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Abstract: The global stability analysis for the mathematical model of an infectious disease is discussed
here. The endemic equilibrium is shown to be globally stable by using a modification of the
Volterra–Lyapunov matrix method. The basis of the method is the combination of Lyapunov functions and
the Volterra–Lyapunov matrices. By reducing the dimensions of the matrices and under some conditions,
we can easily show the global stability of the endemic equilibrium. To prove the stability based on
Volterra–Lyapunov matrices, we use matrices with the symmetry properties (symmetric positive definite).
The results developed in this paper can be applied in more complex systems with nonlinear incidence
rates. Numerical simulations are presented to illustrate the analytical results.

Keywords: global stability; epidemic model; Lyapunov function; Volterra–Lyapunov stability

1. Introduction

Mathematical modeling has the best predictive analysis to accurately predict the prevalence of
infectious diseases, and with the help of predicting the prevalence of infection, effective strategies
for disease control can be determined [1–4]. The mathematical models used for infectious diseases
have evolved rapidly in recent decades. One of the reasons for this progress and development is the
improvement of researchers’ ability to collect data [5–11].

Investigation of the global stability of endemic equilibrium in the mathematical model of infectious
diseases is one of the important issues in epidemiology [12–20]. Several methods have been proposed by
researchers to prove the stability of equilibrium points, such as monotone dynamical systems, the geometric
approach, and the method of Lyapunov functions [21–25].

Symmetry 2020, 12, 1778; doi:10.3390/sym12111778 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4747-0945
https://orcid.org/0000-0003-2258-3449
https://orcid.org/0000-0002-0815-4472
https://orcid.org/0000-0002-5829-8634
https://orcid.org/0000-0003-2521-1325
http://www.mdpi.com/2073-8994/12/11/1778?type=check_update&version=1
http://dx.doi.org/10.3390/sym12111778
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 1778 2 of 19

Kar and Jana presented the mathematical model of an infectious disease [26]. They examined the
local and global stability of the disease free and endemic equilibrium for fixed controls. Then, they
studied the optimal control of the disease with time dependent controls. For the global stability of the
endemic equilibrium, Liao and Wang [27] proposed a combination of the Lyapunov function method
and Volterra–Lyapunov properties and proved the global asymptotic stability of the endemic equilibria.
This method does not meet the challenges of the Lyapunov function method including determining
appropriate Lyapunov function and coefficients. In this work, we will present a modification of the
method of Lyapunov functions combined with the theory of Volterra–Lyapunov stable matrices [27–29].
The fundamental difference between the two methods is that our modified method repeatedly uses
Lemma 2.4, Lemma 2.8 (presented in [27]) and reducing the dimensions of the matrices, while in some parts
of the original method this technique is not used. This approach transfers the analysis from differentiable
functions to related matrices. The main advantage of this modification is that the higher dimensional
matrices can be easily implemented. In each step, we reduce the dimensions of the matrix and use the
property of the Volterra–Lyapunov matrices. This can reduce the computational complexity of the original
method [27]. Furthermore, the authors in [26] used the complicated concepts and theorems to show
the global stability of the endemic equilibrium. Tian and Wang in [30] investigated the global stability
of the cholera epidemic models, based on the monotone dynamical systems, the geometric approach,
and Volterra–Lyapunov stable matrices. The models used in their work, including different types of
functions, included transmission pathways, and pathogen growth rate. Using the modified method, we
can easily prove the global stability of models with nonlinear incidence rates.

The paper is organized as follows. In Section 2, we investigate the mathematical model, boundness
and equilibria of model of infectious disease with fixed controls. The global stability of the endemic
equilibrium is given in Section 3. In Section 4, numerical results demonstrate the effectiveness of the
proposed method is presented. In this section, we have compared our modification with the original
method. Finally, Section 5, contains a summarized conclusion of the results.

2. The Mathematical Model

The mathematical model of the epidemic model with two controls was proposed by Kar and Jana [26].
In this model, we have four types of population, which are represented by susceptible S(t), infected I(t),
recovered R(t) and vaccinated V(t).

The model consists of the following system of ordinary differential equations:

dS
dt

= (1− u1)a− dS− λSI
1 + αI

+ βR + m(1− ρ1)I + bu2(1− ρ2)I + σV,

dI
dt

=
λSI

1 + αI
− (d + m + γ + bu2)I, (1)

dR
dt

= −(d + β)R + (mρ1 + bu2ρ2)I,

dV
dt

= u1a− (d + σ)V,

The initial condition of System (1) are S(0) > 0, I(0) > 0, R(0) > 0, V(0) ≥ 0.
The used parameters of System (1) are shown in Table 1.
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Table 1. The parameters of System (1).

Parameter Description

a The total recruitment
u1 The constant vaccination control
σ Transmission rates from vaccinated to susceptible
α The reciprocal of half-saturation
λ The infection force parameter

λSI
1+αI The saturated infection rate

m Infected population rate that have recovered naturally
ρ1 The portion recovered (0 < ρ1 < 1)
u2 The constant treatment control
b The effectiveness of the treatment

bu2 The rate by which the infected populations recovered
βR The part of the recovered class becomes susceptible
ρ2 Recovered sections that go to recovery class (0 < ρ2 < 1)
γ Death rate of infected people due to disease attack
d The natural death rate

2.1. Equilibrium of the Model for Fixed Controls

Throughout this paper, we assume that the controls u1 and u2 are constant.
System (1) has two possible nonnegative equilibria. The first one is E0(S1, 0, 0, V∗) where

S1 =
σV∗ + (1− u1)a

d
,

V∗ =
u1a

d + σ
.

This equilibrium is the disease free equilibrium. The other equilibrium is E∗ = (S∗, I∗, R∗, V∗), where

S∗ =
S1(1 + αI∗)

R0
,

I∗ =
S1(R0 − 1)

αS1 + ( d+γ
d + mρ1+bu2+ρ2

(β+d) )R0
,

R∗ =
(mρ1 + bu2ρ2)I∗

β + d
,

V∗ =
u1a

d + σ
,

and R0 = λS1
d+m+γ+bu2

. It is easy to see that E∗ is feasible if I∗ > 0, i.e., if R0 = λS1
d+m+γ+bu2

> 1. The average
rate of infection in susceptible individuals caused by a number of secondary infections is called the basic
reproduction number R0.

Now, we want to get the basic reproduction number of System (1). Let us introduce matrices F and V,
as follows:

F =

 λS1 0

0 0

 ,
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V =

 d + m + γ + bu2 0

−(mρ1 + bu2ρ2) d + β

 .

Then by applying the next generation matrix method developed by van den Driessche and
Watmough [31], the basic reproduction number R0 is the spectral radius of the next generation operator
FV−1. Thus R0 = ρ(FV−1) = λS1

d+m+γ+bu2
.

2.2. Boundedness

Proposition 1. The closed set

Γ =
{
(S, I, R, V) ∈ R4

+ : 0 ≤ S + I + R + V ≤ a
d

}
,

is positively invariant.

Proof. Let (S(t), I(t), R(t), V(t)) be any solution with positive initial conditions. We have,

N(t) = S(t) + I(t) + R(t) + V(t).

The time derivative of N(t) along the solution of (1) is

dN
dt

= a− dS(t)− dI(t)− dR(t)− dV(t)− γI(t) ≤ a− dN(t).

Using theory of differential equations, we get

N(t) ≤ a
d
(1− e−dt) + N0e−dt,

and for t→ ∞, we have

lim
t→∞

N(t) ≤ a
d

.

Hence, Γ is positively invariant and it is sufficient to consider solutions of System (1) in it.

3. Global Stability of the Endemic Equilibrium

In this section, we are concerned with the global stability of (1) in a positively invariant set of Γ. To do
this, we define the Lyapunov function as follows:

L = w1(S− S∗)2 + w2(I − I∗)2 + w3(R− R∗)2 + w4(V −V∗)2, (2)

where w1, w2, w3 and w4 are positive constants. Calculating the time derivative of L along the trajectories
of System (1), we obtain:
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dL
dt

= 2w1(S− S∗)Ṡ + 2w2(I − I∗) İ + 2w3(R− R∗)Ṙ + 2w4(V −V∗)Ṙ,

= 2w1(S− S∗)[−d(S− S∗) + β(R− R∗) + (m(1− ρ1) + bu2(1− ρ2))(I − I∗)

+ σ(V −V∗)− λSI
1 + αI

+
λS∗ I∗

1 + αI∗
]

+ 2w2(I − I∗)[−(d + m + γ + bu2)(I − I∗) +
λSI

1 + αI
− λS∗ I∗

1 + αI∗
]

+ 2w3(R− R∗)[−(d + β)(R− R∗) + (mρ1 + bu2ρ2)(I − I∗)]

+ 2w4(V −V∗)[−(d + σ)(V −V∗)].

Then, we add the expression λS∗ I
1+αI into the first and second square bracket and then subtract it. As a

result, we obtain

dL
dt

= 2w1(S− S∗)[−d(S− S∗) + β(R− R∗) + (m(1− ρ1) + bu2(1− ρ2))(I − I∗)

+ σ(V −V∗)− λSI
1 + αI

+
λS∗ I∗

1 + αI∗
+

λS∗ I
1 + αI

− λS∗ I
1 + αI

]

+ 2w2(I − I∗)[−(d + m + γ + bu2)(I − I∗) +
λSI

1 + αI
− λS∗ I∗

1 + αI∗
+

λS∗ I
1 + αI

− λS∗ I
1 + αI

]

+ 2w3(R− R∗)[−(d + β)(R− R∗) + (mρ1 + bu2ρ2)(I − I∗)]

+ 2w4(V −V∗)[−(d + σ)(V −V∗)],

therefore, we have

dL
dt

= 2w1(S− S∗)[−(d +
λI

1 + αI
)(S− S∗) + β(R− R∗)

+(m(1− ρ1) + bu2(1− ρ2)−
λS∗

(1 + αI)(1 + αI∗)
)(I − I∗) + σ(V −V∗)]

+ 2w2(I − I∗)[
λI

1 + αI
(S− S∗)− (d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
)(I − I∗)]

+ 2w3(R− R∗)[−(d + β)(R− R∗) + (mρ1 + bu2ρ2)(I − I∗)]

+ 2w4(V −V∗)[−(d + σ)(V −V∗)],

from where,

dL
dt

= −2w1(d +
λI

1 + αI
)(S− S∗)2 + 2w1β(S− S∗)(R− R∗)

+2w1(m(1− ρ1) + bu2(1− ρ2)−
λS∗

(1 + αI)(1 + αI∗)
)(S− S∗)(I − I∗) + 2w1σ(S− S∗)(V −V∗)

+ 2w2
λI

1 + αI
(S− S∗)(I − I∗)− 2w2(d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
)(I − I∗)2

− 2w3(d + β)(R− R∗)2 + 2w3(mρ1 + bu2ρ2)(I − I∗)(R− R∗)− 2w4(d + σ)(V −V∗)2

= Y(WA + ATW)YT , (3)
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where Y = [S− S∗, I − I∗, R− R∗, V −V∗], W = diag(w1, w2, w3, w4), and

A =



−(d + λI
1+αI ) m(1− ρ1) + bu2(1− ρ2)− λS∗

(1+αI)(1+αI∗) β α

λI
1+αI −(d + m + γ + bu2 +

λS∗
(1+αI)(1+αI∗) ) 0 0

0 mρ1 + bu2ρ2 −(d + β) 0

0 0 0 −(d + σ)


. (4)

To establish the global stability of the endemic equilibrium E∗, we investigate that the matrix A
defined in Equation (4) is Volterra–Lyapunov stable. Below we briefly review the following prerequisites:

Here, we recall the basic definitions related to Volterra–Lyapunov stable matrices [26]. Suppose, An×n

is a real matrix.
(D1) All the eigenvalues of A have negative (positive) real parts if and only if there exists a matrix

H > 0 (that is, mean H is symmetric positive definite) such that HA + AT HT < 0(> 0) [32].
(D2) The nonsingular matrix An×n is Volterra–Lyapunov stable if there exists a positive diagonal

n× n matrix M such that MA + AT MT < 0.
(D3) The nonsingular matrix An×n is diagonal stable (or positive stable) if there exists a positive

diagonal matrix Mn×n such that MA + AT MT > 0.

(L1) [32,33]. The D =

[
d11 d12

d21 d22

]
is Volterra–Lyapunov stable if and only if:

(C1-1) d11 < 0,
(C1-2) d22 < 0,
(C1-3) det(D) = d11d22 − d12d21 > 0.
(L2) [34,35]. Suppose the nonsingular Dn×n = [dij], (n ≥ 2), Mn×n = diag(m1, · · · , mn) is a positive

diagonal matrix and H = D−1, such that:
(C2-1) dnn > 0,
(C2-2) M̃D̃+(M̃D̃)

T
> 0 ,

(C2-3) M̃H̃ +(M̃H̃ )
T
> 0,

it is possible to choose mn > 0 such that MD + DT MT > 0.
Note that, D̃ denote the (n − 1) × (n − 1) matrix obtained from D by deleting its last row and

last column.

Theorem 1. The matrix A defined in Equation (4) is Volterra–Lyapunov stable.

Proof. Clearly −A44 > 0. Let us consider D = −Ã, denote the 3× 3 matrix obtained from −A by deleting
its last row and last column. From Equation (4), we obtain

D = −Ã =


(d + λI

1+αI ) −m(1− ρ1)− bu2(1− ρ2) +
λS∗

(1+αI)(1+αI∗) −β

− λI
1+αI (d + m + γ + bu2 +

λS∗
(1+αI)(1+αI∗) ) 0

0 −mρ1 − bu2ρ2 (d + β)

 . (5)
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Based on (L2), we state and prove the following results. The first Lemma, proves that D = −Ã is
diagonal stable and in the next Lemma, we show the H = −̃A−1 is diagonal stable. Therefore, all the
conditions of (L2) are satisfied. Hence the matrix A is Volterra–Lyapunov stable.

Lemma 1. The matrix D defined in Equation (5), is diagonal stable.

Proof. Let’s now discuss the diagonal stability of D. It is guaranteed by the following steps:

Step 1. It is obvious that D33 > 0.
Step 2. By using (L2), we shall prove that the matrix D̃ is diagonal stable. From (5), we obtain

D̃ =

 (d + λI
1+αI ) −m(1− ρ1)− bu2(1− ρ2) +

λS∗
(1+αI)(1+αI∗)

− λI
1+αI (d + m + γ + bu2 +

λS∗
(1+αI)(1+αI∗) )

 .

Obviously, D̃11 > 0, and D̃22 > 0. It remains to show that det(D̃) > 0:

det(D̃) =

d(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
) +

λI
1 + αI

(m + bu2)

+
λI

1 + αI
(d + γ +

λS∗

(1 + αI)(1 + αI∗)
)− λI

1 + αI
(m + bu2)

+
λI

1 + αI
(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
),

then we have

det(D̃) =

d(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
) +

λI
1 + αI

(d + γ +
λS∗

(1 + αI)(1 + αI∗)
)

+
λI

1 + αI
(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
) > 0,

therefore D̃ is diagonal stable.

Step 3. Now, we must show that D̃−1 is diagonal stable. Let us consider the D−1 as following:

D−1 =

 d11 d12 d13

d21 d22 d23

d31 d32 d33

 ,
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where,

d11 = (d + β)[d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
],

d12 = (d + β)[m(1− ρ1) + bu2(1− ρ2)−
λS∗

(1 + αI)(1 + αI∗)
] + β(mρ1 + bu2ρ2),

d13 = β(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
),

d21 =
λI

1 + αI
(d + β),

d22 = (d +
λI

1 + αI
)(d + β),

d23 = β
λI

1 + αI
,

d31 =
λI

1 + αI
(mρ1 + bu2ρ2),

d32 = (d +
λI

1 + αI
)(mρ1 + bu2ρ2),

d33 = d(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
) +

λI
1 + αI

(m + γ + mρ1 + bu2ρ2)

+ 2
λI

1 + αI
(

λS∗

(1 + αI)(1 + αI∗)
).

Now, we have D̃−1 as:

D̃−1 = 1
det(D) (d + β)[d + m + γ + bu2 +

λS∗
(1+αI)(1+αI∗) ] (d + β)[m(1− ρ1) + bu2(1− ρ2)− λS∗

(1+αI)(1+αI∗) ] + β(mρ1 + bu2ρ2)

λI
1+αI (d + β) (d + λI

1+αI )(d + β)

 .

Following some calculations, we obtain that

det(D) =

d(d + β)(m + bu2) + (d + β)(d +
λI

1 + αI
)(d + γ +

λS∗

(1 + αI)(1 + αI∗)
)

+ d
λI

1 + αI
(mρ1 + bu2ρ2) + (d + β)(

λI
1 + αI

)
λS∗

(1 + αI)(1 + αI∗)
) > 0,
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Then

det(D̃−1) =

1
(det(D))2 d(d + β)2(d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
)

+
1

(det(D))2 (d + β)2(
λI

1 + αI
)(d + γ +

λS∗

(1 + αI)(1 + αI∗)
)

+
1

(det(D))2 (d + β)2(
λI

1 + αI
)(

λS∗

(1 + αI)(1 + αI∗)
)

+
1

(det(D))2 d(d + β)(
λI

1 + αI
)(mρ1 + bu2ρ2) > 0.

It is easy to see, D̃−1
11 > 0 and D̃−122 > 0. Therefore, D̃−1 is diagonal stable.

Lemma 2. The matrix H = −̃A−1 is diagonal stable.

Proof. We can obtain the −̃A−1 as following:

H = (−̃A−1) =
1

det(−A)

 e11 e12 e13

e21 e22 e23

e31 e32 e33

 ,

where,

e11 = (d + β)(d + σ)(d + β)2(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
),

e12 = (d + β)(d + σ)(m + bu2)− d(d + σ)(mρ1 + bu2ρ2 +
λS∗

(1 + αI)(1 + αI∗)
)

− β(d + σ)(
λS∗

(1 + αI)(1 + αI∗)
),

e13 = β(d + σ)(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
),

e21 = (d + β)(d + σ)(
λI

1 + αI
),

e22 = (d + β)(d + σ)(d +
λI

1 + αI
),

e23 = β(d + σ)(
λI

1 + αI
),

e31 = (d + σ)(mρ1 + bu2ρ2),

e32 = (d + σ)(d +
λI

1 + αI
)(mρ1 + bu2ρ2),

e33 = d(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
),

(d + σ)(
λI

1 + αI
)(d + γ + mρ1 + bu2ρ2 +

2λS∗

(1 + αI)(1 + αI∗)
).
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It is obvious that H33 > 0. Below, we show H̃ and H̃−1 are diagonally stable.

H̃ =
1

det(−A)

[
e11 e12

e21 e22

]
.

First, we show that det(−A) > 0:

det(−A) =

d(d + β)(d + σ)(dm + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
)

(d + β)(d + σ)(
λI

1 + αI
)(d + γ +

λS∗

(1 + αI)(1 + αI∗)
)

+ d
λI

1 + αI
(d + σ)(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
)

+ β
λI

1 + αI
(d + σ)(

λS∗

(1 + αI)(1 + αI∗)
) > 0.

Also, we can show that det(H̃) > 0 (see the Appendix A).
It remains to show that H̃−1 is diagonal stabe. Define

H̃−1 =
1

det(H)

[
h11 h12

h21 h22

]
.

The h11 is writen as

h11 = d(d + β)(d + σ)2(dm + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
)(d +

λI
1 + αI

)

+ d(d + σ)2(d +
λI

1 + αI
))

λI
1 + αI

)(d + γ + mρ1 + bu2ρ2 +
2λS∗

(1 + αI)(1 + αI∗)
)

+ β(d + σ)2(d +
λI

1 + αI
))

λI
1 + αI

)(d + γ +
2λS∗

(1 + αI)(1 + αI∗)
) > 0.

The h22 is writen as

h22 = d(d + β)(d + σ)2(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
)2

+ d(d + σ)2(d +
λI

1 + αI
))

λI
1 + αI

)(d + γ + mρ1 + bu2ρ2 +
2λS∗

(1 + αI)(1 + αI∗)
)

+ β(d + σ)2 λI
1 + αI

)(d + γ +
2λS∗

(1 + αI)(1 + αI∗)
)(d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
) > 0.

It is easy to see det(H) > 0, see the Appendix B. Therefore, H̃−1 is diagonal stable.

Summarizing the above discussions, we have the following conclusions for the globally asymptotically
stablity of the endemic equilibrium.

Theorem 2. When R0 > 1, the endemic equilibrium E∗ = (S∗, I∗, R∗, V∗), of Model (1) is globally asymptotically
stable, in Γ.
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Proof. Lemmas 1 and 2 with the aid of Theorem 1, guarantee that the endemic equilibrium of the model
System (1) is globally asymptotically stable.

4. Numerical Simulations and Discussion

In this section, we present some numerical simulations of System (1) using the basic reproduction
number R0, to support the analytical results. Parameters were taken from [26].

4.1. Simulations

Example 1. We choose the parameter values as follows: a = 100, d = 0.2, λ = 0.01, β = 0.4, σ = 0.05, m = 0.8,
ρ1 = 0.78, ρ2 = 0.93, γ = 0.02, α = 0.01, u1 = u2 = 0.5, b = 15.

With the mentioned parameters, System (1) has only a disease-free equilibrium point of
E0 = (300, 0, 0, 200). In this case, the basic reproduction number is less than one. The phase diagram is
demonstrated in Figure 1, at different initial values I(0) = 1, 100, 200, 600, 1000, to validate the stability
of the disease free equilibrium at I = 0, S = 300. In Figure 2, we observe that the five orbits converge to
the E0 at R = 0, S = 300, with five different initial conditions R(0) = 1, 100, 200, 600, 1000. In Figure 3,
there are five solution curves corresponding to initial conditions with V(0) = 1, 100, 200, 600, 1000, which
ensures the stability of the disease free equilibrium at V = 200, S = 300.
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Figure 1. The phase portraits of I vs. S for System (1), with initial conditions I(0) = 1, 100, 200, 600, 1000, (R0 < 1).
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Figure 2. The phase portraits of R vs. S for System (1), with initial conditions R(0) = 1, 100, 200, 600, 1000, (R0 < 1).
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Figure 3. The phase portraits of V vs. S for System (1), with initial conditions V(0) = 1, 100, 200, 600, 1000, (R0 < 1).

Example 2. For System (1), we choose the parameter values as follows: a = 100, d = 0.2, λ = 0.5, β = 0.4,
σ = 0.05, m = 5.8, ρ1 = 0.78, ρ2 = 0.93, γ = 0.02, α = 0.01, u1 = u2 = 0.5, b = 15.

System (1) has two equilibria; one is disease free and the other is endemic equilibrium
E∗(30, 13.3, 255, 200). It can easily verified that R0 > 1. The phase diagram of System (1) at different
initial values I(0) = 1, 100, 200, 600, 1000, shown in Figure 4, which shows that all system responses
converge to point of E∗ at I = 13.3, S = 30. In Figure 5, we see that five orbits converge to the E∗ at
R = 255, S = 30, at different initial conditions R(0) = 1, 100, 200, 600, 1000. In Figure 6, there are five
solution curves corresponding to initial conditions with V(0) = 1, 100, 200, 600, 1000, which proves the
stability of the disease-free equilibrium point at V = 200, S = 30.



Symmetry 2020, 12, 1778 13 of 19

0 100 200 300 400 500
0

200

400

600

800

1000

1200

susceptible number

in
fe

c
te

d
 n

u
m

b
e

r

Figure 4. The phase portraits of I vs. S for System (1), with initial conditions I(0) = 1, 100, 200, 600,
1000, (R0 > 1).
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Figure 5. The phase portraits of R vs. S for System (1), with initial conditions R(0) = 1, 100, 200, 600,
1000, (R0 > 1).
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Figure 6. The phase portraits of V vs. S for System (1), with initial conditions V(0) = 1, 100, 200, 600,
1000, (R0 > 1).

4.2. Discussion

The authors in [27], applied the original method for proving the global stability of endemic equilibrium
of the system of three-dimensional and four-dimensional. At first, they define D = −A and E = (−A)−1,
to discuss the Volterra–Lyapunov stability of A3×3. Hence, following the steps they concluded that A3×3 is
a Volterra–Lyapunov stable matrix:

1. Showing that E is stable, based on (L1).
2. To prove that D is Volterra–Lyapunov stable, they performed another process. Defined

W̃Ẽ +(W̃Ẽ )
T
=

1
−detA

Q > 0,

W̃D̃ +(W̃D̃ )
T
= P,

where, Q2×2 is positive. Finally, by some algebraic and matrix manipulations, showed that P2×2 > 0.

To compare the results in this paper with the original method, the process of proving the stability of
matrix A4×4 is shown in Figure 7. According to our investigations on different systems, and as the
authors mentioned in Section 6 [27], the implementation of the method for the higher dimensions
systems (in the second step proposed by the authors) is very difficult and complex. Therefore, the use
of the modified method, can reduce the complexity of the calculations.

Based on Figure 7, by decreasing the size of the matrix A4×4 to Ã3×3, applying (L2), finally reducing
to 2× 2 matrix, and using (L1), it can easily be proved that A is a Volterra–Lyapunov stable matrix.
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Figure 7. All steps of proving Volterra–Lyapunov stability of matrix A4×4 using the modified method.

5. Conclusions

We have investigated the global stability of the endemic equilibrium point of an infectious disease
model. In this paper, using the modified Volterra–Lyapunov matrices method, the stability of the model has
been analyzed. The main advantage of this modification is its application to various systems of epidemics,
infection diseases and even chaotic dynamical systems. This leads to better performance and reduces the
complexity of the proofs. The numerical results verify the effectiveness of the proposed scheme.
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Appendix A

Proof of det(H̃) > 0:
Let

a11a22 = d(d + β)2(d + σ)2(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
)

+(d + β)2(d + σ)2(
λI

1 + αI
)(m + bu2)

+ (d + β)2(d + σ)2(
λI

1 + αI
)(d + γ +

λS∗

(1 + αI)(1 + αI∗)
),

and

a12a21 = d(d + β)2(d + σ)2(m + bu2)

−d(d + β)(d + σ)2(
λI

1 + αI
)(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
)

− β(d + β)(d + σ)2(
λI

1 + αI
)(

λS∗

(1 + αI)(1 + αI∗)
).

Therefore, we have

det(H̃) = (
1

det(−A)
)2(a11a22 − a12a21) =

d(d + β)2(d + σ)2(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
)

+(d + β)2(d + σ)2(
λI

1 + αI
)(d + γ +

λS∗

(1 + αI)(1 + αI∗)
)

+ d(d + β)(d + σ)2(
λI

1 + αI
)(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
)

+ β(d + β)(d + σ)2(
λI

1 + αI
)(

λS∗

(1 + αI)(1 + αI∗)
).

Hence, it is clear to see det(H̃) > 0. The proof is then complete.

Appendix B

Proof of det(H) > 0:
The det(H) is written as

(
1

det(−A)
)3[a11(a22a33 − a23a32)− a21(a12a33 − a13a32) + a31(a12a23 − a13a22)].
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It is easy to see that a21a13a32 − a31a13a22 = 0, hence we show that

a11a22a33 − a11a23a32 − a21a12a33 + a31a12a23 > 0.

To this end, we have

a11a22a33 =

d(d + β)2(d + σ)2(d +
λI

1 + αI
)(d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
)2

+(d + β)2(d + σ)2(
λI

1 + αI
)(d +

λI
1 + αI

)(d + γ +
λS∗

(1 + αI)(1 + αI∗)
)

(d + γ + mρ1 + bu2ρ2 +
2λS∗

(1 + αI)(1 + αI∗)
),

and
a11a23a32 =

β(d + σ)3(d + β)(mρ1 + bu2ρ2)(
λI

1+αI )(d + λI
1+αI )(d + m + γ + bu2 +

λS∗
(1+αI)(1+αI∗) ),

and

a21a12a33 = (d + σ)3(d + β)2(m + bu2ρ2)(
λI

1 + αI
)(d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
)

− d2(d + σ)3(d + β)(
λI

1 + αI
)(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
)

(d + m + γ + bu2 +
λS∗

(1 + αI)(1 + αI∗)
)

− βd(d + σ)3(d + β)2(
λI

1 + αI
)(

λS∗

(1 + αI)(1 + αI∗)
)(d + m + γ + bu2 +

λS∗

(1 + αI)(1 + αI∗)
)

+ (d + σ)3(d + β)(
λI

1 + αI
)2(m + bu2)(d + γ + mρ1 + bu2ρ2 +

2λS∗

(1 + αI)(1 + αI∗)
)

− d(d + σ)3(d + β)(
λI

1 + αI
)2(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
))

(d + γ + mρ1 + bu2ρ2 +
2λS∗

(1 + αI)(1 + αI∗)
)− β(d + σ)3(d + β)(

λI
1 + αI

)2

(
λS∗

(1 + αI)(1 + αI∗)
)(d + γ + mρ1 + bu2ρ2 +

2λS∗

(1 + αI)(1 + αI∗)
),

also

a31a12a23 =

β(d + σ)3(d + β)(
λI

1 + αI
)2(mρ1 + bu2ρ2)(m + bu2)

− βd(d + σ)3(
λI

1 + αI
)2(mρ1 + bu2ρ2)(mρ1 + bu2ρ2 +

λS∗

(1 + αI)(1 + αI∗)
),

− β2(d + σ)3(
λI

1 + αI
)2(mρ1 + bu2ρ2)(

λS∗

(1 + αI)(1 + αI∗)
).

Hence, it is clear to see det(H) > 0. The proof is then complete.
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