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Abstract: The main purpose of this study was to demonstrate the existence and the uniqueness
theorem of the solution of the neutral stochastic differential equations under sufficient conditions.
As an alternative to the stochastic analysis theory of the neutral stochastic differential equations,
we impose a weakened Hölder condition and a weakened linear growth condition. Stochastic results
are obtained for the theory of the existence and uniqueness of the solution. We first show that the
conditions guarantee the existence and uniqueness; then, we show some exponential estimates for
the solutions.
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1. Introduction

In the study of natural science systems, we assume that the system being researched is governed
by the causes and results of the principle. A more realistic model would include some of the past
and present values, but that involves derivatives with delays as well as the function of the system.
These equations have historically been referred to as neutral stochastic functional differential equations,
or neutral stochastic differential delay equations [1–6].

This kind of probability differential equation is not easy to obtain the solution, but often arises
from the study of more than one simple electrodynamic or oscillating system with some interconnection.
We ca not ignore the effect of the science systems with time delay. For example, when studying the
collision problem in electrodynamics, Driver [7] considered the system of neutral type:

ż(t) = f1(z(t), z(δ(t))) + f2(z(t), z(δ(t)))ż(δ(t)),

where δ(t) ≤ t. Generally, a neutral functional differential equation has the form

d
dt
[z(t)− D(zt)] = f (zt, t).

Taking into account stochastic perturbations, we are led to a neutral stochastic functional
differential equation

d[z(t)− D(zt)] = f (zt, t)dt + g(zt, t)dB(t)

Neutral stochastic functional differential equations (NSDEs) have been used to model problems in
several areas of science and engineering. For instance, in 2007, Mao [5] published stochastic differential
equations and applications. After that, the study of the existence and uniqueness theorem for stochastic
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differential equations (SDEs) and NSDEs developed into some new uniqueness theorems for SDEs and
NSDEs under special conditions. See [1,2,6,8–15], and references therein for details.

A special example of this type equation study is the following findings: In 2010, Li and Fu [4]
studied the stability of solution of stochastic functional differential equations and applied the results
to the present neural networks. In 2019, Bae et al. [8] studied a theorem of existence and uniqueness
of the solution to stochastic differential equations. Kim [1,2] considered the solution to the following
neutral stochastic functional differential equations under different conditions:

d[z(t)− G(zt, t)] = f (zt, t)dt + g(zt, t)dB(t),

where zt = {z(t + θ) : −∞ < θ ≤ 0}.
Motivated by [1,5,8,11,12], we investigated the conditions that guarantee the existence and

uniqueness theorem of the solution for NSDEs in a phase spaceM2
(
[t0, T]; Rd

)
in this paper. We still

take t0 ∈ R as our initial time throughout this paper and we aimed to prove our main results as follows:
first, under the weakened Hölder condition and the weakened linear growth condition, we estimate
the bounds of the solution for NSDEs. Next, we prove the existence and uniqueness theorem of the
solution for NSDEs. Finally, we derive the estimate for the error between Picard iterations Xn(t) and
the unique solution X(t) to NSDEs.

2. Preliminary and Basic Lemmas

The symbol | · | represents the Euclidean norm in Rn. If X is a random variable and is integrable
with respect to the measure P, then the integral E X is called the expectation of X. The transpose of
vector or matrix A is marked as AT ; if A is a matrix, its trace norm is denoted by |A| =

√
trace(AT A).

BC((−∞, 0]; Rd) denotes the family of bounded continuous Rd-value functions ϕ defined on (−∞, 0]
with norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|.M2((−∞, T]; Rd) denotes the family of all Rd-valued measurable

Ft-adapted process ψ(t) = ψ(t, w), t ∈ (−∞, T] such that E
∫ T
−∞ |ψ(t)|

2dt < ∞.
Let t0 be a positive constant and (Ω,F , P) be a complete probability space with a filtration

{Ft}t≥t0 satisfying the usual conditions (i.e., it is right continuous and Ft0 contains all P-null sets)
throughout this paper unless otherwise specified.

An m-dimensional Brownian motion defined on complete probability space is denoted by B(t),
that is, B(t) = (B1(t), B2(t), ..., Bm(t))T .

For 0 ≤ t0 ≤ T < ∞, we define two Borel measurable mappings f : BC((−∞, 0]; Rd)× [t0, T]→
Rd and g : BC((−∞, 0]; Rd)× [t0, T]→ Rd×m and a continuous mapping D : BC((−∞, 0]; Rd)→ Rd.

With the above preparations, consider the following d-dimensional neutral SFDEs:

d[X(t)− D(Xt, t)] = f (Xt, t)dt + g(Xt, t)dB(t), t0 ≤ t ≤ T, , (1)

where Xt = {X(t + θ) : −∞ < θ ≤ 0} can be considered a BC((−∞, 0]; Rd)-value stochastic process.
The initial value of the system (1),

Xt0 = ξ = {ξ(θ) : −∞ < θ ≤ 0}, (2)

is a Ft0 -measurable, BC((−∞, 0]; Rd)- value random variable such that ξ ∈ M2((−∞, 0]; Rd).
To be more precise, we give the definition of the solution to Equation (1) with initial data

Equation (2).

Definition 1 ([6]). The Rd-value stochastic process X(t), which is defined on −∞ < t ≤ T, is called the
solution of (1) with initial data (2) if X(t) has the following properties:
(i) X(t) is continuous and {X(t)}t0≤t≤T is Ft-adapted;
(ii) { f (Xt, t)} ∈ L1([t0, T]; Rd) and {g(Xt, t)} ∈ L2([t0, T]; Rd×m);
(iii) Xt0 = ξ, for each t0 ≤ t ≤ T,
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X(t) = ξ(0) + D(Xt, t)− D(ξ, t0) +
∫ t

t0

f (Xs, s)ds +
∫ t

t0

g(Xs, s)dB(s) a.s. (3)

X(t) is called a unique solution if any other solution x(t) is indistinguishable with X(t), that is,

P{X(t) = X(t), for any −∞ < t ≤ T} = 1.

The following lemmas are known as special names for the integrals that appeared in [1,5,16] and
play an important role in the next section.

Lemma 1 ((Stachurska’s inequality) ([16])). Let u(t) and k(t) be nonnegative continuous functions for
t ≥ α, and let u(t) ≤ a(t) + b(t)

∫ t
α k(s)up(s)ds, t ∈ J = [α, β), where a/b is a nondecreasing function and

0 < p < 1. Then,

u(t) ≤ a(t)

{
1− (p− 1)

[
a(t)
b(t)

]p−1 ∫ t

α
k(s)bp(s)ds

}−1/(p−1)

.

Lemma 2 ([1]). Let u(t) and a(t) be continuous functions on [0, T]. Let c ≥ 1 and 0 < p ≤ 1 be constants.
If u(t) ≤ c +

∫ t
t0

a(s)up(s) ds for t ∈ I, then

u(t) ≤ c exp
(∫ t

t0

a(s) ds
)

for t ∈ I.

Lemma 3 ((Hölder’s inequality) ([5,16])). If 1
p + 1

q = 1 for any p, q > 1, f ∈ Lp, and g ∈ Lq, then f g ∈ L1

and
∫ b

a f g dx ≤ (
∫ b

a | f |
p dx)1/p(

∫ b
a |g|

q dx)1/q.

Lemma 4 ((Bihari’s inequality) ([5,16])). Let x(t) and y(t) be non-negative continuous functions defined on
R+. Let z(u) be a non-decreasing continuous function R+ and z(u) > 0 on (0, ∞). If

x(t) ≤ a +
∫ t

0
y(s)z(x(s))ds,

for t ∈ R+, where a ≥ 0 is a constant, then for 0 ≤ t ≤ t1,

x(t) ≤ L−1
(

L(a) +
∫ t

0
y(s)ds

)
,

where L(r) =
∫ r

r0
ds

z(s) , r > 0, r0 > 0, and L−1 is the inverse function of L, and t1 ∈ R+ is chosen so that

L(a) +
∫ t

0 y(s)ds ∈ Dom(L−1) for all t ∈ R+ lying in the interval 0 ≤ t ≤ t1.

The following lemmas are known as special names for stochastic integrals that appear edin [5]
and play an important role in the next section.

Lemma 5 ((Moment inequality) ([5])). Let p ≥ 2. Let f ∈ M2([0, T]; Rd×m) such that

E
∫ T

0
| f (s)|pds < ∞.

Then,

E
∣∣∣∣∫ T

0
f (s)dB(s)

∣∣∣∣p ≤ ( p(p− 1)
2

) p
2

T
p−2

2 E
∫ T

0
| f (s)|pds.
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Lemma 6 ((Moment inequality) ([5])). If p ≥ 2, g ∈M2([0, T]; Rd×m) such that E
∫ T

0 |g(s)|
p ds < ∞, then

E
(

sup
0≤t≤T

∣∣∣∣∫ t

0
g(s)dB(s)

∣∣∣∣p) ≤ ( p3

2(p− 1)

) p
2

T
p−2

2 E
∫ T

0
|g(s)|p ds.

3. Results

To obtain main results of the solution to Equation (1), we impose following assumptions:

Hypothesis 1. For any ϕ, ψ ∈ BC
(
(−∞, 0]; Rd

)
, and t ∈ [t0, T], we assume that

| f (ϕ, t)− f (ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ κ
(
||ϕ− ψ||2α

)
. (4)

where 0 < α ≤ 1, and κ(·) is a concave non-decreasing function from R+ to R+ such that κ(0) = 0, κ(u) > 0,
for u > 0 and

∫
0+

1
κ(u)du = ∞.

Hypothesis 2. For any t ∈ [t0, T], it follows that f (0, t), g(0, t) ∈ L2 such that:

| f (0, t)|2 ∨ |g(0, t)|2 ≤ K1, , (5)

where K1 is a positive constant.

Hypothesis 3. Assuming there exists a positive number K2 such that 0 < K2 < 1 and for any ϕ, ψ ∈
BC((−∞, 0]; Rd), it follows that

|D(ϕ)− D(ψ)| ≤ K2‖ϕ− ψ‖. (6)

To demonstrate the generality of our results, we provide an illustration using a concave function
κ(·). Let K > 0 and let δ ∈ (0, 1) be sufficiently small. Define

κ1(u) = Ku, u > 0

κ2(u) =

{
u log(u−1), 0 ≤ u < δ

δ log(δ−1) + κ̇2(δ−)(u− δ), u > δ

κ3(u) =

{
u log(u−1) log log(u−1), 0 ≤ u < δ

δ log(δ−1) log log(δ−1) + κ̇3(δ−)(u− δ), u > δ

They are all concave nondecreasing functions satisfying κi(u) > 0, for u > 0 and
∫

0+
1

κi(u)
du = ∞.

In particular, the condition in Bae et al. [8] is a special case of our proposed condition (4).
Since our goal was to demonstrate the existence and uniqueness theorem of the solution of

the neutral stochastic differential Equation (1) under sufficient conditions, we start with following
useful lemmas:

Lemma 7 ([5]). For any x, y ≥ 0 and 0 < α < 1, we have (x + y)2 ≤ x2/α + y2/(1− α).

Lemma 8 ([5]). Let p ≥ 2 and (6) hold. Then,

sup
t0≤s≤t

|X(s)|p ≤ λ

1− λ
||ξ||p + 1

(1− λ)p sup
t0≤s≤t

|X(s)− D(Xs)|p.
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Lemma 9. Assume that (4)–(6) hold and let M2 ≥ 1. If X(t) is a solution of Equation (1) with initial data (2), then

E

(
sup

−∞<t≤T
|X(t)|2

)
≤ E||ξ||2 + M2 exp

(
6b(T − t0)(T − t0 + 4)

(1−
√

K2)2

)
,

where M1 = 3E||ξ||2 + 6(T − t0 + 4)(T − t0)(a + K1) and M2 =

[
√

K2E||ξ||2 + M1 + 6b(T − t0 + 4)E||ξ||2α]/(1−
√

K2)
2. In particular, X(t) belong to

M2
(
(−∞, T]; Rd

)
.

Proof. For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T] : ||X(t)|| ≥ n}.

As n→ ∞, τn ↑ T a.s. Let Xn(t) = X(t∧ τn), t ∈ [t0, T]. Then Xn(t) satisfy the following equation:

Xn(t) = D(Xn
t )− D(ξ) + Jn(t),

where:

Jn(t) = ξ(0) +
∫ t

t0

f (Xn
s , s) I[t0,τn ](s)ds +

∫ t

t0

g (Xn
s , s) I[t0,τn ](s)dB(s).

Applying Lemma 7 and condition (6) yields:

|Xn(t)|2 ≤
√

K2||Xn
t ||2 +

K2

1−
√

K2
||ξ||2 + 1

1− K2
|Jn(t)|2.

Considering the expectation, we get:

E|Xn(t)|2 ≤
√

K2E||Xn
t ||2 +

K2

1−
√

K2
E||ξ||2 + 1

1− K2
E|Jn(t)|2.

Noting that E sup−∞<s≤t |Xn(s)|2 ≤ E||ξ||2 + E supt0≤s≤t |Xn(s)|2, we see that:

E sup
t0≤s≤t

|Xn(s)|2 ≤
√

K2E sup
t0≤s≤t

|Xn(s)|2 +
√

K2

1−
√

K2
E||ξ||2 + 1

1− K2
E sup

t0≤s≤t
|Jn(s)|2.

Consequently,

E sup
t0≤s≤t

|Xn(s)|2 ≤
√

K2

(1−
√

K2)2 E||ξ||2 + 1
(1− K2)(1−

√
K2)

E sup
t0≤s≤t

|Jn(s)|2. (7)

Using the elementary inequality (y + z + w)2 ≤ 3(y2 + z2 + w2), Hölder’s inequality, and the
moment inequality, we have:

E sup
t0≤s≤t

|Jn(t)|2

≤ 3E||ξ||2 + 3(T − t0)E
∫ t

t0

| f (Xn
s , s)− f (0, s) + f (0, s)|2ds + 12E

∫ t

t0

|g(Xn
s , s)− g(0, s) + g(0, s)|2ds.

Using the elementary inequality (y + z)2 ≤ 2y2 + 2z2, (4) and (5), we have:

E sup
t0≤s≤t

|Jn(t)|2 ≤ 3E||ξ||2 + 6(t− t0 + 4)E
∫ t

t0

(κ(||Xn
s ||2α) + K1)ds.
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If κ(·) is concave and κ(0) = 0, we can find the positive constants a and b such that κ(u) ≤ a + bu
for all u ≥ 0. So, we obtain:

E sup
t0≤s≤t

|Jn(s)|2 ≤ M1 + 6b(T − t0 + 4)
∫ t

t0

E||Xn
s ||2αds,

where M1 = 3E||ξ||2 + 6(T − t0 + 4)(T − t0)(a + K1). Substituting this into (7) yields:

E sup
t0≤s≤t

|Xn(s)|2 ≤ M2 +
6b(T − t0 + 4)
(1−

√
K2)2

∫ t

t0

E sup
t0≤r≤s

|Xn(r)|2αds,

where M2 = [
√

K2E||ξ||2 + M1 + 6b(T − t0 + 4)E||ξ||2α]/(1−
√

K2)
2. Lemma 2 yields:

E sup
t0≤s≤t

|Xn(s)|2 ≤ M2 exp

(
6b(T − t0 + 4)(T − t0)

(1−
√

K2)2

)
.

Noting that E sup−∞<s≤t |Xn(s)|2 ≤ E||ξ||2 + E supt0≤s≤t |Xn(s)|2, we see that:

E sup
−∞<s≤t

|Xn(s)|2 ≤ E||ξ||2 + M2 exp

(
6b(T − t0 + 4)(T − t0)

(1−
√

K2)2

)
.

Letting n→ ∞ implies the following inequality:

E sup
−∞<t≤T

|X(t)|2 ≤ E||ξ||2 + M2 exp

(
6b(T − t0 + 4)(T − t0)

(1−
√

K2)2

)
.

We obtain the required inequality.

Now, we provide the uniqueness theorem to the solution of Equation (1) with initial data (2).

Theorem 1. Assume that (4)–(6) hold and let M2 ≥ 1. Let X(t) and X(t) be any two solutions of Equation (1)
with initial value (2). Then, a unique solution X(t) exists to Equation (1). X(t) ∈ M2

(
(−∞, T]; Rd

)
.

Proof. Let X(t) and X(t) be any two solutions of (1). From Lemma 8, X(t), X(t) ∈ M2
(
(−∞, T]; Rd

)
.

Note that:
X(t)− X(t) = D(Xt)− D(Xt) + J(t),

where:

J(t) =
∫ t

t0

[ f (Xs, s)− f (Xs, s)]ds +
∫ t

t0

[g(Xs, s)− g(Xs, s)]dB(s).

By Lemma 7 and condition (6), we easily see that:

|X(t)− X(t)|2 ≤ K2||Xt − Xt||2 +
1

1− K2
|J(t)|2.

Taking the expectation on both sides:

E sup
t0≤s≤t

|X(s)− X(s)|2 ≤ K2E sup
t0≤s≤t

|X(s)− X(s)|2 + 1
1− K2

E sup
t0≤s≤t

|J(s)|2,

which implies:

E sup
t0≤s≤t

|X(s)− X(s)|2 ≤ 1
(1− K2)2 E sup

t0≤s≤t
|J(s)|2.
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Using the elementary inequality (y + z)2 ≤ 2y2 + 2z2, we have:

|J(t)|2 ≤ 2
∣∣∣∣∫ t

t0

[ f (Xs, s)− f (Xs, s)]ds
∣∣∣∣2 + 2

∣∣∣∣∫ t

t0

[g(Xs, s)− g(Xs, s)]dB(s)
∣∣∣∣2 .

By the Hölder inequality, the moment inequality, and (4), we have:

E sup
t0≤s≤t

|J(s)|2 ≤ 2(T − t0 + 4)E
∫ t

t0

κ
(
||Xs − Xs||2α

)
ds.

Since κ(·) is concave, by the Jensen Inequality, we have:

Eκ
(
||Xs − Xs||2α

)
≤ κ

(
E||Xs − Xs||2α

)
.

Consequently, for any ε > 0:

E sup
t0≤s≤t

|X(s)− X(s)|2 ≤ ε +
2(T − t0 + 4)
(1− K2)2

∫ t

t0

κ

(
E sup

t0≤r≤s
|X(r)− X(r)|2α

)
ds.

By the Bihari inequality, we deduce that for all sufficiently small ε > 0:

E sup
t0≤s≤t

|J(s)|2 ≤ G−1[G(ε) +
2(T − t0 + 4)(T − t0)

(1− K2)2 ], (8)

where:
G(r) =

∫ r

1

1
κ1(u)

du,

with r > 0, κ1(u) = κ(uα), and z(t) = E supt0≤s≤t |X(s)− X(s)|2, and G−1(·) is the inverse function
of G(·). By assuming

∫
0+

1
κ(u)du = ∞ and the definition of κ(·), we see that limε↓0 G(ε) = −∞. Then,

lim
ε↓0

G−1[G(ε) +
2(T − t0 + 4)(T − t0)

(1− K2)2 ] = 0.

Therefore, letting ε→ 0 in (8) gives:

E sup
t0≤s≤t

|X(s)− X(s)|2 = 0.

This implies that X(t) = X(t) for t0 ≤ t ≤ T. Hence, for all −∞ < t ≤ T almost surely.
The uniqueness has been proved.

To obtain the existence of solutions to neutral SFDEs, define X0
t0

= ξ and X0(t) = ξ(0) for
t0 ≤ t ≤ T. For each n = 1, 2, · · · , set Xn

t0
= ξ and, by the Picard iterations, define:

Xn(t)− D(Xn−1
t ) = ξ(0)− D(ξ) +

∫ t

t0

f (Xn−1
s , s)ds +

∫ t

t0

g(Xn−1
s , s)dB(s) (9)

for t0 ≤ t ≤ T.
Since our goal was to find the conditions that guarantee the existence of the solution to

Equation (1), we start with following useful lemma:
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Lemma 10. Let the assumptions (4)–(6) hold. Let Xn(t) be the Picard iteration defined by (9). Then,

E sup
t0≤t≤T

|Xn(t)|2 ≤ M3exp

(
6b(T − t0 + 4)(T − t0)

(1− K2)(1−
√

K2)

)
, (10)

where M3 = [2
√

K2 − K2]E||ξ||2/(1−
√

K2)
2 + [3E||ξ||2 + C1]/(1− K2)(1−

√
K2), C1 = 6(T − t0 +

4)(T − t0)(a + K1 + (1 + b)E||ξ||2α).

Proof . X0(t) ∈ M2
(
(−∞, T]; Rd

)
. It is easy to find that Xn(t) ∈ M2([t0, T]; Rd). Note that:

Xn(t) = D(Xn−1
t )− D(ξ) + Jn−1(t),

where:

Jn−1(t) = ξ(0) +
∫ t

t0

f (Xn−1
s , s)ds +

∫ t

t0

g(Xn−1
s , s)dB(s).

It follows from Lemma 7 that:

|Xn(t)|2 ≤
√

K2||Xn−1
t ||2 + K2

1−
√

K2
||ξ||2 + 1

1− K2
|Jn−1(t)|2.

Taking the expectation on both sides, we have:

E sup
t0≤s≤t

|Xn(s)|2 ≤
√

K2E sup
t0≤s≤t

||Xn−1
s ||2 + K2

1−
√

K2
E||ξ||2 + 1

1− K2
E sup

t0≤s≤t
|Jn−1(s)|2. (11)

We have:

E sup
t0≤s≤t

||Xn
s ||2 ≤ E sup

−∞<s≤t
|Xn(s)|2 ≤ E||ξ||2 + E sup

t0≤s≤t
|Xn(s)|2. (12)

Combining (11) and (12), we obtain:

E sup
t0≤s≤t

|Xn(s)|2 ≤
√

K2

1−
√

K2
E||ξ||2 +

√
K2E sup

t0≤s≤t
|Xn−1(s)|2 + 1

1− K2
E sup

t0≤s≤t
|Jn−1(s)|2.

Taking the maximum on both sides:

max
1≤n≤r

E sup
t0≤s≤t

|Xn(s)|2 ≤ 2
√

K2 − K2

(1−
√

K2)2 E||ξ||2 + 1
(1− K2)(1−

√
K2)

max
1≤n≤r

E sup
t0≤s≤t

|Jn−1(s)|2. (13)

Using the elementary inequality (∑ yi)
p ≤ np−1 ∑ yp

i , when p ≥ 1, we have:

|Jn−1(t)|2 ≤ 3|ξ(0)|2 + 3
∣∣∣∣∫ t

t0

f (Xn−1
s , s)ds

∣∣∣∣2 + 3
∣∣∣∣∫ t

t0

g(Xn−1
s , s)dB(s)

∣∣∣∣2 .

By Hölder’s inequality and the moment inequality, we have:

E|Jn−1(t)|2 ≤ 3E||ξ||2 + 3(t− t0)E
∫ t

t0

| f (Xn−1
s , s)− f (0, s) + f (0, s)|2ds

+12E
∫ t

t0

|g(Xn−1
s , s)− g(0, s) + g(0, s)|2ds.
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Using the elementary inequality (y + z)2 ≤ 2y2 + 2z2, (4) and (5), we have:

E|Jn−1(t)|2 ≤ 3E||ξ||2 + 6(t− t0 + 4)E
∫ t

t0

(κ(||Xn
s ||2α) + K)ds.

If κ(·) is concave and κ(0) = 0, we can find the positive constants a and b such that κ(u) ≤ a + bu
for all u ≥ 0. So, we have:

E sup
t0≤s≤t

|Jn−1|2 ≤ 3E||ξ||2 + 6(T − t0 + 4)(T − t0)(a + K1) + 6b(T − t0 + 4)
∫ t

t0

E||Xn−1
s ||2αds. (14)

Combining (13) and (14), we have:

max
1≤n≤r

E sup
t0≤s≤t

|Xn(s)|2 ≤ M3 +
6b(T − t0 + 4)

(1− K2)(1−
√

K2)

∫ t

t0

max
1≤n≤r

E sup
t0≤u≤s

|Xn(u)|2αds,

where M3 = [2
√

K2 − K2]E||ξ||2/(1−
√

K2)
2 + [3E||ξ||2 + C1]/(1− K2)(1−

√
K2), C1 = 6(T − t0 +

4)(T − t0)(a + K1 + (1 + b)E||ξ||2α). From Lemma 2, we have:

max
1≤n≤r

E sup
t0≤s≤t

|Xn(s)|2 ≤ M3exp

(
6b(T − t0 + 4)(T − t0)

(1− K2)(1−
√

K2)

)
,

since r is arbitrary, we must have:

E sup
t0≤t≤T

|Xn(t)|2 ≤ M3exp

(
6b(T − t0 + 4)(T − t0)

(1− K2)(1−
√

K2)

)
.

The proof is complete.

Now we outline the existence theorem to the solution of Equation (1) with initial data (2) using
approximate solutions by means of Picard sequence (9).

Theorem 2. Assume that (4)–(6) hold. Then a solution X(t) exists to Equation (1) with initial value (2).

Proof. We first show that {Xn(t)} (n ≥ 0) defined by (9) is a Cauchy sequence in BC([t0, T], Rd).
For n ≥ 1 and t ∈ [t0, T], it follows from (9) that:

Xn+1(t)− Xn(t) = D(Xn
t )− D(Xn−1

t ) +
∫ t

t0

[ f (Xn
s , s)− f (Xn−1

s , s)]ds +
∫ t

t0

[g(Xn
s , s)− g(Xn−1

s , s)]dB(s).

By the elementary inequality |y + z|2 ≤ 2(|y|2 + |z|2), Hölder’s inequality, and Lemma 7, we have:

lim sup
n→∞

E sup
t0≤s≤t

|Xn+1(s)− Xn(s)|2

≤ K2 lim sup
n→∞

E sup
t0≤s≤t

|Xn(s)− Xn−1(s)|2 + C2

∫ t

t0

κ

(
lim sup

n→∞
E sup

t0≤r≤s
|Xn(r)− Xn−1(r)|2α

)
ds,

where C2 = 2(T − t0 + 4)/(1− K2). Therefore,

Z(t) ≤ C2

(1− K2)

∫ t

t0

κ

(
lim sup

n→∞
E sup

t0≤r≤s
|Xn+1(r)− Xn(r)|2α

)
ds, (15)
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where Z(t) = lim supn→∞ E supt0≤s≤t |Xn+1(s)− Xn(s)|2. From (15), for any ε > 0, we obtain:

Z(t) ≤ ε +
2(T − t0 + 4)
(1− K2)2

∫ t

t0

κ1(Z(s))ds,

where κ1(u) = κ(uα). By the Bihari inequality, we deduce that for all sufficiently small ε > 0:

Z(t) ≤ G−1
[

G(ε) +
2(T − t0 + 1)
(1− K2)2

]
,

where:
G(r) =

∫ r

1

1
κ1(u)

du

on r > 0, and G−1(·) is the inverse function of G(·). By assumption, we obtain Z(t) = 0. This shows
the sequence {Xn(t), n ≥ 0} is a Cauchy sequence in L2. Hence, as n → ∞, Xn(t) → X(t), that is,
E|Xn(t)− X(t)|2 → 0. Letting n→ ∞ in Lemma 10 then yields:

E sup
t0≤t≤T

|X(t)|2 ≤ M3exp

(
6b(T − t0 + 4)(T − t0)

(1− K2)(1−
√

K2)

)
.

Therefore, X(t) ∈ M2
(
(−∞, T]; Rd

)
. It remains to show that X(t) satisfies Equation (1).

Note that:

E
∣∣∣∣∫ t

t0

[ f (Xn
s , s)− f (Xs, s)]ds

∣∣∣∣2 + E
∣∣∣∣∫ t

t0

[g(Xn
s , s)− g(Xs, s)]dB(s)

∣∣∣∣2
≤ (T − t0 + 1)

∫ t

t0

κ

(
E sup

t0≤r≤s
|Xn(r)− X(r)|2

)
ds.

Noting that sequence Xn(t) is uniformly converged on (−∞, T], it means that:

E sup
t0≤r≤s

|Xn(r)− X(r)|2 → 0

as n→ ∞, and

κ

(
E sup

t0≤r≤s
|Xn(r)− X(r)|2

)
→ 0

as n→ ∞. Hence, taking limits on both sides in the Picard sequence, we obtain:

X(t)− D(Xt) = ξ(0)− D(ξ) +
∫ t

t0

f (Xs, s)ds +
∫ t

t0

g(Xs, s)dB(s)

on −∞ < t ≤ T. The above stochastic process demonstrates that X(t) is the solution of Equation (1).
So, the existence of the solution has been proved.

The following lemma shows that the Picard sequence of Euation (1) is bounded under the
new conditions.

Lemma 11. Let the assumption (4)–(6) hold. Let Xn(t) be the Picard iteration defined by (9). Then for all
n ≥ 1, it follows that:

E

(
sup

t0≤t≤T
|Xn(t)− Xn−1(t)|2

)
≤ M4 + M5

(
1−

2b(α− 1)Mα−1
5 (T − t0)(T − t0 + 4)
(1− K2)2

) 1
1−α

, (16)
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where M4 = 4K2E||ξ||2 + [8(T − t0 + 4)(T − t0)(K1 + a + bE||ξ||2α)]/(1− K2), M5 =

[(1− K2)K2M4 + 2(a + bM4)(T − t0 + 4)(T − t0)]/(1− K2)
2.

Proof. By the elementary inequality |y + z|2 ≤ 2(|y|2 + |z|2), Hölder’s inequality, and Lemma 7,
we have:

E sup
t0≤s≤t

|X1(s)− X0|2

≤ 1
K2

E|D(X0
t )− D(ξ)|2 + 1

1− K2
E sup

t0≤r≤t

[∫ r

t0

f (X0
s , s)ds +

∫ r

t0

g(X0
s , s)dB(s)

]2

≤ 4K2E||ξ||2 + 8(T − t0 + 4)
1− K2

E
∫ t

t0

(κ(||X0
s ||2α) + K1)ds

≤ M4,

where M4 = 4K2E||ξ||2 + [8(T − t0 + 4)(T − t0)(K1 + a + bE||ξ||2α)]/(1− K2). Conversely,

Xn+1(t)− Xn(t) = D(Xn
t )− D(Xn−1

t ) + Jn(t),

where Jn(t) =
∫ t

t0
[ f (Xn

s , s)− f (Xn−1
s , s)]ds +

∫ t
t0
[g(Xn

s , s)− g(Xn−1
s , s)]dB(s). Taking the expectation

on both sides and using Lemma 7 and (6), we have:

E sup
t0≤s≤t

|Xn+1(s)− Xn(s)|2 ≤ K2E sup
t0≤s≤t

|Xn(s)− Xn−1(s)|2 + 1
1− K2

E sup
t0≤s≤t

|Jn(s)|2.

Taking the maximum on both sides, we have:

max
1≤n≤k

E sup
t0≤s≤t

|Xn+1(s)− Xn(s)|2

≤ K2

1− K2
E sup

t0≤s≤t
|X1(s)− X0|2 +

1
(1− K2)2 max

1≤n≤k
E sup

t0≤s≤t
|Jn(s)|2. (17)

By the elementary inequality |y + z|2 ≤ 2(|y|2 + |z|2), Hölder’s inequality, Lemma 5, Lemma 7,
and (4), we have:

E sup
t0≤s≤t

|Jn(s)|2 ≤ 2(T − t0 + 4)E
∫ t

t0

κ( sup
t0≤r≤s

|Xn(r)− Xn−1(r)|2α)ds.

Substituting this into (17) yields:

max
1≤n≤k

E sup
t0≤s≤t

|Xn+1(s)− Xn(s)|2 ≤ M5 +
2b(T − t0 + 4)

(1− K2)2

∫ t

t0

max
1≤n≤k

E sup
t0≤r≤s

|Xn+1(r)− Xn(r)|2αds,

where M5 = [(1− K2)K2M4 + 2(a + bM4)(T − t0 + 4)(T − t0)]/(1− K2)
2. Therefore, by Stachurska’s

inequality, we see that:

max
1≤n≤k

E sup
t0≤s≤t

|Xn+1(s)− Xn(s)|2 ≤ M5

(
1−

2b(α− 1)Mα−1
5 (T − t0)(T − t0 + 4)
(1− K2)2

) 1
1−α

.

That is:

max
1≤n≤k

E sup
t0≤t≤T

|Xn(t)− Xn−1(t)|2 ≤ M4 + M5

(
1−

2b(α− 1)Mα−1
5 (T − t0)(T − t0 + 4)
(1− K2)2

) 1
1−α

,
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which is the required inequality. The proof is complete.

An estimate of the difference between the approximate solution X(n(t) by Picard iteration and
the exact solution X(t) in the equation was demonstrated in the following theorem.

Theorem 3. Let the assumption (4)–(6) hold. If X(t) is a solution of equation (1) and Xn(t) be the Picard
iteration defined by (9). Then,

E

(
sup

t0≤t≤T
|Xn(t)− X(t)|2

)
≤ M6

[
1−

4b(α− 1)Mα−1
6 (T − t0 + 4)(T − t0)

(1− K2)(1−
√

K2)

] 1
1−α

,

where M6 = [K2
√

K2C3 + 4(T − t0 + 4)(T − t0)(2a + bCα
3 )]/(1− K2)(1−

√
K2), C3 is the right side of

inequality (16).

Proof. For n ≥ 1 and t ∈ [t0, T], it follows from (9) and the solution of Equation (1) that:

Xn(t)− X(t) = D(Xt)− D(Xn−1
t ) + Jn−1(t),

where Jn−1(t) =
∫ t

t0
[ f (Xs, s)− f (Xn−1

s , s)]ds +
∫ t

t0
[g(Xs, s)− g(Xn−1

s , s)]dB(s). Taking the expectation
on both sides and using Lemma 7 and (6), we have:

E sup
t0≤s≤t

|Xn(s)− X(s)|2 ≤ K2
√

K2C2

(1− K2)(1−
√

K2)
+

1
(1− K2)(1−

√
K2)

E sup
t0≤s≤t

|Jn−1(s)|2. (18)

By the elementary inequality |y + z|2 ≤ 2(|y|2 + |z|2), Hölder’s inequality, Lemma 5, Lemma 7,
and (4), we have:

E sup
t0≤s≤t

|Jn−1(s)|2 ≤ C4(T − t0)(2a + bMα
7 ) + bC4

∫ t

t0

E sup
t0≤r≤s

|Xn(r)− X(r)|2αds,

where C4 = 4(T − t0 + 4). Substituting this into (18) yields:

E sup
t0≤s≤t

|Xn(s)− X(s)|2 ≤ M6 +
4b(T − t0 + 4)

(1− K2)(1−
√

K2)

∫ t

t0

E sup
t0≤r≤s

|Xn(r)− X(r)|2αds.

By Stachurska’s inequality, we have:

E

(
sup

t0≤t≤T
|Xn(t)− X(t)|2

)
≤ M6

[
1−

4b(α− 1)Mα−1
6 (T − t0 + 4)(T − t0)

(1− K2)(1−
√

K2)

] 1
1−α

,

which is the required inequality. The proof is complete.

4. Discussion

System modeling, including the probability process, has become an important role in many areas
of science and industry where we are increasingly encountering stochastic differential equations.
The neutral stochastic functional differential equation is based on the postulates of some random
environmental effects, and these equations can be applied to the perturbation theory when it is hard
to find the exact solution for some potentials. These equations are not easy to obtain the solution,
but often arises from the study of more than one simple electrodynamic or oscillating system with
some interconnection.

In this study, we wanted to find new conditions that prove the existence and uniqueness of the
solution of Equation (1). In Lemma 9, a weakened Hölder condition condition (4), a weakened linear
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growth condition (5), and a contractive condition (6) were used to demonstrate that the probability
process is bounded. In Lemma 10, these conditions were used to demonstrate that the Picard iteration
is bounded. Therefore, in Theorems 1 and 2, we have proved a existence and uniqueness of a solution
to a neural stochastic differential equation in this paper. However, the weakened Hölder condition
condition only guarantees the existence and uniqueness of the solution and, in general, the solution
does not have an explicit expression except for the linear case. In practice, we therefore often seek the
approximate rather than the accurate solution. The questions of continuity and approximate solution
(for numerical methods) under a weaker condition of the solution were not addressed in this paper,
but we think it may take some time to accomplish this. We want to leave this improvement as an
open problem.

5. Conclusions

In the present paper, we proved a type of existence and uniqueness theorem of a solution of the
neutral stochastic differential equation using the weakened conditions when the conditions are in the
form of (4)–(6). Our main result does not cover the more general case of existence and uniqueness of
the stochastic equation under some weakened conditions. Nevertheless, it is valuable that we showed
a type of existence theorem of the solution of the stochastic differential equation with the expanded
concept of ordinary differential equations.
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