uk(t)) = (v0 + v1 + v2 + v3 + · · ·+ vk)
2 =

k

∑
n=0

An.

Using the Algorithm presented in [39], the Adomian polynomials for F(uk(t)) = u2
k(t) are

given by

A0 = v2
0

A1 = 2v0v1

A2 = 2v0v2 + v2
1

A3 = 2v0v3 + 2v1v2

A4 = v2
2 + 2v1v3 + 2v0v4

A5 = 2v2v3 + 2v0v5 + 2v1v4

A6 = 2v0v6 + 2v1v5 + 2v2v4 + v2
3

A7 = 2v0v7 + 2v2v5 + 2v3v4 + 2v1v6

A8 = 2v2v6 + 2v3v5 + v2
4 + 2v0v8 + 2v1v7.

Other polynomials can be calculated by Equation (14).
To find a1, we substitute the first RPS approximate solution

u1(t) = a0 + a1
tα

Γ(1 + α)

into Equation (10) as follows

Res1(t) = κDα
t u1(t)− u1(t) + u2

1(t) + u1(t)Iα(u1(t))
= κDα

t

(
a0 + a1

tα

Γ(1+α)

)
−
(

a0 + a1
tα

Γ(1+α)

)
+
(

a0 + a1
tα

Γ(1+α)

)2
+
(

a0 + a1
tα

Γ(1+α)

)
Iα(a0 + a1

tα

Γ(1+α)
)

= κa1 −
(

a0 + a1
tα

Γ(1+α)

)
+
(

a0 + a1
tα

Γ(1+α)

)2

+
(

a0 + a1
tα

Γ(1+α)

) (
a0

tα

Γ(1+α)
+ a1

t2α

Γ(1+2α)

)
.
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Then, we solve Res1(0) = 0 to get

a1 =
1
κ

[
a0 − a2

0

]
. (15)

To find a2, the second RPS approximate solution is in form

u2(t) = a0 + a1
tα

Γ(1 + α)
+ a2

t2α

Γ(1 + 2α)
. (16)

Using Adomian polynomials for F(u2(t)) = u2
2(t) and v0 = a0, we have

u2
2(t) = a2

0 + 2a0a1
tα

Γ(1+α)
+ 2a0a2

t2α

Γ(1+2α)
+
(

a1
tα

Γ(1+α)

)2

+2a1a2
t3α

Γ(1+α)Γ(1+2α)
+
(

a2
t2α

Γ(1+2α)

)2
.

(17)

On substituting Equations (16) and (17) in Equation (10), we have

Res2(t) = κDα
t u2(t)− u2(t) + u2

2(t) + u2(t)Iα(u2(t))
= κ

(
a1 + a2

tα

Γ(1+α)

)
−
(

a0 + a1
tα

Γ(1+α)
+ a2

t2α

Γ(1+2α)

)
+

[
a2

0 + 2a0a1
tα

Γ(1+α)
+ 2a0a2

t2α

Γ(1+2α)
+
(

a1
tα

Γ(1+α)

)2

+2a1a2
t3α

Γ(1+α)Γ(1+2α)
+
(

a2
t2α

Γ(1+2α)

)2
]

+

[(
a2

0
Γ(1+α)

)
tα +

(
a0a1

Γ2(1+α)
+ a0a1

Γ(1+2α)

)
t2α

+

(
a0a2

Γ(1+α)Γ(1+2α)
+

a2
1

Γ(1+α)Γ(1+2α)
+ a0a2

Γ(1+3α)

)
t3α

+
(

a1a2
Γ2(1+2α)

+ a1a2
Γ(1+α)Γ(1+3α)

)
t4α +

(
a2

2
Γ(1+2α)Γ(1+3α)

)
t5α

]
.

(18)

On applying the derivative Dα
t on Equation (18), we obtain

Dα
t Res2(t) = κa2 −

(
a1 + a2

tα

Γ(1+α)

)
+
[
2a0a1 + 2a0a2

tα

Γ(1+α)
+ a2

1
Γ(1+2α)tα

Γ3(1+α)

+2a1a2
Γ(1+3α)t2α

Γ(1+α)Γ2(1+2α)
+ a2

2
Γ(1+4α)t3α

Γ2(1+2α)Γ(1+3α)

]
+
[

a2
0 +

(
a0a1

Γ2(1+α)
+ a0a1

Γ(1+2α)

)
Γ(1+2α)tα

Γ(1+α)

+

(
a0a2

Γ(1+α)Γ(1+2α)
+

a2
1

Γ(1+α)Γ(1+2α)
+ a0a2

Γ(1+3α)

)
Γ(1+3α)t2α

Γ(1+2α)

+
(

a1a2
Γ2(1+2α)

+ a1a2
Γ(1+α)Γ(1+3α)

)
Γ(1+4α)t3α

Γ(1+3α)
+

(
a2

2
Γ(1+2α)Γ(1+3α)

)
Γ(1+5α)t4α

Γ(1+4α)

]
.

Then, we solve Dα
t Res2(0) = 0 to get

a2 =
1
κ

[
a1 − 2a0a1 − a2

0

]
. (19)

To find a3, the third RPS approximate solution is in form

u3(t) = a0 + a1
tα

Γ(1 + α)
+ a2

t2α

Γ(1 + 2α)
+ a3

t3α

Γ(1 + 3α)
. (20)
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Using Adomian polynomials and F(u3(t)) = u2
3(t), we have

u2
3 = a2

0 + 2a0a1
tα

Γ(1+α)
+ 2a0a2

t2α

Γ(1+2α)
+
(

a1
tα

Γ(1+α)

)2

+2a0a3
t3α

Γ(1+3α)
+ 2a1a2

t3α

Γ(1+α)Γ(1+2α)
+
(

a2
t2α

Γ(1+2α)

)2

+2a1a3
t4α

Γ(1+α)Γ(1+3α)
+ 2a2a3

t5α

Γ(1+2α)Γ(1+3α)
+
(

a3
t3α

Γ(1+3α)

)2
.

(21)

On substituting Equations (20) and (21) in Equation (10), we obtain

Res3(t) = κDα
t u3(t)− u3(t) + u2

3(t) + u3(t)Iα(u3(t))
= κ

(
a1 + a2

tα

Γ(1+α)
+ a3

t2α

Γ(1+2α)

)
−
(

a0 + a1
tα

Γ(1+α)
+ a2

t2α

Γ(1+2α)
+ a3

t3α

Γ(1+3α)

)
+

[
a2

0 + 2a0a1
tα

Γ(1+α)
+ 2a0a2

t2α

Γ(1+2α)
+
(

a1
tα

Γ(1+α)

)2

+2a0a3
t3α

Γ(1+3α)
+ 2a1a2

t3α

Γ(1+α)Γ(1+2α)
+
(

a2
t2α

Γ(1+2α)

)2

+2a1a3
t4α

Γ(1+α)Γ(1+3α)
+ 2a2a3

t5α

Γ(1+2α)Γ(1+3α)
+
(

a3
t3α

Γ(1+3α)

)2
]

+

[(
a2

0
Γ(1+α)

)
tα +

(
a0a1

Γ2(1+α)
+ a0a1

Γ(1+2α)

)
t2α

+

(
a0a2

Γ(1+α)Γ(1+2α)
+

a2
1

Γ(1+α)Γ(1+2α)
+ a0a2

Γ(1+3α)

)
t3α

+
(

a0a3
Γ(1+α)Γ(1+3α)

+ a1a2
Γ2(1+2α)

+ a1a2
Γ(1+α)Γ(1+3α)

+ a0a3
Γ(1+4α)

)
t4α

+

(
a1a3

Γ(1+α)Γ(1+4α)
+

a2
2

Γ(1+2α)Γ(1+3α)
+ a1a3

Γ(1+2α)Γ(1+3α)

)
t5α

+
(

a2a3
Γ(1+2α)Γ(1+4α)

+ a2a3
Γ2(1+3α)

)
t6α +

(
a2

3
Γ(1+3α)Γ(1+4α)

)
t7α

]
.

(22)

Then, we solve D2α
t Res3(0) = 0 to get

a3 =
1
κ

[
u2 −

(
2a0a2 + a2

1
Γ(1 + 2α)

Γ2(1 + α)

)
−
(

a0a1Γ(1 + 2α)

Γ2(1 + α)
+ a0a1

)]
. (23)

The same procedure is performed to obtain u4(t) as

u4(t) = a0 + a1
tα

Γ(1 + α)
+ a2

t2α

Γ(1 + 2α)
+ a3

t3α

Γ(1 + 3α)
+ a4

t4α

Γ(1 + 4α)
, (24)

where the coefficient a4 can be calculated by

a4 =
1
κ

[
a3 −

(
2a0a3 + 2a1a2

Γ(1+3α)
Γ(1+α)Γ(1+2α)

)
−
(

a0a2 +
a2

1Γ(1+3α)
Γ(1+α)Γ(1+2α)

+ a0a2Γ(1+3α)
Γ(1+α)Γ(1+2α)

)]
.

(25)

In general, for a positive integer k, the coefficient ak for the approximate solution uk(t) in
Equation (8) is supposed to be

ak =
1
κ

[
ak−1 −

(
k−1

∑
i=0

aiak−1−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

)

−
(

k−2

∑
i=0

aiak−2−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

)]
.

(26)

We give the proof in the following theorem.
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Theorem 4. The nonlinear fractional Volterra population growth model (5) subject to the initial condition (6)
has the approximate solution in the form

uk(t) = a0 +
k

∑
n=1

antnα

Γ(1 + nα)
,

where

ak =
1
κ

[
ak−1 −

(
k−1

∑
i=0

aiak−1−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

)

−
(

k−2

∑
i=0

aiak−2−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

)]
,

for k = 1, 2, 3, ....

Proof. Let

uk(t) = a0 +
k

∑
n=1

antnα

Γ(1 + nα)

be the approximate solution of Equation (5) subject to the initial condition (6). Then the kth residual
function is expressed as

Resk(t) = κDα
t uk(t)− uk(t) + u2

k(t) + uk(t)Iα (uk(t))

= κDα
t

(
k

∑
n=0

antnα

Γ(1 + nα)

)
−
(

k

∑
n=0

antnα

Γ(1 + nα)

)
[

k

∑
n=0

(
k

∑
i=0

aian−i
Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k

∑
n=1

(
k

∑
i=n

aiak+n−i
Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

]

+

(
k

∑
n=0

antnα

Γ(1 + nα)

)
Iα

(
k

∑
n=0

antnα

Γ(1 + nα)

)
.

So,

Resk(t) = κ
k

∑
n=1

ant(n−1)α

Γ(1 + (n− 1)α)
−
(

k

∑
n=0

antnα

Γ(1 + nα)

)
[

k

∑
n=0

(
k

∑
i=0

aian−i
Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k

∑
n=1

(
k

∑
i=n

aiak+n−i
Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

]

+

[
k

∑
n=0

(
k

∑
i=0

aian−i
Γ(1 + iα)Γ(1 + (n + 1− i)α)

)
t(n+1)α

+
k

∑
n=1

(
k

∑
i=n

aiak+n−i
Γ(1 + iα)Γ(1 + (k + n + 1− i)α)

)
t(k+n+1)α

]
.

(27)
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Now, operating D(k−1)α
t on both sides of Equation (27) yields

D(k−1)α
t Resk(t) = κak −

(
ak−1 +

aktα

Γ(1 + α)

)
+

[
k−1

∑
i=0

aiak−1−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

+
k

∑
i=0

aiak−iΓ(1 + kα)

Γ(1 + iα)Γ(1 + (k− i)α)Γ(1 + α)
tα

+
k

∑
n=1

(
k

∑
i=n

aiak+n−iΓ(1 + (k + n)α)
Γ(1 + iα)Γ(1 + (k + n− i)α)Γ(1 + (n + 1)α)

)
t(n+1)α

]

+

[
k−2

∑
i=0

aiak−2−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

+
k−1

∑
i=0

aiak−1−iΓ(1 + kα)

Γ(1 + iα)Γ(1 + (k− i)α)Γ(1 + α)
tα

+
k

∑
i=0

aiak−iΓ(1 + (k + 1)α)
Γ(1 + iα)Γ(1 + (k + 1− i)α)Γ(1 + 2α)

t2α

+
k

∑
n=1

(
k

∑
i=n

aiak+n−iΓ(1 + (k + n + 1)α)
Γ(1 + iα)Γ(1 + (k + n + 1− i)α)Γ(1 + (n + 2)α)

)
t(n+2)α

]
.

Then, we solve D(k−1)α
t Resk(0) = 0 to obtain

ak =
1
κ

[
ak−1 −

(
k−1

∑
i=0

aiak−1−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

)

−
(

k−2

∑
i=0

aiak−2−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

)]
.

4. Convergence Analysis

Now, we prove the convergence of the MRPSM. We start by Lemma 1 which is a connection
between the classical power series (CPS) and the fractional power series.

Lemma 1. The classical power series ∑∞
n=0 untn, −∞ < t < ∞, has a radius of convergence R if and only if

the fractional power series ∑∞
n=0 antnα, t ≥ 0, has a radius of convergence R

1
α .

Proof. See [38].

The next theorem indicates that the series solution of nonlinear fractional Volterra population
growth model converges in a neighborhood of t = 0.

Theorem 5. The fractional power series solution of the nonlinear fractional Volterra population growth model
(5) subject to the initial condition (6)

u(t) =
∞

∑
n=0

antnα

Γ(1 + nα)
,

where an are the coefficients in Equation (26), has a positive radius of convergence.
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Proof. From Equation (26), we can see that

|ak|
Γ(1 + kα)

≤
∣∣∣∣1κ
∣∣∣∣ |ak−1|

Γ(1 + kα)
+

∣∣∣∣1κ
∣∣∣∣
∣∣∣∣∣k−1

∑
i=0

aiak−1−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

∣∣∣∣∣
Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣
∣∣∣∣∣k−2

∑
i=0

aiak−2−iΓ(1 + (k− 1)α)
Γ(1 + iα)Γ(1 + (k− 1− i)α)

∣∣∣∣∣
Γ(1 + kα)

≤
∣∣∣∣1κ
∣∣∣∣ |ak−1|

Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣ max

0≤i≤k−1

{
Γ(1 + (k− 1)α)

Γ(1 + iα)Γ(1 + (k− 1− i)α)Γ(1 + kα)

} k−1

∑
i=0
|ai| |ak−1−i|

+

∣∣∣∣1κ
∣∣∣∣ max

0≤i≤k−2

{
Γ(1 + (k− 1)α)

Γ(1 + iα)Γ(1 + (k− 1− i)α)Γ(1 + kα)

} k−2

∑
i=0
|ai| |ak−2−i|

= A |ak−1|+ B
k−1

∑
i=0
|ai| |ak−1−i|+ C

k−2

∑
i=0
|ai| |ak−2−i| ,

where

A =

∣∣∣∣1κ
∣∣∣∣ Γ(1 + kα), B = max

0≤i≤k−1

{
Γ(1 + (k− 1)α)

Γ(1 + iα)Γ(1 + (k− 1− i)α)Γ(1 + kα)

} ∣∣∣∣1κ
∣∣∣∣

C = max
0≤i≤k−2

{
Γ(1 + (k− 1)α)

Γ(1 + iα)Γ(1 + (k− 1− i)α)Γ(1 + kα)

} ∣∣∣∣1κ
∣∣∣∣ .

Let

f (t) =
∞

∑
k=0

bktk (28)

where b0 = |a0| , b1 = |a1|
Γ(1+α)

and

bk = A bk−1 + B
k−1

∑
i=0

bibk−1−i + C
k−2

∑
i=0

bibk−2−i, k = 2, 3, 4, ... (29)

be the classical power series. Thus,

ω = f (t) = b0 + b1t +
∞

∑
k=2

bktk

= b0 + b1t + A
∞

∑
k=2

bk−1tk + B
∞

∑
k=2

(
k−1

∑
i=0

bibk−1−i

)
tk + C

∞

∑
k=2

(
k−2

∑
i=0

bibk−2−i

)
tk

= b0 + b1t + At
∞

∑
k=1

bktk + Bt
∞

∑
k=1

(
k

∑
i=0

bibk−i

)
tk + Ct2

∞

∑
k=0

(
k

∑
i=0

bibk−i

)
tk.

Let
G(t, ω) = ω− b0 − b1t− At(ω− b0)− Bt(ω2 − b2

0)− Ct2ω2. (30)

Then
Gω(t, ω) = 1− tA− 2Btω− 2Ct2ω.

Regarding at point (0, b0), the function G(t, ω) is 0 and the partial derivative of the function
G(t, ω) with respect to ω is 1. We can see that G(t, ω) is an analytic function, so G(t, ω) has
continuous derivatives. By implicit function theorem [40], there is a neighborhood of (0, b0) so
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that whenever t is sufficiently close to 0 there is a unique ω so that G(t, ω) = 0. Then, f (t) is an
analytic function in the neighborhood of the point (0, b0) of the (t, ω)-plane with a positive radius of
convergence. From Lemma 1, the series in Equation (7) converges. The proof is complete.

5. Numerical Example

In this section, a numerical example of the MRPSM for nonlinear fractional Volterra population
growth model is presented.

Consider the following nonlinear fractional Volterra population growth model

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1], (31)

subject to
u(0) = 0.4. (32)

The graphical results of the solution for Equation (31) and initial condition (32) is illustrated
through Figures 1–3 for different α and κ values. Figure 1 represents the behavior of an approximate
solution κ = 0.7 with various values of α. Figures 2 and 3 show the behavior of an approximate
solution for α = 0.75 and 1 with various values of κ. We observe that increasing the parameter κ

resulted in decreasing of the approximate solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.42

0.46

0.5

0.54

0.58

u
(t

)

 = 0.75

 = 0.85

 = 0.95

 = 1

Figure 1. Approximate solution of Equation (31) for various of α and κ = 0.7.

For α = 1, Equation (31) becomes the classical Volterra population growth model. Table 1
represents the relation between κ, umax and tcritical . The maximum value is presented as umax and the
position of umax is presented as tcritical . The exact value of umax was evaluated by using

umax = 1 + κ ln
(

κ

1 + κ − u(0)

)
obtained by [32].

In Table 1, we observe that the approximate value of umax decreases as κ increases. It is noted that
the approximate value of umax is close to the exact value of umax for all values of κ. In fact, the results
reported in Table 1 illustrates the validity and good accuracy of the method.

In order to show the convergence of the MRPSM, the absolute errors of umax for different κ

values and α = 1 are shown in Table 2. The absolute error tends to decrease when the number of
truncated terms (k) increases. This shows that the method works reasonably for the classical problem.
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The results for other values of α are shown in Table 3. The approximate solution of umax at each α

and κ changes slightly when the number of truncated terms increases. We can say that only 20-term
approximation is acceptable to explain the behavior of the population with less computational effort.
Table 4 demonstrates how the step size h affects the approximation for α = 1. Compare to the exact
values of umax in Table 1, it is natural that the smaller step size is, the better approximation performs.
For h = 0.002, the computation time is less than 0.08 second which we hardly have to wait.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

u
(t

)

 = 0.7

 = 0.9

 = 1

 = 2

Figure 2. Approximate solution of Equation (31) for various of κ and α = 0.75.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.4

0.45

0.5

0.55

0.6

0.65

u
(t

)

 = 0.5

 = 0.6

 = 0.7

 = 0.8

Figure 3. Approximate solution of Equation (31) for various of κ and α = 1.

Table 1. The approximation of umax and exact value of umax for various of κ at α = 1.

κ tcritical Approximate umax Exact umax Absolute Errors

0.5 0.738 0.6057712361 0.6057713198 8.37213× 10−8

0.6 0.800 0.5841115047 0.5841116917 1.86934× 10−7

0.7 0.852 0.5666724313 0.5666725541 1.22786× 10−7

0.8 0.896 0.5523073685 0.5523073697 1.14278× 10−9
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Table 2. Absolute error of umax for various of κ and α = 1.

κ k = 20 k = 25 k = 30

0.5 3.33491× 10−6 4.48341× 10−7 8.37213× 10−8

0.6 1.12750× 10−6 2.47310× 10−7 1.86934× 10−7

0.7 4.28738× 10−7 1.34831× 10−7 1.22786× 10−7

0.8 1.10182× 10−7 3.89890× 10−9 1.14278× 10−9

Table 3. The approximation of umax for different α and κ values.

α κ k = 20 k = 25 k = 30

0.75 0.6 0.5502368550 0.5502415323 0.5502426850
0.85 0.7 0.5469171943 0.5469180381 0.5469181062
0.95 0.8 0.5458638855 0.5458640377 0.5458640426

Table 4. The approximation of umax and computation time for α = 1 and k = 20.

h κ = 0.5 κ = 0.7

Approximate umax Computation Time (s) Approximate umax Computation Time (s)

0.002 0.605771236096562 0.078953 0.566672431329788 0.075677
0.02 0.605769084446570 0.072933 0.566655106763389 0.070760
0.1 0.605246758144338 0.070844 0.566135276851748 0.067380

6. Conclusions

In this paper, we proposed a computational method called the modified residual power series
method (MRPSM) for solving nonlinear fractional Volterra population growth model. A closed
form of the fractional power series solution is obtained which is the advantage of this method.
The convergence analysis was also investigated. We gave a numerical example supporting that this
method is efficiently applicable for the nonlinear fractional Volterra population growth model with
high accuracy. Finally, it can easily be applied to other fractional nonlinear initial value problems to
obtain numerical or analytical solutions.
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