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Abstract: Rotating stall is an unsteady flow phenomenon, which always leads to instability and
efficiency degradation. In order to reveal pressure fluctuations in the impeller of centrifugal pump
induced by stall cells, the flow structures in a volute-type centrifugal pump were calculated using Large
Eddy Simulation (LES) method. The predicted results of the numerical model were compared with
experimental flow-head curve. The simulation results were in good agreement with the experimental
results. The stall phenomenon occurred when the flow rate dropped to 70% of design flow rate.
Three stall cells located at the entrance of passages could be observed, which remained stationary
relative to the rotating impeller. With the decrease of flow rate, the area occupied by stall cells
gradually increased. The peak value of pressure fluctuation at 25% of design flow rate is obviously
larger than that at 50% of design flow rate. For the unstalled or stalled passage, the impeller-volute
interaction played a leading role in the pressure fluctuations of the impeller. For the stalled passage,
the amplitude of the low frequency induced by stall cell is relatively insignificant.

Keywords: centrifugal pump; stall cell; pressure fluctuations; Large Eddy Simulation;
impeller-volute interaction

1. Introduction

Centrifugal pumps play a key role in the industry, irrigation, and water supply engineering.
With the application of large-scale centrifugal pumps in production lines more and more widely, the
operating stability of pumps has become an increasingly important issue. At the designed flow rate,
the flow field inside the rotating impeller passages is axisymmetric. The impeller-volute interaction in
pumps can cause periodic pressure fluctuations, which are typical unsteady characteristics propagating
through the flow passage components. However, at low flow rates, this axisymmetric flow field would
be destroyed, and then some rare pressure fluctuations excited by stall cells appear. It always induces
intensified vibration, enhanced noise, and decreased capacity of water supply, which seriously affects
the safe and stable operation of the pump system [1–3].

A lot of works have been devoted to analyze the generation and transmission of pressure
fluctuations through such pumps [4–7]. Chu S et al. [8,9] considered that impeller-volute interaction of
centrifugal pumps is the main source of pressure fluctuation. But when the pumps operated at low
flow rates, the stall occurred and the flow field near volute tongue varied dramatically, where the flow
was reversed around the leading edge of volute tongue. Furthermore, stall cells in the impellers always
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cause rotating stall, which have a great effect on pressure fluctuations [10,11]. Under low flow rates,
Zhang N et al. [12] discovered that stall cells in the impeller would lead to the low frequency of pressure
fluctuations in the volute inducing the high vibration. Kaupert K et al. [13] and Gonzalez J et al. [14]
also discovered pressure fluctuation amplitude of volute tongue increased under low flow rates and the
more the flow rate moved, the higher the amplitude is. Braun O et al. [15,16] studied the double-suction
centrifugal pump based on the numerical simulation and experiment method, and it showed that
stall cells occur in diffuser, resulting in that the amplitudes are 2 times larger than that under unstall
condition. Yao Z et al. [17] analyzed the pressure fluctuations around the volute tongue and found a
broadband frequency which was consistent with the dominant frequency of the vibration on pumps.
Wang H et al. [18] also studied the pressure fluctuations at low flow rates and detected rotating stall
cells in diffuser vane, which made the pressure fluctuations increase greatly. Zhou P et al. [19,20]
revealed stall cell structures in a single centrifugal pump impeller, and found that the large vortex at
the outlet induced by stall cell had an obvious life cycle with a low frequency including decay, split,
mergence and growth.

Above all, under stall conditions, pressure fluctuations of centrifugal pump resulted from the
combined effect of stall cells and impeller-volute interaction. However, it’s rare to see reports about
pressure fluctuations under stall condition. The current work aims to calculate the internal flow
field of the centrifugal pump under different stall conditions based on Large Eddy Simulation (LES).
This study focuses on the impeller-volute interaction under stall conditions around the tongue district,
thus providing a reference for stable operation of centrifugal pump units.

2. The Investigated Pump and Simulation Details

The particularity and complexity of the internal flow present higher requirements for numerical
simulation method when rotating stall occurs in the pump impeller. Therefore, Large Eddy Simulation
model of dynamic SGS (Subgrid Scale) is used to calculate internal flow inside the pump, which has
a good accuracy for predicting the rotating stall phenomenon [21]. Specific formulas are derived
as follows:

The incompressible form of LES governing equations can be obtained by applying a filter (overbar)
to Navier-Stokes (N-S) and continuity equations [22]:
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= 0 (1)
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where, the overbar is the spatial filtering called the grid-scale filter. ui represents the resolved velocity
component, P is the resolved pressure, ν is the kinematic viscosity, ρ is the density, Si is the body force
term and τi j is the SGS stress tensor. It can be defined as:

τi j = uiu j − uiu j (3)

The stress term of the SGS can be computed as

τi j −
1
3
δi jτkk = −2νTSi j (4)

where Si j is the resolved strain rate tensor and the SGS stress viscosity νT is given by

νT = (Cs∆)
2(2Si jSi j)

1/2
(5)



Symmetry 2019, 11, 1116 3 of 13

where the over-bar represents the spatial filter ring for a filtered size ∆, Cs is the dynamic Smagorinsky
coefficient and

∣∣∣Si j
∣∣∣ is the magnitude of Si j.

The investigated pump consists of a low specific-speed centrifugal impeller and a volute, which
has been tested by Johnson D et al. [23]. Laser Doppler Velocimeter (LDV) was applied to the pump
and the stall phenomenon was detected under low flow rate. The design flow rate is Qd = 3.0 L/s and
its head is Hd = 2.36 m. The simulation for the off-design condition was performed using ANSYS
Fluent. The blade inlet angle is β1 = 19.7◦ and the outlet angles is β2 = 18.7◦. More detailed geometry
parameters and experimental data are available in reference [23].

In consideration of the effect of non-fully developed flow on the simulation accuracy, the inlet and
outlet of the pump were extended appropriately. The computational domain included the impeller,
the volute case and the extension of the inlet and outlet. Due to the complex computational domain,
the unstructured hexahedral and tetrahedral hybrid mesh was employed for its fine adaptability.
The mesh was refined locally in the near-wall regions with respect to the requirement of LES. The mesh
sensitivity analysis was carefully carried out. Four different meshes were considered to compare
the head and efficiency at Qd, as seen in Table 1. Considering the accuracy requirements and the
computer resources, a mesh of totally 4.37 million elements was selected as the optimal adjustment.
Increasing the element number didn’t show significant change on the head and efficiency during the
mesh sensitivity analysis. The mesh quality can satisfy the requirements of calculation, as shown
in Figure 1.

Table 1. Mesh independent test.

Mesh Mesh Element Number Pump Efficiency (%) Pump Head (m) Head Error (%)

Mesh 1 1.35 × 106 83.29 2.58 9.32
Mesh 2 2.23 × 106 82.80 2.52 6.78
Mesh 3 4.37 × 106 82.36 2.43 2.97
Mesh 4 6.76 × 106 82.30 2.41 2.11
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Figure 1. Unstructured mesh of the centrifugal pump.

The rotation reference frame is considered for the flow passage, and the rotating speed is set
to the rotation speed of the impeller. The boundary condition of the inlet velocity is determined
by the flow rate, which contains some fluctuation components perpendicular to the inlet boundary.
The value of pressure is given at the outlet of the passage. The time step is set as 0.00023 s that
corresponds to the global Courant number estimation of less than 1 and the maximum of less than
10, i.e., overall 360 time steps per impeller revolution. The residual convergence criterion for each
time step is reduced to 1.0× 10−5 within 15 iterations per time step. Generally, the simulation should
contain about 40 revolutions, so that we can always get a better result.



Symmetry 2019, 11, 1116 4 of 13

Figure 2 shows locations of monitoring points, and monitoring points are arranged in the mid-span
plan of the pump, which are named as R1–R6 alone the blade in the stalled passage and R1′–R6′ in
the unstalled one. Another monitoring point P1 is arranged on the volute surface according to the
reference [23]. During the calculation, the pressure fluctuation histories of the monitoring points
were recorded.
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Figure 2. Monitoring points locations.

3. Prediction for Stall Point of the Centrifugal Pump

Figure 3 shows the perspex centrifugal volute pump model. More detailed geometry and
experimental data is available in reference [23]. The comparison between simulation and test data is
presented in Figure 4. It can be seen that the predicted head agrees well with the experiment. Although
the predicted value is slightly higher, the maximum deviation with the experimental value is almost
8%. It is because of the assumption of the smooth wall and out of consideration for the side chamber in
the numerical simulation.

Symmetry 2019, 11, x FOR PEER REVIEW 4 of 12 

 

R1′–R6′ in the unstalled one. Another monitoring point P1 is arranged on the volute surface 

according to the reference [23]. During the calculation, the pressure fluctuation histories of the 

monitoring points were recorded. 

R1

R3
R2

R4
R5

R6

R1'
R2'

R3'

R4'

R5'

R6'

Unstalled passage

60°

P1

Stalled passage

 

Figure 2. Monitoring points locations. 

3. Prediction for Stall Point of the Centrifugal Pump 

Figure 3 shows the perspex centrifugal volute pump model. More detailed geometry and 

experimental data is available in reference [23]. The comparison between simulation and test data is 

presented in Figure 4. It can be seen that the predicted head agrees well with the experiment. 

Although the predicted value is slightly higher, the maximum deviation with the experimental value 

is almost 8%. It is because of the assumption of the smooth wall and out of consideration for the side 

chamber in the numerical simulation. 

 

Figure 3. Perspex centrifugal volute pump model [23]. 

0 2 4 6 8 10 12 14 16 18
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

   Experiment
   Calculation

 H
ea

d
  
H

/m

Flow rate  Q/m
3
 h

-1.  

Figure 4. Comparison of head curve. 

Figure 3. Perspex centrifugal volute pump model [23].

Symmetry 2019, 11, x FOR PEER REVIEW 4 of 12 

 

R1′–R6′ in the unstalled one. Another monitoring point P1 is arranged on the volute surface 

according to the reference [23]. During the calculation, the pressure fluctuation histories of the 

monitoring points were recorded. 

R1

R3
R2

R4
R5

R6

R1'
R2'

R3'

R4'

R5'

R6'

Unstalled passage

60°

P1

Stalled passage

 

Figure 2. Monitoring points locations. 

3. Prediction for Stall Point of the Centrifugal Pump 

Figure 3 shows the perspex centrifugal volute pump model. More detailed geometry and 

experimental data is available in reference [23]. The comparison between simulation and test data is 

presented in Figure 4. It can be seen that the predicted head agrees well with the experiment. 

Although the predicted value is slightly higher, the maximum deviation with the experimental value 

is almost 8%. It is because of the assumption of the smooth wall and out of consideration for the side 

chamber in the numerical simulation. 

 

Figure 3. Perspex centrifugal volute pump model [23]. 

0 2 4 6 8 10 12 14 16 18
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

   Experiment
   Calculation

 H
ea

d
  
H

/m

Flow rate  Q/m
3
 h

-1.  

Figure 4. Comparison of head curve. 
Figure 4. Comparison of head curve.



Symmetry 2019, 11, 1116 5 of 13

In order to predict stall point, the inlet velocity was decreased from the designed flow rate
Qd. The stall phenomenon always accompanies the large flow vortex, so the Z-vorticity zone with
lower negative was taken to characterize the stall cell [24]. As shown in Figure 5, the deep blue
region near the suction side of blade represents the stall cell. Seen from the Figure 5d, at 0.75 Qd,
the Z-vorticity distribution in each passage seems similar. The flow field inside the impeller passages
is axisymmetric. However, with the flow rate decreasing, the axisymmetric flow field is destroyed by
stall cells. The blocked passage and the unblocked passage occur alternately in the impeller. As the
flow rate is further reduced, the size of the stall cell gradually increases, and the difference of the
pressure distribution in the stalled and unstalled passage also increases. In this paper, the flow rate less
than 0.70 Qd was considered as the stall condition. So 0.70 Qd was the critical flow rate. At this point,
the attack angle was 5.6◦ which can be calculated by velocity triangle rule [25]. Unstall conditions
(1.0 Qd and 0.75 Qd), as well as the stall conditions (0.70 Qd, 0.5 Qd and 0.25 Qd), are selected for
the simulation.
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Figure 5. Instantaneous Z-vorticity distributions in the impeller cross section at the mid-span plane;
(a) 0.25 Qd; (b) 0.50 Qd; (c) 0.70 Qd; and (d) 0.75 Qd.

To further validate the simulation method under stall condition, the comparison of frequency
spectra between measured results and simulation at 0.25 Qd was investigated. The Fast Fourier
Transform (FFT) method was used for the spectrum analysis. All the obtained frequencies were
normalized by the impeller rotating frequency (6 f r). The transient pressure fluctuations are presented
using pressure coefficient, which can be obtained by the formula

Cp =
(
Pi − P

)
/0.5ρu2

2 (6)

The comparison of frequency spectra at monitoring point P1 at 0.25 Qd is shown in Figure 6.
The main dominant frequencies at the monitoring point P1 are identical between the experiment and
simulation. The first dominant frequency is 3 f r, which is 50% of the blade passage frequency (6 f r).
Obviously, it is induced by the alternated stall phenomenon. The second dominant frequency is the
blade passage frequency, which is caused by the impeller-tongue interaction. However, their amplitude
values still have some difference. It’s possible that the actual pressure fluctuations in the pumps are
induced by the overall results of hydraulic, mechanical and electrical factors, whereas the simulation
results only take into account the hydraulic factors [26].



Symmetry 2019, 11, 1116 6 of 13

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 12 

 

In order to predict stall point, the inlet velocity was decreased from the designed flow rate Qd. 

The stall phenomenon always accompanies the large flow vortex, so the Z-vorticity zone with lower 

negative was taken to characterize the stall cell [24]. As shown in Figure 5, the deep blue region near 

the suction side of blade represents the stall cell. Seen from the Figure 5d, at 0.75 Qd, the Z-vorticity 

distribution in each passage seems similar. The flow field inside the impeller passages is 

axisymmetric. However, with the flow rate decreasing, the axisymmetric flow field is destroyed by 

stall cells. The blocked passage and the unblocked passage occur alternately in the impeller. As the 

flow rate is further reduced, the size of the stall cell gradually increases, and the difference of the 

pressure distribution in the stalled and unstalled passage also increases. In this paper, the flow rate 

less than 0.70 Qd was considered as the stall condition. So 0.70Qd was the critical flow rate. At this 

point, the attack angle was 5.6° which can be calculated by velocity triangle rule [25]. Unstall 

conditions (1.0 Qd and 0.75 Qd), as well as the stall conditions (0.70 Qd, 0.5 Qd and 0.25 Qd), are 

selected for the simulation. 

Z-Vorticity

[1/s]

 
    

 (a) (b) (c) (d) 

Figure 5. Instantaneous Z-vorticity distributions in the impeller cross section at the mid-span plane; 

(a) 0.25 Qd; (b) 0.50 Qd; (c) 0.70 Qd; and (d) 0.75 Qd. 

To further validate the simulation method under stall condition, the comparison of frequency 

spectra between measured results and simulation at 0.25 Qd was investigated. The Fast Fourier 

Transform (FFT) method was used for the spectrum analysis. All the obtained frequencies were 

normalized by the impeller rotating frequency (6 fr). The transient pressure fluctuations are 

presented using pressure coefficient, which can be obtained by the formula 

2

20.5p iC P P u （ ）/  (6) 

The comparison of frequency spectra at monitoring point P1 at 0.25 Qd is shown in Figure 6. The 

main dominant frequencies at the monitoring point P1 are identical between the experiment and 

simulation. The first dominant frequency is 3 fr, which is 50% of the blade passage frequency (6 fr). 

Obviously, it is induced by the alternated stall phenomenon. The second dominant frequency is the 

blade passage frequency, which is caused by the impeller-tongue interaction. However, their 

amplitude values still have some difference. It’s possible that the actual pressure fluctuations in the 

pumps are induced by the overall results of hydraulic, mechanical and electrical factors, whereas 

the simulation results only take into account the hydraulic factors [26]. 

0 1 2 3 4 5 6 7 8 9 10
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f/f
r

C
p

 Experiment

 Calculation

 

3 fr 

 

6 fr 

 

Figure 6. Comparison of frequency spectra at monitoring point P1 at 0.25 Qd.

4. Unsteady Behavior of Stall Cells

Hunt et al. formulated the Q-criterion assuming incompressible flow. In this case, Q is a measure
of the local rotation rate in excess of the strain rate [27]:

Q =
1
2
(‖Ω‖2 − ‖S‖2) (7)

where Ω is the angular rotation rate tensor and S is the strain rate tensor. Q > 0 defines a vortex as
a region where there is more rotation than stretching. Q-criterion has been successfully applied to
identify the vortex in the centrifugal pump impeller [4].

Figure 7 shows the instantaneous vortex structures in the impeller using an iso-surface of the
Q-criterion. At 0.25 Qd, it can be seen that three large-scale stall cells alternately locate at the entrance
of passages. In addition, the back flow vortex appears in each passage. The nearer the passage gets to
the volute tongue, the larger the vortex area is. However, at 0.75 Qd, there is no stall cell in the passage.
Some small-scale vortex appears in the passage due to the flow separation at low flow rate. The back
flow vortex doesn’t appear in each passage. It indicates that the volute tongue has little effect on the
back flow vortex at 0.75 Qd.
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Figure 7. Flow vortex structures at 0.25 Qd and 0.75 Qd.

In order to reveal the evolution of flow structures over time, the instantaneous 3D streamlines
inside the pump during double blade passing cycles are shown in Figure 8a–f. At 0.70 Qd, 0.5 Qd

and 0.25 Qd, the motions of stall cells are similar, so 0.25 Qd is chosen to analyze the internal flow
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of centrifugal pump. Note that the color shows the static pressure distribution. Figure 8a–c are the
duration of unstalled passage passing tongue-region. Figure 8d–f are the duration of stalled passage
passing tongue-region. A~F refer to different impeller passages.

Obviously, the static pressure distributions in the impeller are similar. Three stall cells are located
at the inlet of the passage alternately. The unstalled passage A and stalled passage B are taken as an
example to analyze the influence of impeller-tongue interaction on stall cells. At t = 0, the reverse
pressure gradient in passage A is large. As the impeller rotates, it reduces. At t = 1/3 T, a local low
pressure zone occurs at the passage inlet. At t = 2/3 T, the pressure gradient of the suction side of
blade Suction side near the passage exit is the largest, and a low pressure zone appears, where the flow
separation is induced easily. At t = T, the passage A completely turns around the tongue. At this point,
the reverse pressure gradient from the inlet to outlet is the lowest, and the local low pressure zone
also disappears. Figure 8d–f illustrate the change of pressure distribution in passage B as the impeller
rotates. It can be seen that, due to the influence of stall cell, the reverse pressure gradient in passage B
is larger than that in the passage A. The shape of the stall cell changes with the impeller rotates. From
t = T to t = 5/3 T, the size of the stall cell increases. There is a more obvious low pressure zone in
the blade pressure surface near the passage outlet. t = 2T, the passage B completely turns round the
tongue. The flow filed is similar with the passage F at t = 0. As the inverse pressure gradient decreases
suddenly, the size of the stall cells decreases.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 12 
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5. Analysis of Pressure Fluctuations in the Impeller

Figure 9 shows the time history of the pressure coefficient fluctuation of monitoring points in the
stalled or unstalled passages under stall conditions. As seen from the Figure 9, the pressure fluctuation
signals are obviously periodic. The pressure fluctuations at the impeller tips are stronger than these at
the other locations due to the impeller-volute interaction. As each blade tip passes the tongue, the tip
flow is changed suddenly, which induces a low pressure zone at the exit of the passage. The pressure
at upstream measuring points is also decreased, but the change is relatively smooth. The variation of
pressure fluctuation amplitude in unstalled passage is significantly less than that in stalled passage.
However, for the suction side of blade, the amplitude changes little. As shown in Figures 9 and 10,
the peak-to-peak value of pressure fluctuation at 0.25 Qd is obviously greater than that at 0.5 Qd.
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Figure 9. Time history of the pressure coefficient fluctuation in the impeller (0.25 Qd); (a) Suction side
of the blade (stalled passage); (b) Pressure side of the blade (stalled passage); (c) Suction side of the
blade (unstalled passage); and (d) Pressure side of the blade (unstalled passage).

Pressure coefficient fluctuations on monitoring points located at the stalled or unstalled passage
were obtained. The frequency spectra of pressure coefficient fluctuations on monitoring point R1′ at
0.25 Qd can be seen in Figure 11a. The dominant frequencies are composed of the rotating frequency
and its higher harmonics. The first dominant frequency is 1.0 f r. In addition, a low frequency 0.2 f r can
be detected, and its amplitude is relatively insignificant. Compared with the previous research on
the single impeller without the volute casing [19], it illustrates that the low frequency 0.2 f r caused
by the stall cell shedding is weakened while the impeller-volute interaction plays a leading role in
the flow field. For the unstalled passage, as seen in Figure 11c,d, the dominant frequency of the
monitoring points on the blade is also f r. The amplitude increases gradually from the inlet to outlet.
The impeller-volute interaction around the tongue region plays a leading role under the low flow
rate. The further distance apart from the tongue, the greater the impact is. However, for the stalled
passage, the pressure fluctuation amplitude of R1′ point is stronger than that of R4′ point. Because
stall cells locate at the suction side, which are close to R4’ point. The stall cells are influenced by the
uneven circumferential pressure distribution of the volute casing, and have the periodical variation.
The stall cell impact greatly on R1′ point, so the pressure fluctuation amplitude is also stronger. For R4′

point located at the pressure side of blade, which was influenced little by the stall cell, its pressure
fluctuation amplitude is low. However, because the vortex downstream stalled passage is attached to
the pressure side, and vortex core is near R5′ point. The vortex is very unstable due to the effect of the
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tongue. Therefore, the pressure fluctuation amplitude of R5′ point is stronger than that of R2′ point at
Suction side.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 12 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

 C
P

 R1  R2   R3

t/s  
0.00 0.05 0.10 0.15 0.20 0.25 0.30

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

 C
P

 R4   R5   R6

t/s  
(c) (d) 

Figure 9. Time history of the pressure coefficient fluctuation in the impeller (0.25 Qd); (a) Suction side 

of the blade (stalled passage); (b) Pressure side of the blade (stalled passage); (c) Suction side of the 

blade (unstalled passage); and (d) Pressure side of the blade (unstalled passage). 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.6

-0.4

-0.2

0.0

0.2

 C
P

 R1'   R2'   R3'

t/s  

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.6

-0.4

-0.2

0.0

0.2

 C
P

 R4'   R5'   R6'

t/s
 

(a) (b) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.6

-0.4

-0.2

0.0

0.2

 C
P

 R1   R2   R3

t/s  

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.6

-0.4

-0.2

0.0

0.2

 C
P

 R4   R5   R6

t/s  
(c) (d) 

Figure 10. Time history of the pressure coefficient fluctuation in the impeller (0.5 Qd); (a) Suction side 

of the blade (stalled passage); (b) Pressure side of the blade (stalled passage); (c) Suction side of the 

blade (unstalled passage); and (d) Pressure side of the blade (unstalled passage). 

Pressure coefficient fluctuations on monitoring points located at the stalled or unstalled passage 

were obtained. The frequency spectra of pressure coefficient fluctuations on monitoring point R1′ at 

0.25 Qd can be seen in Figure 11a. The dominant frequencies are composed of the rotating frequency 

and its higher harmonics. The first dominant frequency is 1.0 fr. In addition, a low frequency 0.2 fr 

can be detected, and its amplitude is relatively insignificant. Compared with the previous research 

on the single impeller without the volute casing [19], it illustrates that the low frequency 0.2 fr caused 

by the stall cell shedding is weakened while the impeller-volute interaction plays a leading role in 

the flow field. For the unstalled passage, as seen in Figure 11c,d, the dominant frequency of the 

monitoring points on the blade is also fr. The amplitude increases gradually from the inlet to outlet. 

The impeller-volute interaction around the tongue region plays a leading role under the low flow 

rate. The further distance apart from the tongue, the greater the impact is. However, for the stalled 

passage, the pressure fluctuation amplitude of R1′ point is stronger than that of R4′ point. Because 

stall cells locate at the suction side, which are close to R4’ point. The stall cells are influenced by the 

uneven circumferential pressure distribution of the volute casing, and have the periodical variation. 

The stall cell impact greatly on R1′ point, so the pressure fluctuation amplitude is also stronger. For 

R4′ point located at the pressure side of blade, which was influenced little by the stall cell, its 

pressure fluctuation amplitude is low. However, because the vortex downstream stalled passage is 

attached to the pressure side, and vortex core is near R5′ point. The vortex is very unstable due to the 

Figure 10. Time history of the pressure coefficient fluctuation in the impeller (0.5 Qd); (a) Suction side
of the blade (stalled passage); (b) Pressure side of the blade (stalled passage); (c) Suction side of the
blade (unstalled passage); and (d) Pressure side of the blade (unstalled passage).

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 12 

 

effect of the tongue. Therefore, the pressure fluctuation amplitude of R5′ point is stronger than that 

of R2′ point at Suction side. 

Seen from Figure 12, operation at 0.5 Qd, the distribution of pressure fluctuation frequency 

domain is similar, the dominant frequencies are the rotating frequency or their higher harmonics. 

However, their amplitudes are relatively small, which are almost 50% of that at 0.25 Qd. A low 

frequency 0.1 fr can be detected, and it indicates that the flow rate has a great effect on the low 

frequency. 

Although monitoring points R3, R3′, R6, and R6′ on the blade tip are close to point P1 on the 

volute casing, the dominant frequency amplitudes of points R3, R3′, R6, and R6′ are obviously larger 

than the amplitude of point P1. It is because that the sources of their dominant frequencies are 

different. Seen from the Figure 8, the first dominant frequency of R3, R3′, R6, and R6′ is 1.0 fr, which 

is induced by the blades interacting with the volute tongue. However, the first dominant frequency 

of the point P1 is 3.0 fr, which is induced by the rotating blade. As shown in Figure 11, the internal 

flow in the impeller passages greatly changes when the passage turning round the volute tongue. 

The static pressure on the volute changed smoothly. So the induced pressure fluctuations on the 

blades are greater than on the volute at low flow rates. 

0

5

10

15

20

0.00

0.03

0.06

0.09

0.12

0.15

C
p

f/fr  

R3'

R2'

R1'

0.2 fr

1.0  fr

 

0

5

10

15

20

0.00

0.03

0.06

0.09

0.12

0.15

f/fr

C
p

 

R6'

R5'

R4'

 

(a) (b) 

0

5

10

15

20

0.00

0.03

0.06

0.09

0.12

0.15

f/fr

C
p

 

R3

R2

R1

 

0

5

10

15

20

0.00

0.03

0.06

0.09

0.12

0.15

f/fr

C
p

 

R6

R5

R4

 
(c) (d) 

Figure 11. Frequency spectra of pressure fluctuations on the blade at 0.25 Qd; (a) Suction side of the 

blade (stalled passage); (b) Pressure side of the blade (stalled passage); (c) Suction side of the blade 

(unstalled passage); and (d) Pressure side of the blade (unstalled passage). 

0
2

4
6

8

10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 

f/fr

C
p

  

R3'

R2'

R1'

0.1 fr

 

0
2

4
6

8

10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

f/fr

C
p

  

R6'

R5'

R4'

 
(a) (b) 

Figure 11. Frequency spectra of pressure fluctuations on the blade at 0.25 Qd; (a) Suction side of the
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Seen from Figure 12, operation at 0.5 Qd, the distribution of pressure fluctuation frequency domain
is similar, the dominant frequencies are the rotating frequency or their higher harmonics. However,
their amplitudes are relatively small, which are almost 50% of that at 0.25 Qd. A low frequency 0.1 f r

can be detected, and it indicates that the flow rate has a great effect on the low frequency.
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6. Conclusions 

The internal flow in a volute-type centrifugal pump under stall conditions was investigated 

using large eddy simulation method. A comparison of the pressure fluctuation and head curve 

showed a good agreement between the unsteady simulation and experiment. Conclusions can be 

drawn as follows: 

(a) The volute tongue has large effect on the back flow vortex under stall condition. The nearer 

the passage gets to the volute tongue, the larger the vortex area is. However, the back flow vortex 

disappears in each passage under unstall conditions. 

(b) In flow pattern analysis, it is found that rotating stall occurs when the flow rate drops to 0.70 

Qd. Three stall cells have be observed at the entrance of impeller passages, which remain stationary 

relative to the rotating impeller. As the flow rate decreases, the area occupied by stall cells gradually 

increases. The peak-to-peak values of pressure fluctuations at 0.25 Qd are obviously larger than that 

at 0.5 Qd. 

(c) The dominant frequencies of the pressure fluctuations on the blades are the rotating 

frequency or their higher harmonics, which indicates the impeller-volute interaction played a 

leading role for the unstalled or stalled passage. For the stalled passage, the amplitude of the low 

frequency induced by stall cell is relatively insignificant. 
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Figure 12. Frequency spectra of pressure fluctuations in the impeller at 0.5 Qd; (a) Suction side of the
blade (stalled passage); (b) Pressure side of the blade (stalled passage); (c) Suction side of the blade
(unstalled passage); and (d) Pressure side of the blade (unstalled passage).

Although monitoring points R3, R3′, R6, and R6′ on the blade tip are close to point P1 on the
volute casing, the dominant frequency amplitudes of points R3, R3′, R6, and R6′ are obviously larger
than the amplitude of point P1. It is because that the sources of their dominant frequencies are different.
Seen from the Figure 8, the first dominant frequency of R3, R3′, R6, and R6′ is 1.0 f r, which is induced
by the blades interacting with the volute tongue. However, the first dominant frequency of the point P1
is 3.0 f r, which is induced by the rotating blade. As shown in Figure 11, the internal flow in the impeller
passages greatly changes when the passage turning round the volute tongue. The static pressure on
the volute changed smoothly. So the induced pressure fluctuations on the blades are greater than on
the volute at low flow rates.

6. Conclusions

The internal flow in a volute-type centrifugal pump under stall conditions was investigated using
large eddy simulation method. A comparison of the pressure fluctuation and head curve showed
a good agreement between the unsteady simulation and experiment. Conclusions can be drawn
as follows:

(a) The volute tongue has large effect on the back flow vortex under stall condition. The nearer
the passage gets to the volute tongue, the larger the vortex area is. However, the back flow vortex
disappears in each passage under unstall conditions.

(b) In flow pattern analysis, it is found that rotating stall occurs when the flow rate drops to 0.70 Qd.
Three stall cells have be observed at the entrance of impeller passages, which remain stationary relative
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to the rotating impeller. As the flow rate decreases, the area occupied by stall cells gradually increases.
The peak-to-peak values of pressure fluctuations at 0.25 Qd are obviously larger than that at 0.5 Qd.

(c) The dominant frequencies of the pressure fluctuations on the blades are the rotating frequency
or their higher harmonics, which indicates the impeller-volute interaction played a leading role for the
unstalled or stalled passage. For the stalled passage, the amplitude of the low frequency induced by
stall cell is relatively insignificant.

Author Contributions: P.Z. and X.Z. participated in the design and analysis all the simulations. P.Z. wrote the
paper. J.D. and C.Y. (Chaoshou Yan) participated in the revisions and editing of the paper. C.Y. (Changliang Ye)
and S.Z. analyzed the data.

Funding: This research was funded by the Zhejiang Provincial Natural Science Foundation (No. Q17E090027),
National Nature Science Foundation of China (No. 51709234), Postdoctoral Science Foundation of China
(No. 2019M652140) and Open Research Subject of Key Laboratory of Fluid and Power Machinery (Xihua University),
Ministry of Education (No. szjj2016-076).

Acknowledgments: The authors would like to thank the financial support given by the Zhejiang Provincial
Natural Science Foundation (No. Q17E090027), National Nature Science Foundation of China (No. 51709234),
Postdoctoral Science Foundation of China (No. 2019M652140) and Open Research Subject of Key Laboratory of
Fluid and Power Machinery (Xihua University), Ministry of Education (No. szjj2016-076).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclatures

τi j SGS stress tensor, (m2/s2)
ui Resolved velocity component, (m/s)
u′ Root-mean-square of the velocity fluctutaions, (m/s)
u Mean free stream velocity, (m/s)
Si j Resolved strain-rate tensor, (1/s)
νT SGS stress viscosity, (m2/s)
Cs Non-dimensional model coefficient, (-)
α Attack angle, (deg.)
T Blade passing cycle, (s)
u2 Outlet circumferential velocity of the impeller, (m/s)
t Time, (s)
Pi Transient pressure, (Pa)
P Averaged pressure, (Pa)
CP Pressure coefficient (-)
β1 Inlet angle, (deg.)
β2 Outlet angle, (deg.)
nS Specific speed, (-)
Q Flow rate, (L/s)
Qd Designed Flow rate, (L/s)
H Head, (m)
N Rotational speed, (rpm)
f Frequency, (Hz)
f r Rotational Frequency, (Hz)
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