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Abstract: The synthesis of symmetric and asymmetric rotaxanes consisting of neutral axle and ring
components without ionic templates is necessary for applications in molecular sensors and molecular
switches. A phenanthroline-containing symmetric [2]rotaxane was newly synthesized by inducing
hydrogen bonding and π-interaction using a template-free threading-followed-by-stoppering method.
The obtained rotaxane serves as a reversible pH-controllable molecular switch.
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1. Introduction

Rotaxanes represent one of the many kinds of mechanically interlocked molecules (MIMs) and
have been thoroughly investigated in the context of molecular machines and molecular switches [1–6].
Meanwhile, rotaxanes have found interesting applications in molecular sensors and catalysts due to
their specific interconversion and their intrinsic cavities, which arise from three-dimensional threaded
structures [7–10]. Even so, controlled synthetic routes to rotaxanes, that is, the systematic discovery
of new compatible combinations of axle and ring components, still remains challenging. At present,
cationic hydrogen-bonding template and metal template have been widely used to achieve effective
threading of an axle through a macrocycle, even though neutralizing the cationic moiety and removing
the metal ions are necessary in the later step [11–15]. Therefore, studies focused on different types of
threading of neutral axle components without template ions through macrocycles are required in order
to synthesize interlocked molecules that may find applications in molecular sensors [16–21]. In the
molecular design of rotaxanes, we discovered new host–guest pairs. Herein, we report the synthesis of
a new symmetric rotaxane 3 that uses an isophthalamide derivative 1 with a half dibenzo-crown ether
as a ditopic ring component in combination with a phenanthroline derivative 2 as an axle. Moreover,
we demonstrate that these MIMs can serve as reversible pH-controlled molecular switches between
two stations on the phenanthroline and the protonated aniline site (Scheme 1).
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Scheme 1. Formation of rotaxane 3 using an end-capping method and an acid-base molecular 
switching of 3. TFA, trifluoroacetic acid; TEA, triethylamine. 

2. Materials and Methods 

All reagents were obtained from commercial suppliers (tritylaniline; Alfa Aesar by Thermo 
Fisher Scientific, Heysham, Lancasshire, U.K., sodium triacetoxyborohydride; Tokyo Chemical 
Industry Co., Ltd., Tokyo, Japan, other reagents and solvents; FUJIFILM Wako Pure Chemical Co., 
Osaka, Japan) and used as received. Macrocycle 1 [22] and thread precursor 2 [23] were synthesized 
according to literature procedures. 1H and 13C NMR spectra were recorded with a Varian Mercury 
300 spectrometer (Agilent Technologies Japan, Ltd., Tokyo, Japan) for solution in CDCl3 with SiMe4 
as an internal standard. Mass spectra were measured on a Shimadzu LCMS-IT-TOF mass 
spectrometer (Shimadzu Co., Kyoto, Japan) using the electrospray ionization (ESI) method. 
Preparative gel permeation chromatography (GPC) was performed with JAI LC-908 (Japan 
Analytical Industry Co. Ltd., Tokyo, Japan) on JAIGEL 1H and 2H columns with CHCl3 as a solvent. 
1H NMR and 13C NMR spectra of [2]rotaxane 3 and dumbbell 4 as well as ROESY NMR spectra of 
[2]rotaxane 3 are shown in Appendix A–D. 

2.1. Synthesis of Rotaxane 3 

A solution of macrocycle 1 (50.0 mg, 0.102 mmol), thread precursor 2 (46.0 mg, 0.103 mmol), and 
tritylaniline (73.0 mg, 0.218 mmol) in chloroform (4 mL) containing MgSO4 as a dehydrating agent 
was stirred for 96 h at room temperature under Ar. Sodium triacetoxyborohydride (109 mg, 5.55 
mmol) was added and the mixture was stirred for a further 48 h. The reaction mixture was washed 
with water (3 × 10 mL), and the solvent was removed under reduced pressure to yield the crude 
mixture, which was purified by preparative GPC to yield [2]rotaxane 3 (96.3 mg, 60%) and 
corresponding free dumbbell 4 (24.1 mg, 15%) as a clear yellow solid. [2]Rotaxane 3: 1H NMR (300 
MHz, CDCl3) δ 10.28 (s, 1H), 8.36 (d, 2H, J = 8.4 Hz), 8.32 (d, 2H, J = 8.1 Hz), 8.04 (t, 2H, J = 3.9 Hz), 
7.95 (s, 2H), 7.71 (d, 2H, J = 8.4 Hz), 7.60 (t, 1H, J = 7.8 Hz), 7.24–7.12 (m, 36H), 6.97 (d, 4H, J = 8.7 Hz), 
6.67 (d, 4H, J = 8.7 Hz), 6.54 (d, 4H, J = 8.7 Hz), 5.89 (d, 4H, J = 8.4 Hz), 5.61 (d, 4H, J = 8.4 Hz), 4.86 (s, 
4H), 4.19 (s, 4H), 4.00 (s, 4H), 3.98 (s, 4H), 3.90 (d, 4H, J = 5.1 Hz), 3.83 (d, 4H, J = 4.5 Hz) ppm; 13C 
NMR (75 MHz, CDCl3): δ 165.8, 158.0, 157.4, 157.3, 147.4, 146.0, 144.5, 137.1, 133.6, 132.4, 132.2, 132.1, 
131.3, 129.3, 128.5, 128.2, 128.1, 127.5, 127.4, 126.5, 126.2, 125.8, 121.1, 114.9, 114.3, 113.3, 112.0, 69.8, 
65.2, 64.3, 43.7, 29.1, 28.6, 25.7 ppm; HR-MS(ESI) m/z calc. for [C106H92N6O8 + Na+]: 1599.6874; found: 
1599.6796. Dumbbell 4: 1H NMR (300 MHz, CDCl3): δ 8.31 (d, 2H, J = 8.1 Hz), 7.95 (d, 2H, J = 8.4 Hz), 
7.82 (s, 2H), 7.31 (d, 4H, J = 8.7 Hz), 7.23–7.13 (m, 32H), 7.04 (d, 4H, J = 9.0 Hz), 6.98 (d, 4H, J = 8.7 Hz), 
6.53 (d, 4H, J = 8.7 Hz), 5.64 (s, 4H), 4.22 (s, 4H) ppm; 13C NMR (75 MHz, CDCl3): δ 158.5, 157.9, 147.4, 
146.0, 145.3, 137.3, 136.1, 132.2, 132.0, 131.3, 129.3, 128.4, 127.4, 126.5, 125.8, 121.0, 115.1, 112.0, 71.6, 
64.3, 48.2 ppm. 

Scheme 1. Formation of rotaxane 3 using an end-capping method and an acid-base molecular switching
of 3. TFA, trifluoroacetic acid; TEA, triethylamine.

2. Materials and Methods

All reagents were obtained from commercial suppliers (tritylaniline; Alfa Aesar by Thermo Fisher
Scientific, Heysham, Lancasshire, U.K., sodium triacetoxyborohydride; Tokyo Chemical Industry Co.,
Ltd., Tokyo, Japan, other reagents and solvents; FUJIFILM Wako Pure Chemical Co., Osaka, Japan) and
used as received. Macrocycle 1 [22] and thread precursor 2 [23] were synthesized according to literature
procedures. 1H and 13C NMR spectra were recorded with a Varian Mercury 300 spectrometer (Agilent
Technologies Japan, Ltd., Tokyo, Japan) for solution in CDCl3 with SiMe4 as an internal standard. Mass
spectra were measured on a Shimadzu LCMS-IT-TOF mass spectrometer (Shimadzu Co., Kyoto, Japan)
using the electrospray ionization (ESI) method. Preparative gel permeation chromatography (GPC)
was performed with JAI LC-908 (Japan Analytical Industry Co. Ltd., Tokyo, Japan) on JAIGEL 1H and
2H columns with CHCl3 as a solvent. 1H NMR and 13C NMR spectra of [2]rotaxane 3 and dumbbell 4
as well as ROESY NMR spectra of [2]rotaxane 3 are shown in Appendices A–D.

2.1. Synthesis of Rotaxane 3

A solution of macrocycle 1 (50.0 mg, 0.102 mmol), thread precursor 2 (46.0 mg, 0.103 mmol), and
tritylaniline (73.0 mg, 0.218 mmol) in chloroform (4 mL) containing MgSO4 as a dehydrating agent was
stirred for 96 h at room temperature under Ar. Sodium triacetoxyborohydride (109 mg, 5.55 mmol)
was added and the mixture was stirred for a further 48 h. The reaction mixture was washed with
water (3 × 10 mL), and the solvent was removed under reduced pressure to yield the crude mixture,
which was purified by preparative GPC to yield [2]rotaxane 3 (96.3 mg, 60%) and corresponding free
dumbbell 4 (24.1 mg, 15%) as a clear yellow solid. [2]Rotaxane 3: 1H NMR (300 MHz, CDCl3) δ 10.28
(s, 1H), 8.36 (d, 2H, J = 8.4 Hz), 8.32 (d, 2H, J = 8.1 Hz), 8.04 (t, 2H, J = 3.9 Hz), 7.95 (s, 2H), 7.71 (d, 2H,
J = 8.4 Hz), 7.60 (t, 1H, J = 7.8 Hz), 7.24–7.12 (m, 36H), 6.97 (d, 4H, J = 8.7 Hz), 6.67 (d, 4H, J = 8.7 Hz),
6.54 (d, 4H, J = 8.7 Hz), 5.89 (d, 4H, J = 8.4 Hz), 5.61 (d, 4H, J = 8.4 Hz), 4.86 (s, 4H), 4.19 (s, 4H), 4.00
(s, 4H), 3.98 (s, 4H), 3.90 (d, 4H, J = 5.1 Hz), 3.83 (d, 4H, J = 4.5 Hz) ppm; 13C NMR (75 MHz, CDCl3): δ
165.8, 158.0, 157.4, 157.3, 147.4, 146.0, 144.5, 137.1, 133.6, 132.4, 132.2, 132.1, 131.3, 129.3, 128.5, 128.2,
128.1, 127.5, 127.4, 126.5, 126.2, 125.8, 121.1, 114.9, 114.3, 113.3, 112.0, 69.8, 65.2, 64.3, 43.7, 29.1, 28.6,
25.7 ppm; HR-MS(ESI) m/z calc. for [C106H92N6O8 + Na+]: 1599.6874; found: 1599.6796. Dumbbell
4: 1H NMR (300 MHz, CDCl3): δ 8.31 (d, 2H, J = 8.1 Hz), 7.95 (d, 2H, J = 8.4 Hz), 7.82 (s, 2H), 7.31
(d, 4H, J = 8.7 Hz), 7.23–7.13 (m, 32H), 7.04 (d, 4H, J = 9.0 Hz), 6.98 (d, 4H, J = 8.7 Hz), 6.53 (d, 4H,
J = 8.7 Hz), 5.64 (s, 4H), 4.22 (s, 4H) ppm; 13C NMR (75 MHz, CDCl3): δ 158.5, 157.9, 147.4, 146.0, 145.3,
137.3, 136.1, 132.2, 132.0, 131.3, 129.3, 128.4, 127.4, 126.5, 125.8, 121.0, 115.1, 112.0, 71.6, 64.3, 48.2 ppm.
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2.2. Single Crystal X-Ray Analysis

X-ray diffraction data were collected on a Rigaku R-AXIS RAPID diffractometer (Rigaku Co., Tokyo,
Japan) with a 2-D area detector using graphite-monochromatized CuKα radiation (λ = 1.54187 Å).
SHELXT (ver. May 2014, Sheldrick, G. M. (2014). Acta Cryst. A70, C1437.) [24] was used for the structure
solution of the crystals. All calculations were performed with the observed reflections [I > 2 σ(I)]
by the program CrystalStructure crystallographic software packages (ver. 4.2.4, Rigaku Corporation
(2000–2016), Tokyo, Japan) [25] except for refinement, which was performed using SHELXL (ver. July
2014, Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.) [26]. All non-hydrogen atoms were refined
with anisotropic displacement parameters and all hydrogen atoms were placed in idealized positions,
which were refined as rigid atoms with the relative isotropic displacement parameters. CIF and
checkCIF files for X-ray diffraction data of 1 ⊃ DMPhen are available in Supplementary Materials.

3. Results and Discussion

As shown in Scheme 2, we previously demonstrated by 1H NMR spectral changes
and 1H NMR spectroscopic titration experiments that macrocycle 1 very strongly binds
2,9-dimethyl-1,10-phenanthroline (DMPhen) [22]. We expected that the corresponding
[2]pseudorotaxane structures would be formed by stabilization from the cooperative effects of NH-N
hydrogen bonding between the isophthalamide protons and the DMPhen nitrogen atoms, as well as
by π-stacking of the two π-electron-rich aromatic rings of macrocycle 1 with the π-electron-deficient
aromatic ring of the neutral phenanthroline derivative in CDCl3.
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Scheme 2. Formation of a pseudorotaxane (1⊃DMPhen) and an acid–base threading–dethreading reaction.

In order to define the structure of the [2]pseudorotaxane in the solid state, single crystals of
1 ⊃ DMPhen suitable for X-ray diffraction analysis were grown by slow evaporation of a dioxane
solution of the [2]pseudorotaxane [27]. The X-ray diffraction analysis revealed a [2]pseudorotaxane-like
molecular geometry for 1 ⊃ DMPhen in the solid state (Figure 1). The phenanthroline unit of
DMPhen orthogonally aligns with the isophthalamide moiety of the macrocycle 1 and penetrates in
the macrocycle 1. As is shown in Figure 1c in more detail, DMPhen is disproportionally located in one
side of the macrocycle aperture. Benzene rings of the macrocycle (I and II) are located on and π-stacked
with six-membered rings of the DMPhen labeled with A and B, respectively, whereas ring C of the
DMPhen is out of the macrocycle. Interplanar angles and the approximate distance between benzene
ring I and phenanthroline are 12.3◦ and 3.18–3.72 Å, respectively, and those corresponding to ring II and
phenanthroline are 3.5◦ and 3.30–3.46 Å, respectively. The phenanthroline nitrogen atoms (N3 and N4)
are coordinated via hydrogen bonding with the isophthalamide and the aromatic protons. The related
hydrogen bonding distances are as follows: N1–H···N3, 2.42 Å; N1–H···N4, 3.25 Å; N2–H···N3, 2.53 Å;
N2–H···N4, 2.51 Å; C1–H···N3, 2.57 Å; and C1–H···N4, 2.52 Å. The assembly of the [2]pseudorotaxane
is further stabilized by weak hydrogen bonds, that is, a CH/π interaction between the methyl group
of DMPhen and the benzene ring of 1 (C42–H···C1 with 2.79 Å) and a CH/O interaction between the
phenanthroline aromatic and the polyether chain of the macrocycle (C38–H···O1 with a distance of
2.59 Å).
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Figure 1. Crystal structure of pseudorotaxane 1 ⊃ DMPhen: (a) anisotropic displacement plot with 
50% probability ellipsoids, where hydrogen atoms are omitted for clarity; (b) space-fill model; (c) 
intermolecular interactions between 1 and DMPhen, where only selected hydrogen atoms relating to 
the interactions are shown. Color code: C (green or yellow), O (red), N (cyan), H (white). 
Intermolecular interactions are described with blue dotted lines. 

In order to obtain a rotaxane structure using macrocycle 1 with an axle component containing a 
phenanthroline moiety, we used phenanthroline derivative 2, which contains a para-substituted 
benzaldehyde group as a reactive group at the 2- and 9-positions on the phenanthroline ring. Upon 
addition of phenanthroline derivative 2 to a solution of the macrocycle 1 in d-chloroform, the 1H NMR 
spectra revealed significant downfield shifts for the macrocyclic amide (d) and the isophthalic 
aromatic protons (a, b, and c), which indicate that hydrogen bonding is formed between the amide 
hydrogens of macrocycle 1 and the nitrogen atoms of phenanthroline derivative 2 (Figure 2). In 
addition, the upfield shifts of the signals of the benzylic phenyl protons (f and g) of 1 imply the 
existence of interactions between the electronically complementary aromatic rings of 1 and 2. The 1H 
NMR spectrum of an equimolar mixture (19 mM) of 1 and 2 in CDCl3 corroborates the formation of 
pseudorotaxane 1 ⊃ 2. The association constants (Ka) for the complexation were measured by 1H 
NMR titration experiments [28]. Monitoring the downfield shift of protons c and d and the upfield 
shift of protons f and g upon adding 2 allowed us to estimate an association constant of 3.5 ± 0.4 × 
103. It should be noted that the increase in the binding affinity of the macrocycle toward 2 is by a 
factor of approximately 8 and 1.5 higher relative to those of unsubstituted phenanthroline and 2,9-
dimethylphenanthroline, respectively [22]. 

 

Figure 2. Partial 1H NMR spectra (300 MHz, CDCl3, 3.2–10.2 ppm) of (a) macrocycle 1, (b) 
pseudorotaxane 1 ⊃ 2, and (c) axle 2. 
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Figure 1. Crystal structure of pseudorotaxane 1 ⊃ DMPhen: (a) anisotropic displacement plot
with 50% probability ellipsoids, where hydrogen atoms are omitted for clarity; (b) space-fill model;
(c) intermolecular interactions between 1 and DMPhen, where only selected hydrogen atoms relating to
the interactions are shown. Color code: C (green or yellow), O (red), N (cyan), H (white). Intermolecular
interactions are described with blue dotted lines.

In order to obtain a rotaxane structure using macrocycle 1 with an axle component containing
a phenanthroline moiety, we used phenanthroline derivative 2, which contains a para-substituted
benzaldehyde group as a reactive group at the 2- and 9-positions on the phenanthroline ring. Upon
addition of phenanthroline derivative 2 to a solution of the macrocycle 1 in d-chloroform, the 1H NMR
spectra revealed significant downfield shifts for the macrocyclic amide (d) and the isophthalic aromatic
protons (a, b, and c), which indicate that hydrogen bonding is formed between the amide hydrogens of
macrocycle 1 and the nitrogen atoms of phenanthroline derivative 2 (Figure 2). In addition, the upfield
shifts of the signals of the benzylic phenyl protons (f and g) of 1 imply the existence of interactions
between the electronically complementary aromatic rings of 1 and 2. The 1H NMR spectrum of
an equimolar mixture (19 mM) of 1 and 2 in CDCl3 corroborates the formation of pseudorotaxane
1 ⊃ 2. The association constants (Ka) for the complexation were measured by 1H NMR titration
experiments [28]. Monitoring the downfield shift of protons c and d and the upfield shift of protons f
and g upon adding 2 allowed us to estimate an association constant of 3.5 ± 0.4 × 103. It should be
noted that the increase in the binding affinity of the macrocycle toward 2 is by a factor of approximately
8 and 1.5 higher relative to those of unsubstituted phenanthroline and 2,9-dimethylphenanthroline,
respectively [22].
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Figure 2. Partial 1H NMR spectra (300 MHz, CDCl3, 3.2–10.2 ppm) of (a) macrocycle 1,
(b) pseudorotaxane 1 ⊃ 2, and (c) axle 2.



Symmetry 2019, 11, 1137 5 of 11

The new rotaxane 3 was obtained from the reaction of isophthalamide-containing macrocycle
1 with the phenanthroline bis-aldehyde 2 in CDCl3, followed by a treatment with tritylaniline
(stopper), MgSO4 (dehydrating agent), and NaBH(OAc)3 (reducing agent) (Scheme 3) [18,29,30]. Pure
[2]rotaxane 3 and its corresponding free dumbbell 4 were isolated by preparative GPC in 60% and
15% yield, respectively. During the rotaxane synthesis, the free dumbbell 4 was isolated probably
due to the dissociation of the axle component 2 from the macrocycle 1 during two-step reactions of
reductive amination.
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Scheme 3. Synthetic scheme of [2]rotaxane 3 via reductive amination.

The 1H NMR experiments were performed in CDCl3 in order to confirm the formation of
[2]rotaxane 3. As shown in Figure 3, the spectrum of [2]rotaxane 3, along with those of the constituent
components (i.e., dumbbell 4 and macrocycle 1) confirmed the interlocked structure and show that,
under neutral conditions, macrocycle 1 in [2]rotaxane 3 is largely localized on the phenanthroline
moiety of the dumbbell.
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In order to demonstrate that [2]rotaxane 3 represents a pH-controllable rotaxane-based molecular
switch, an excess of trifluoroacetic acid (TFA) was added to a solution of 3 in CDCl3. The 1H NMR
spectrum of the resulting mixture (Figure 4a,b) revealed that the protonation of the phenanthroline gives
rise to a migration of macrocycle 1 to the protonated aniline site. This interpretation was supported
by significant changes of the chemical shifts corresponding to the isophthalic aromatic protons (a, b,
and c), which return almost to the values of uncomplexed macrocycle 1, due to the dissociation of
the hydrogen bonding between the isophthalic amide and the phenanthroline, and by the downfield
shifts of the signals for the benzylic phenyl protons (f, having a larger shift and g, a smaller shift) of
macrocycle 1 due to the removal from the phenanthroline site and the fact of staying at one of the
oxyphenylene rings in the axle component via π-stacking (Figure 4b). Moreover, the signals for protons
H4 and He were shifted downfield due to the removal of macrocycle 1 from the phenathroline site. In
addition, the polyether protons (h, i, and j) are slightly upfield shifted and broadened, which results
in hydrogen bonding interactions between the ether oxygen atoms and the ammonium hydrogen
atoms [31,32]. The results thus indicate that macrocycle 1 moves to both of the oxyphenylene sites
and the protonated aniline sites on either side upon the addition of acid. On the other hand, upon the
addition of an excess of triethylamine (Et3N) to [2]rotaxane 3 under the acidic condition in CDCl3, the
protonated groups of the anilines and the phenanthroline are neutralized and the hydrogen bonds
between the polyether moiety and the ammonium groups are cleaved. Furthermore, the formation of
hydrogen bonds between the amide hydrogen atoms of macrocycle 1 and the phenanthroline nitrogen
atoms of the dumbbell was confirmed by the identical 1H NMR spectra for [2]rotaxane 3 under neutral
and basic conditions.
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Figure 4. Partial 1H NMR spectra (300 MHz, CDCl3, 3.4–11.0 ppm) of (a) rotaxane 3, (b) rotaxane 3-H+

obtained after adding excess TFA to rotaxane 3, and (c) rotaxane 3 obtained after adding excess Et3N to
rotaxane 3-H+.

4. Conclusions

In conclusion, we successfully demonstrated that phenanthroline-containing symmetric
[2]rotaxane 3 can serve as a pH-controllable reversible molecular switch. 3 is synthesized without a
template via interpenetration by hydrogen bonding andπ-interaction, which provides a simple synthetic
route to pH-responsive molecular switches that do not require additional procedures such as removal
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of metal templates. Should 3 be applied in molecular sensors and molecular devices in the future,
contamination-free materials could potentially be obtained for molecular machines. The synthesis of
the corresponding asymmetric template-free chiral [2]rotaxanes that contain a phenanthroline moiety
and the investigation of their molecular sensors and molecular shuttling properties are currently
in progress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/9/1137/s1:
CIF and checkCIF files for X-ray diffraction data of 1 ⊃ DMPhen.
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