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Abstract: Many real-life problems are well represented only by sets which allow repetition(s), such as
the multiset. Although not limited to the following, such cases may arise in a database query, chemical
structures and computer programming. The set of roots of a polynomial, say f (x), has been found to
correspond to a multiset, say F. If f (x) and g(x) are polynomials whose sets of roots respectively
correspond to the multisets F(x) and G(x), the set of roots of their product, f (x)g(x), corresponds
to the multiset F

⊎
G, which is the sum of multisets F and G. In this paper, some properties of the

algebraic sum of multisets
⊎

and some results on selection are established. Also, the count function of
the image of any function on Dedekind multisets is defined and some of its properties are established.
Some applications of these multisets are also given.
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1. Introduction

Let us start with the words of Prof. Irina Cristea that motivated us for this study; in many cases
Symmetry plays a fundamental role in our daily lives and in the study of the structure of different objects in
physics, chemistry, biology, mathematics, architecture, arts, sociology, linguistics, etc. For example, the structure
of molecules is well explained by their symmetry properties, described by symmetry elements and symmetry
operations. A symmetry operation is a change, a transformation after which certain objects remain invariant,
such as rotations, reflections, inversions, or permutation operations. Until now, the most efficient way to better
describe symmetry, is using mathematical tools offered by group theory.

The notion of multiset can be traced to as far back as 1888 where Dedekind in [1] said that
an element of a set may belongs to it more than once. In 1989, Blizard in his paper [2] developed
a first-order two-sorted multi set theory for multisets that “contains” classical set theory. Later on,
in 1993 [3], he identified a kind of multiset which is based on the function of the root set. This idea was
primarily from the work of Dedekind in [1].

However, Syropoulos in [4] also studied various operations on multisets and extended his work
to category of multisets. Wildberger in [5] considered the use of multisets in data structure and also
related it to tropical mathematics and gave some applications of it responding to meet catalogue of
orders emanating from various customers from a set of inventory of a sales company. Knuth [6]
related multisets to various aspects of computer programming.

Multisets are furthermore studied in the form of, and substituted with, numerous concepts such
as bag, fireset (finitely repeated element set), heap, bunches, etc. These concepts have all been studied
by various mathematicians with different applications.
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To be specific, Nazmul et al. [7] extended the study of multisets to multigroup and other related
algebraic properties as in the classical group. Concepts such as multicosets, [8,9] symmetric multigroup,
and many others have all been studied [10–12]. Yohanna and Simon studied symmetric groups under
multiset in [13]. Congruences of Multialgebra were studie by Ameri and Rosenberg in [14]. Even if
the list of related papers is long we would like to draw the readers attention only to some of them,
e.g., [4,5,15,16].

In this paper, we present some of the operations on multisets and some applications to real-life
problems, number theory and management [17].

2. Preliminaries

In this paper, we shall use X to denote a non-empty set.

Definition 1 ([7,10]). A multiset M drawn from a set X is denoted by the count function CM : X −→ N
defined by CM(x) = n ∈ N, the multiplicity or number of occurrence of x in M, where N is the set of
non-negative integers.

Definition 2 ([7]). Let multisets A and B be drawn from X. A is said to be a submultiset of B and is denoted
A ⊆ B if CA(x) ≤ CB(x) ∀x ∈ X.

Definition 3 ([7]). The root set or support of a multiset M, which is denoted by M∗, is the set which contains
the distinct elements in the multiset. Hence, M∗ is the set of x ∈ M such that CM(x) > 0.

A multiset M is called a regular multiset if CM(x) = CM(y) ∀x, y ∈ M. The count function
of the intersection of two multisets A and B both drawn from X is denoted by CA(x) ∩ CB(x) =

min{CA(x), CB(x)} and that of their union is denoted CA(x) ∪ CB(x) = max{CA(x), CB(x)}.
Multisets A and B are said to be equal if and only if CA(x) = CB(x). Denote by [X]α, all the

multisets whose elements have the multiplicity not more than α and MS(X) the set of all multisets
drawn from X. An empty multiset φ is such that Cφ(x) = 0, ∀x ∈ X. Cardinality of a multiset M is
denoted by |M| = ∑ CM(x), ∀x ∈ M. The peak element x ∈ M is such that CM(x) ≥ CM(y), ∀y ∈ M.

Definition 4 ([18]). i. Consider A ∈ MS(X). The insertion of x into A results into a multiset denoted by
C = x

⊎
A which has the count function

CC(y) =


CA(y), y 6= x

CA(x) + 1, y = x.

ii. Consider A, B ∈ MS(X). The insertion of A into B or of B into A results into a multiset C which has
the count function denoted by CC(x) = CA(x) + CB(x).

It should be noted that the operation of insertion (
⊎

) on the set of all multisets drawn from X,
that is MS(X), is commutative and associative.

Definition 5 ([18]). i. Consider A ∈ MS(X). The removal of x from A results into a multiset denoted by
D = A	 x which has the count function

CD(y) =


max{CA(y)− 1, 0}, y = x

CA(y), y 6= x.

ii. Consider A, B ∈ MS(X). The removal of B from A results into a multiset which has the count function
denoted by CD(x) = max{CA(x)− CB(x), 0}.
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It should be noted that the removal operation is neither commutative nor associative. Besides,
it is also possible to make some kind of selection in multisets using the following operations.

Definition 6 ([10,18]). Consider A ∈ MS(X) and B ⊆ X.

i. The multiset E = A⊗ B is such that E only contains elements of A which also occur in B. The count
function of E is denoted by

CE (x) =


CA(x), x ∈ B

0, x /∈ B.

ii. The multiset F = A
⊙

B is such that F only contains elements of A which do not occur in B. The count
function of F is denoted by

CF (x) =


CA(x), x /∈ B

0, x ∈ B.

Operations defined above “⊗” or “
⊙

” are called selection operations.

Definition 7 ([7]). Let X be a group and e ∈ X its identity. Then, ∀x, y ∈ X, a multiset M drawn from X
is called a multigroup if

i. CM(xy) ≥ CM(x) ∧ CM(y),
ii. CM(x−1) ≥ CM(x).

Remark 1. The immediate consequenceof this is that CM(e) ≥ CM(x) and CM(x−1) = CM(x), for any
x ∈ X. We shall call MG(X) the set of all multigroups drawn from X.

Example 1. Let X = {1, 2, 3, 4, 5}. Let the multiset M = {1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5}, N =

{1, 1, 2, 2, 3, 4, 4, 4, 5} and W = {1, 1, 1, 2, 3, 3} be drawn from X. It is also justifiable to say that X is
the support of M and N. Furthermore, the root set of W is W∗ = {1, 2, 3}.

i. CN(1) = 2, CN(2) = 2, CN(3) = 1, CN(4) = 3 and CN(5) = 1
ii. M ∩ N = {1, 1, 2, 2, 3, 4, 4, 5}. When two or more multisets are intersected, the minimum multiplicity of

the common elements is taken.
iii. M ∪ N = {1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5}. When the union of two or more multisets is taken,

the maximum multiplicity of the common elements is taken.
iv. Neither is M ⊆ N, since CM(x) ≤ CN(x) for all x ∈ X, nor M ⊇ N, since CM(x) ≥ CN(x) for all

x ∈ X, but W ⊆ M, since CW(x) ≤ CM(x) for all x ∈ X.

Example 2. i. Let G = {1,−1, i,−i} be a group with the usual multiplication. M =

{1, 1, 1,−1,−1,−1, i, i,−i,−i} is a multigroup since it satisfies Definition 7 and Remark 1.
ii. Consider the group Z3 = {0, 1, 2} with the modulo addition. M = {0, 0, 0, 1, 1, 2, 2} is a multigroup.

Definition 8 ([10]). Let A ∈ MS(X), where X is a group.

i. An = {x : CA(x) ≥ n};
ii. We denote a multiset containing only one element x with multiplicity n as [n]x–a simple multiset;
iii. The complement of the multiset M ∈ [X]α denoted by M′ is such that CM′(x) = α− CM(x);
iv. nA = {xn, ∀x ∈ A , n is the multiplicity of each element that appears in nA}.

Example 3. Let X = {0, 1, 2, 3} which is a group with respect to addition modulo 4 and A = {0, 0, 0, 1, 1, 2, 2}
a multiset.

i. 2A = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}, the multiplicities of each element in A is doubled;
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ii. [2]0 = {0, 0}, this multiset comprises only 0 and its multiplicity is 2;
iii. A2 = A1 = A0 = {0, 1, 2} and A3 = {0}. These are the sets of elements of A respectively with

multiplicities 2, 1, 0 and 3.

Remark 2. For a multigroup A drawn from a group X, An is a group, indeed the subgroup of X [7].

Proposition 1 ([7], p. 645). Let A, B ∈ MS(X) and m, n ∈ IN.

i. If A ⊆ B, then An ⊆ Bn;
ii. If m ≤ n, then Am ⊇ An;
iii. (A ∩ B)n = An ∩ Bn;
iv. (A ∪ B)n = An ∪ Bn;
v. A = B if and only if An = Bn, ∀n ∈ IN.

Definition 9 ([7]). Let X and Y be two nonempty sets such that f : X −→ Y is a mapping. Consider the
multisets M ∈ [X]α and N ∈ [Y]α. Then,

i. the image of M under f denoted f (M) has the count function

C f (M)(y) =


∨

f (x)=y CM(x), if f−1(y) 6= ∅

0, otherwise;

ii. the inverse image of N under f denoted f−1(N) has the count function
C f−1(N)(x) = CN [ f (x)].

The following Propositions were proved in [7]. But we shall later show that the items (iv), (v) and
(vii) are not true and that the Proposition 2 needs to be restated.

Proposition 2 ([7]). Let X, Y and Z be three nonempty sets such that f : X −→ Y and g : Y −→ Z are
mappings. If Mi ∈ [X]α, Ni ∈ [Y]α, i ∈ I then

i. M1 ⊆ M2 ⇒ f (M1) ⊆ f (M2);
ii. f (∪i∈I Mi) = ∪i∈I f (Mi);
iii. N1 ⊆ N2 ⇒ f−1(N1) ⊆ f−1(N2);
iv. f−1(∪i∈I Mi) = ∪i∈I f−1(Mi);
v. f−1(∩i∈I Mi) = ∩i∈I f−1(Mi);
vi. f (Mi) ⊆ Nj ⇒ Mj ⊆ f−1(Nj);
vii. g[ f (Mi)] = [g f ](Mi) and f−1[g−1(Nj)] = [g f ]−1(Nj).

3. Some Illustrations of Properties of Operations on Multisets

In the following section we now introduce some new results and properties of defined operations.

Proposition 3. The operation
⊎

in Definition 4(ii) is such that:

i. Let A be a multiset drawn a nonempty set X. The n insertion of A into itself denoted
⊎

n A = nA;
ii. A

⊎
A = A⇔ A = φ.

Proof. i. By Definition 4(ii),

C⊎
n A(x) = CA(x) + CA(x) + · · ·+ CA(x)︸ ︷︷ ︸

n times

= nCA(x) ∀x ∈ A;
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ii. Assume that A
⊎

A = A but A 6= ∅. By (i), A
⊎

A = 2A. Then, 2A = A. This is not possible by
Definition 4(ii). Thus, A = ∅.

Conversely, assume that A = ∅ but A
⊎

A 6= A = ∅. Then A
⊎

A = 2A. But CA(x) = 0; ∀x ∈ X.
Then, CA

⊎
A(x) = CA(x) + CA(x) = 0. This implies that A

⊎
A = ∅. This is a contradiction.

Hence, A
⊎

A = A.

Remark 3. Some properties of the selection operation
⊗

in Definition 6(i) and
⊙

in Definition 6(ii) will be
illustrated here. Let X be a nonempty set, A ∈ MS(X), B ⊆ X and E = A

⊙
B.

i. Let D = A
⊗

B. If B ⊂ A∗ then D ⊆ A. If A∗ ⊆ B then D = A.
ii. If B ⊂ A∗ then E ⊆ A. If A∗ ⊆ B then E = ∅.
iii. D∗ ∪ E∗ = A∗.

This will be illustrated by the following Examples.

Example 4. Let X = {1, 2, 3, 4, 5}, B = {2, 3, 5}.

i. If A = {1, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5}. Then, D = {2, 3, 3, 3, 5, 5}, E = {1, 1, 1, 4, 4} and A∗ =

{1, 2, 3, 4, 5}. Obviously, B ⊆ A∗, D ⊆ A and E ⊆ A.
ii. If, on the other hand, A = {3, 3, 3, 5, 5}, A∗ = {3, 5}. Then, A∗ ⊆ B, D = {3, 3, 3, 5, 5} = A and

E = ∅.
iii. In [i], D∗ = {2, 3, 5} and E∗ = {1, 4}. Hence, D∗ ∪ E∗ = A∗. Also, in [ii] D∗ = {3, 5} and E∗ = ∅.

Hence, D∗ ∪ E∗ = A∗.

Proposition 4. Let A be a multiset drawn from X and B ⊆ X. Then, A∗ ∩ B = (A
⊗

B)∗.

Proof. Let x ∈ (A∗ ∩ B). Then x ∈ A∗ and x ∈ B. Thus, CA(x) 6= 0. Hence, x ∈ A
⊗

B. It can be
concluded that x ∈ (A

⊗
B)∗, in which case (A∗ ∩ B) ⊆ (A

⊗
B)∗.

Also, let x ∈ (A
⊗

B)∗, then C(A
⊗

B)(x) 6= 0. This implies that x ∈ B and CA(x) 6= 0 in which
case x ∈ A∗. Then x ∈ (A∗ ∩ B). Thus, (A

⊗
B)∗ ⊆ (A∗ ∩ B).

Proposition 5. Let A and B be multisets drawn from X.

i. A ∪ B ⊆ A
⊎

B;
ii. A ∪ B = A

⊎
B if A ∩ B = ∅.

Proof. Note that for any non-negative integers n and m, max(n, m) ≤ n + m and that max(n, m) =

n + m if either m or n is 0. Let CA(x) = n and CB(x) = m.

i. CA∪B(x) = CA(x) ∨ CB(x) = max(n, m) ≤ n + m = CA(x) + CB(x) = CA
⊎

B(x);
ii. Since A∩ B = ∅, if x ∈ A, CA(x) = n and CB(x) = 0. On the other hand, if x ∈ B, CB(x) = m and

CA(x) = 0. CA∪B(x) = CA(x) ∨ CB(x) = max(n, m) = n + m = CA(x) + CB(x) = CA
⊎

B(x).

Recall the Definition of An and the complement of a multiset M denoted M′ by [7].
For a non-empty set Y, define a characteristic function

µY(y) =


1, if y ∈ Y;

0, if y /∈ Y.

We now introduce the complement of An denoted by A′n.

Definition 10. Let A be a multiset drawn from X and An as defined in Definition 8(iii). A′n = {x ∈ X :
µAn(x) = 0 and CM(x) < n}.
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The following results shows that A′n is well-defined.

Proposition 6. i. If m ≤ n, then A′m ⊆ A′n
ii. A ⊆ B⇒ B′n ⊆ A′n.
iii. A′n ∪ B′n = (A ∩ B)′n;
iv. A′n ∩ B′n = (A ∪ B)′n.

Proof. i. The proof is evident.
ii. Since A ⊆ B, CB(x) ≥ CA(x). Let x ∈ An, CA(x) ≥ n. But CB(x) ≥ CA(x) ≥ n. Then x ∈ Bn and

that implies that An ⊆ Bn. From elementary set theory, B′n ⊆ A′n.
iii. Let x ∈ (A∩ B)′n then C(A∩B)(x) < n. Thus, min{CA(x), CB(x)} < n in which case, CA(x) < n or

CB(x) < n. We conclude that x ∈ A′n or x ∈ B′n. Hence, x ∈ (A′n ∪ B′n) and (A ∩ B)′n ⊆ (A′n ∪ B′n).
Now let x ∈ (A′n ∪ B′n). x ∈ A′n or x ∈ B′n or both. Then, x /∈ An or x /∈ Bn or not in both.
CA(x) < n and CB(x) < n. Therefore, CA(x) ∧ CB(x) = C(A∩B)(x) < n. We conclude that
x ∈ (A ∩ B)′n and (A′n ∪ B′n) ⊆ (A ∩ B)′n.

iv. Let x ∈ (A′n ∩ B′n). Then, x ∈ A′n and x ∈ B′n, which implies that x /∈ An and x /∈ Bn. Thus,
CA(x) < n and CB(x) < n. As a result, CA(x) ∨ CB(x) = CA∪B(x) < n. Consequently, x ∈
(A ∪ B)′n ⇒ A′n ∩ B′n ⊆ (A ∪ B)′n.
On the other hand, let x ∈ (A ∪ B)′n. Then, x /∈ (A ∪ B)n and CA∪B(x) < n. Furthermore,
if CA∪B(x) = CA(x) ∨ CB(x) < n, then CA(x) < n and CB(x) < n. The consequence is that
x ∈ A′n and x ∈ B′n. Hence, x ∈ (A′n ∩ B′n)⇒ (A ∪ B)′n ⊆ (A′n ∩ B′n).

Then the complement of An denoted A′n is well-defined.

4. Results on Function on Multisets

Dedekind, in his paper “Was sind und was sollen die Zahlen?” had said that
“the frequency-number of an image is the number of its preimages” [1]. Hence, if there are n elements
in a domain X (of a function f mapping X to Y) which are mapped to an element y ∈ Y, then y has
frequency n so that it is an n-fold element of Y. This defines a kind of multiset (Dedekind’s multiset)
denoted by M f and |dom( f )| = |M f |. This fact will be illustrated by the following Example.

Definition 11. Let f : X → Y be a mapping on two non-empty sets and f : M → N be a mapping on
multisets M and N respectively drawn from X and Y. If CN(y) = CM(x) for all y ∈ Y such that f (x) = y, M
and N are Dedekind’s multisets.

Example 5. Let X = {−1,−1,−1, 1, 1, 2, 2} and f (x) = x2. Then, the Dedekind’s multiset M f = {1, 1, 1, 1, 1, 4, 4}.

But, following the Definition by Nazmul et al. [7] which is stated in this article as Definition 2(i),
if a multiset M = {−1,−1,−1, 1, 1, 2, 2} is mapped by f (x) = x2, f (M) = {1, 1, 1, 4, 4}. This is because
∅ 6= f−1(1) = ±1 and ∅ 6= f−1(4) = ±2; max{CM(1), CM(−1)} = 3 and max{CM(2), CM(−2)} =
2; thus |M| 6= | f (M)|. Hence, Nazmul et al.’s Definition of function on multisets fails for
Dedekind’s multisets.

Moreover, in Proposition 2, since Mi ∈ [X]α and Ni ∈ [Y]α, and f maps X to Y, f−1(Mi) is
undefined but f−1(Ni) is. Also, f−1g−1[Nj] is not defined. There should be a multiset say Wi ∈ [Z]α so
that f−1g−1[Wi] is defined. Hence, properties (iv), (v) and (vii) are not true. Against these backgrounds,
there is the need to redefine Definition 2(i) and state some properties of this new Definition.

Definition 12. Let X and Y be two non-empty sets and f : X −→ Y a mapping such that M ∈ [X]α.
Then, C f (M)(y) = ∑

f−1(y) 6=∅ f (x)=y

CM(x).
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Proposition 7. Let X, Y and Z be three nonempty sets such that f : X −→ Y and g : Y −→ Z are mappings.
If Mi ∈ [X]α, Ni ∈ [Y]α and Wi ∈ [Z]α with i ∈ I, then

i. M1 ⊆ M2 ⇒ f (M1) ⊆ f (M2);
ii. f (∪i∈I Mi) ⊇ ∪i∈I f (Mi);
iii. N1 ⊆ N2 ⇒ f−1(N1) ⊆ f−1(N2);
iv. f−1(∪i∈I Ni) = ∪i∈I f−1(Ni);
v. f−1(∩i∈I Ni) = ∩i∈I f−1(Ni);
vi. f (Mi) ⊆ Nj ⇒ Mi ⊆ f−1(Nj);
vii. g[ f (Mi)] = [g f ](Mi) and f−1[g−1(Wj)] = [g f ]−1(Wj).

Proof. i. Suppose M1 ⊆ M2 and let y ∈ f (M1). C f (M1)
(y) = ∑ CM1(x) ≤ ∑ CM2(x) = C f (M2)

(y);
ii. Note that C∪Mi (x) ≥ CMi (x) ⇒ ∑ C∪Mi (x) ≥ ∑ CMi (x). Then, C f (∪Mi)

(y) = ∑ C∪Mi (x) =

∑∨CMi (x) ≥ ∨∑ CMi (x) = ∨C f (Mi)
(y) = C∪ f (Mi)

(y);
iii. Let M1 ⊆ M2. Then, f (M1) = N1 ⊆ N2 = f (M2). Let x ∈ f−1(N1). C f−1(N1)

(x) = CN1( f (x)) =
∑ CM1(x) ≤ ∑ CM2(x) = CN2( f (x)) = C f−1(N2)

(x).
iv. C f−1∪Ni

(x) = C∪Ni ( f (x)) = ∨CNi ( f (x)) = ∨C f−1(Ni)
(x) = C∪ f−1(Ni)

(x).
v. C f−1∩Ni

(x) = C∩Ni ( f (x)) = ∧CNi ( f (x)) = ∧C f−1(Ni)
(x) = C∩ f−1(Ni)

(x).
vi. Let f (Mi) ⊆ Nj and x ∈ Mi such that f (x) = y. CMi (x) = C f (Mi)

(y) ≤ CNj(y) = C f−1(Nj)
(x).

vii. Cg[ f (Mi)]
(z) = ∑

g−1(z) 6=∅g(y)=z

C f (Mi)
(y) = ∑

g−1(z) 6=∅g(y)=z
∑

f−1(y) 6=∅ f (x)=y

CMi (x) =

= ∑
g f (x)=z

CMi (x) = Cg f (Mi)
(z).

The following Examples will illustrate some of the properties in Proposition 7.

Example 6. Let X = {−1, 1, 2} and f (x) = x2. Let M1 = {−1,−1, 1, 12, 2}, M2 = {1, 1,−2,−2,−2},
f (Mi) = Ni; i = 1, 2. Then,
f (M1 ∪M2) = {1, 1, 1, 1, 4, 4, 4, 4} and f (M1) ∪ f (M2) = {1, 1, 1, 1, 4, 4, 4}.

5. Some Applications of Operations on Multiset

This chapter offers some possible applications: we are going to draw our attention to applying
“removal and selection” operations defined in Definitions 5 and 6, respectively. Those may be and are
used for mathematical sorting and blacklisting.

Informatics understands the expressions blacklist or blocklist as lists containing something
forbidden; conversely, the so-called whitelist is used to create a list of entities, which are to be allowed.
Server lists (more precisely, their IP addresses) are among of the most common uses; it is unsuitable to
receive e-mails from them because they send spams. The blacklist is also used in programs for instant
messaging to create a list of users from which the information sent is not to be received; they can
also serve for the same purpose on social networks. Similarly, a list of e-mail addresses from which
messages are not to be received can be created in an e-mail client or at an e-mail provider.

Both blacklists and whitelists are sometimes used at the same time. A typical case is a situation
when a program uses its algorithm; an antispam filter can be used as an example of such a program.
It decides according to the e-mail content, whether it is spam. If a user needs to inform the filter that
only spams and no useful e-mails are received from a particular e-mail address, he/she places this
address on the blacklist. Then, the filter will automatically classify e-mails sent from that address as
spams. On the other hand, if a user needs to inform the filter that he/she receives no spams from a
particular address or he/she does not want to miss any important e-mail, he/she places this address
on the whitelist. Then, the filter will treat all messages from that particular address as useful and will
not classify them as spam.

We also used a so-called yellow list containing for instance the IP address list of e-mail servers,
which predominantly send non-spam e-mails, however, sometimes there are some spam as well,
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e.g., yahoo, Hotmail and Gmail. The yellow list comprises servers, which should never appear on the
blacklist (for Example because of mistakes or misprints). The yellow list is checked as the first one and
if a server is listed there, blacklist tests are ignored afterwards.

Operations such as removal “	” and selection “
⊙

” and “
⊗

” are useful for the above mentioned
applications: see previous sections of this paper. See also [6]. Let us give several Examples:

Example 7. Consider the polynomial f (x) = (x − 1)2(x − 2)(x − 3)3. The associated multiset of roots

is F = {1, 1, 2, 3, 3, 3}. If it is intended to get a polynomial g(x) =
f (x)

x− 2
, the associated multiset of roots

is G = F	 2 = {1, 1, 3, 3, 3}. If it is intended to find a factor of the polynomial f (x) which does not contain
the linear factor x − 3, the multiset B = {3}CF(3) = {3, 3, 3} is defined and the removal operation F 	 B
is performed.

Example 8. Consider a unique factorisation of a positive integer N into its primes with the associated multiset
of primes

M = {xm1
1 , xm2

2 , xm3
3 , · · · , xmn

n },

where m′is are the multiplicities of x′is for 1 ≤ i ≤ n. To have a number which is not a multiple of xi, construct
a multiset B = {xi}mi and perform M	 B; to have a number which is just N

xi
, perform M	 xi.

Example 9. Again, consider the polynomial f (x) = (x − 1)2(x − 2)(x − 3)3 with the associated multiset
of roots F = {1, 1, 2, 3, 3, 3}. If it is intended to get a polynomial in which all linear factors (x− 3) is eliminated,
define a subset B = {1, 2} of X = {1, 2, 3} and perform F

⊗
B and the new polynomial has the associated

multiset of roots as G = F
⊗

B = {1, 1, 2}. It is another way of getting a polynomial whose only factors are
x− 1 and x− 2.

Example 10. If tag numbers were to be given to a set of 20 workers in a manufacturing company from the set of
numbers X = {1, 2, 3, 4} with which they are allocated into four different work stations, and if the allocation
of these personnel is the multiset A = {16, 24, 34, 46}, the code to blacklist any of the group would consist the
selection operation A

⊙
B, where B is the subset of X consisting the tag number of the group to be blacklisted.

For instance, if the company wishes to blacklist or remove from their payroll everyone carrying the tag number 1
and 2, B = {1, 2} and A

⊙
B = {34, 46}.

6. Conclusions

The theory of multisets is an important generalization of the classical set theory which has
emerged by violating a basic property of classical sets that an element can belong to a set just once.
It can be used in many applications, e.g., data encryption, data mining, coding theory, decision making
or to write a mathematical programme which could do some sorting of data. The algebraic structure of
such data could be studied by applying group theory to a multiset.
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