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Abstract: We derive the one-dimensional optimal system for a system of three partial differential
equations, which describe the two-dimensional rotating ideal gas with polytropic parameter γ > 2.
The Lie symmetries and the one-dimensional optimal system are determined for the nonrotating and
rotating systems. We compare the results, and we find that when there is no Coriolis force, the system
admits eight Lie point symmetries, while the rotating system admits seven Lie point symmetries.
Consequently, the two systems are not algebraic equivalent as in the case of γ = 2 , which was found
by previous studies. For the one-dimensional optimal system, we determine all the Lie invariants,
while we demonstrate our results by reducing the system of partial differential equations into a
system of first-order ordinary differential equations, which can be solved by quadratures.
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1. Introduction

A powerful mathematical treatment for the determination of exact solutions for nonlinear
differential equations is the Lie symmetry analysis [1–3]. Specifically, Lie point symmetries help
us in the simplification of differential equations by means of similarity transformations, which reduce
the differential equation. The reduction process is based on the existence of functions that are
invariant under a specific group of point transformations. When someone uses these invariants
as new dependent and independent variables, the differential equation is reduced. The reduction
process differs between ordinary differential equations (ODEs) and partial differential equations
(PDEs). For ODEs, Lie point symmetries are applied to reduce the order of ODE by one; while on PDEs,
Lie point symmetries are applied to reduce by one the number of independent variables, while the
order of the PDEs remains the same. The solutions that are found with the application of those
invariant functions are called similarity solutions. Some applications on the determination of similarity
solutions for nonlinear differential equations can be found in [4–9] and the references therein.

A common characteristic in the reduction process is that the Lie point symmetries are not
preserved during the reduction; hence, we can say that the symmetries can be lost. That is not an
accurate statement, because symmetries are not “destroyed” or “created” under point transformations,
but the “nature” of the symmetry changes. In addition, Lie symmetries can be used to construct new
similarity solutions for a given differential equation by applying the adjoint representation of the Lie
group [10].

It is possible that a given differential equation admits more than one similarity solution when
the given differential equation admits a “large” number of Lie point symmetries. Hence, in order
for someone to classify a differential equation according to the admitted similarity solutions, all the
inequivalent Lie subalgebras of the admitted Lie symmetries should be determined.

The first group classification problem was carried out by Ovsiannikov [11], who demonstrated the
construction of the one-dimensional optimal system for the Lie algebra. Since then, the classification of
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the one-dimensional optimal system has become a main tool for the study of nonlinear differential
equations [12–15].

In this work, we focus on the classification of the one-dimensional optimal system for the
two-dimensional rotating ideal gas system described by the following system of PDEs [16–18]:

ht + (hu)x + (hv)y = 0, (1)

ut + uux + vuy + hγ−2hx − f v = 0, (2)

vt + uvx + vvy + hγ−2hy + f u = 0. (3)

where u and v are the velocity components in the x and y directions, respectively, h is the density of
the ideal gas, f is the Coriolis parameter, and γ is the polytropic parameter of the fluid. Usually, γ is
assumed to be γ = 2 where Equations (1)–(3) reduce to the shallow water system. However, in this
work, we consider that γ > 2. In this work, polytropic index γ is defined as Cp

Cv
= γ− 1.

Shallow water equations describe the flow of a fluid under a pressure surface. There are various
physical phenomena that are described by the shallow water system with emphasis on atmospheric
and oceanic phenomena [19–21]. Hence, the existence of the Coriolis force becomes critical in the
description of the physical phenomena.

In the case of γ = 2, the complete symmetry analysis of the system (1)–(3) is presented in [22].
It was found that for γ = 2, the given system of PDEs is invariant under a nine-dimensional Lie
algebra. The same Lie algebra, but in a different representation, is also admitted by the nonrotating
system, i.e., f = 0. One of the main results of [22] is that the transformation that relates the two
representations of the admitted Lie algebras for the rotating and nonrotating system transforms the
rotating system (1)–(3) into the nonrotating one. For other applications of Lie symmetries on shallow
water equations, we refer the reader to [23–28].

For the case of an ideal gas [17], i.e., parameter γ > 1 from our analysis, it follows that this
property is lost. The nonrotating system and the rotating one are invariant under a different number of
Lie symmetries and consequently under different Lie algebras. For each of the Lie algebras, we have
the one-dimensional optimal system and all the Lie invariants. The results are presented in tables.
We demonstrate the application of the Lie invariants by determining some similarity solutions for the
system (1)–(3) for γ > 2. The paper is structured as follows.

In Section 2, we briefly discuss the theory of Lie symmetries for differential equations and the
adjoint representation. The nonrotating system (1)–(3) is studied in Section 3. Specifically, we determine
the Lie points symmetries, which form an eight-dimensional Lie algebra. The commutators and the
adjoint representation are presented. We make use of these results, and we perform, a classification of
the one-dimensional optimal system. We found that in total, there are twenty-three one-dimensional
independent Lie symmetries and possible reductions, and the corresponding invariants are determined
and presented in tables. In Section 4, we perform the same analysis for the rotating system.
There, we find that the admitted Lie symmetries form a seven-dimensional Lie algebra, while there are
twenty independent one-dimensional Lie algebras. We demonstrate the results by reducing the system
of PDEs (1)–(3) into an integrable system of three first-order ODEs, the solution of which is given by
quadratures. In Section 5, we discuss our results and draw our conclusions. Finally, in Appendix A,
we present the tables, which include the results of our analysis.

2. Lie Symmetry Analysis

Let HA (xi, ΦA, ΦA
i , ...

)
= 0 be a system of partial differential equations (PDEs) where ΦA denotes

the dependent variables and xi are the independent variables. At this point, it is important to mention
that we make use of the Einstein summation convention. By definition, under the action of the
infinitesimal one-parameter point transformation (1PPT):

x̄i = xi
(

xj, ΦB; ε
)

, Φ̄A = ΦA
(

xj, ΦB; ε
)

, (4)
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which connects two different points P
(

xj, ΦB) → Q
(

x̄j, Φ̄B, ε
)
, the differential equation HA = 0

remains invariant if and only if H̄A = HA, that is [2]:

lim
ε→0

H̄A (ȳi, ūA, ...; ε
)
− HA (yi, uA, ...

)
ε

= 0. (5)

The latter condition means that the ΦA (P) and ΦA (Q) are connected through the transformation.
The lhs of Expression (5) defines the Lie derivative of HA along the vector field X of the

one-parameter point transformation (4), in which X is defined as:

X =
∂x̄i

∂ε
∂i +

∂Φ̄
∂ε

∂A.

Thus, Condition (5) is equivalent to the following expression: [2]

LX

(
HA
)
= 0, (6)

where L denotes the Lie derivative with respect to the vector field X[n], which is the nth-extension of
generator X of the transformation (4) in the jet space

{
xi, ΦA, ΦA

,i , ΦA
,ij, ...

}
given by the expression [2]:

X[n] = X + η[1]∂ΦA
i
+ ... + η[n]∂ΦA

ii ij ...in
, (7)

in which:

η[n] = Diη
[n−1] − ui1i2...in−1 Di

(
∂x̄j

∂ε

)
, i � 1 , η[0] =

(
∂Φ̄A

∂ε

)
. (8)

Condition (6) provides a system of PDEs whose solution determines the components of the
X, consequently the infinitesimal transformation. The vector fields X, which satisfy condition (6),
are called Lie symmetries for the differential equation HA = 0. The Lie symmetries for a given
differential equation form a Lie algebra.

Lie symmetries can be used in different ways [2] in order to study a differential equation.
However, their direct application is on the determination of the so-called similarity solutions. The steps
that we follow to determine a similarity solution are based on the determination and application of the
Lie invariant functions.

Let X be a Lie symmetry for a given differential equation HA = 0, then the differential equation
X (F) = 0, where F is a function, provides the Lie invariants where by replacing in the differential
equation HA = 0, we reduce the number of the independent variables (in the case of PDEs) or the
order of the differential equation (in the case of ordinary differential equations (ODEs)).

Optimal System

Consider the n-dimensional Lie algebra Gn with elements X1, X2, ... Xn. Then, we shall say that
the two vector fields [2]:

Z =
n

∑
i=1

aiXi , W =
n

∑
i=1

biXi , ai, bi are constants. (9)

are equivalent iff there:
W = limn

j=i Ad (exp (εiXi))Z (10)

or:
W = cZ , c = const. (11)
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where the operator [2]:

Ad (exp (εXi)) Xj = Xj − ε
[
Xi, Xj

]
+

1
2

ε2 [Xi,
[
Xi, Xj

]]
+ ... (12)

is called the adjoint representation.
Therefore, in order to perform a complete classification for the similarity solutions of a given

differential equation, we should determine all the one-dimensional independent symmetry vectors of
the Lie algebra Gn.

We continue our analysis by calculating the Lie point symmetries for the system (1)–(3) for the
case where the system is rotating ( f 6= 0) and nonrotating ( f = 0).

3. Symmetries and the Optimal System for Nonrotating Shallow Water

We start our analysis by applying the symmetry condition (6) for the Coriolis free system (1)–(3)
with f = 0. We found that the system of PDEs admits eight Lie point symmetries, as are presented in
the following [11]:

X1 = ∂t , X2 = ∂x , X3 = ∂y ,

X4 = t∂x + ∂u , X5 = t∂y + ∂v ,

X6 = y∂x − x∂y + v∂u − u∂v,

X7 = t∂t + x∂x + y∂y,

X8 = (γ− 1)
(

x∂x + y∂y + u∂u + v∂v
)
+ 2h∂h.

The commutators of the Lie symmetries and the adjoint representation are presented in Table 1
and Table A1, respectively.

Table 1. Commutators of the admitted Lie point symmetries for the nonrotating 2D shallow water.

[ , ] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 X2 X3 0 − (γ− 1) X1 0
X2 0 0 0 0 0 −X3 0 (γ− 1) X2
X3 0 0 0 0 0 X2 0 (γ− 1) X3
X4 −X2 0 0 0 0 −X5 (γ− 1) X4 (γ− 1) X4
X5 −X3 0 0 0 0 X4 (γ− 1) X5 (γ− 1) X5
X6 0 X3 −X2 X5 −X4 0 0 0
X7 (γ− 1) X1 0 0 − (γ− 1) X4 − (γ− 1) X5 0 0 0
X8 0 − (γ− 1) X2 − (γ− 1) X3 − (γ− 1) X4 − (γ− 1) X5 0 0 0

We continue by determining the one-dimensional optimal system. Let us consider the generic
symmetry vector:

Z8 = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 + a7X7 + a8X8

From Table A1, we see that by applying the following adjoint representations:

Z′8 = Ad (exp (ε5X5)) Ad (exp (ε4X4)) Ad (exp (ε3X3)) Ad (exp (ε2X2)) Ad (exp (ε1X1)) Z8

parameters ε1, ε2, ε3, ε4, and ε5 can be determined such that:

Z′8 = a′6X6 + a′7X7 + a′8X8
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Parameters a6, a7, and a8 are the relative invariants of the full adjoint action. Indeed, in order to
determine the relative invariants, we solve the following system of partial differential equations [1]:

∆ (φ (ai)) = Ck
ija

i ∂

∂aj

where Ck
ij are the structure constants of the admitted Lie algebra as presented in Table 1.

Consequently, in order to derive all the possible one-dimensional Lie symmetries, we should study
various cases were none of the invariants are zero, one of the invariants is zero, two of the invariants
are zero, or all the invariants are zero.

Hence, for the first three cases, infer the following one-dimensional independent Lie algebras:

X6 , X7 , X8 , ξ(67) = X6 + αX7 , ξ(68) = X6 + αX8

ξ(78) = X7 + αX8 , ξ(678) = X6 + αX7 + βX8.

We apply the same procedure for the rest of the possible linear combinations of the symmetry
vectors, and we find the one-dimensional-dependent Lie algebras:

X1, X2 , X3 , X4 , X5 , ξ(12) = X1 + αX2 , ξ(13) = X1 + αX3 , ξ(23) = X2 + αX3 , ξ(14) = X1 + αX4 ,

ξ(15) = X1 + αX5 , ξ(16) = X1 + αX6, ξ(34) = X3 + αX4 , ξ(25) = X2 + αX5 ξ(45) = X4 + αX5 ,

ξ(123) = X1 + αX2 + βX3 ξ(145) = X1 + αX4 + βX5 , ξ(125) = X1 + αX2 + βX5 , ξ(134) = X1 + αX3 + βX4,

in which α and β are constants.
Therefore, by applying one of the above Lie symmetry vectors, we find all the possible reductions

from a system of 1 + 2 PDEs to a system of 1 + 1 PDEs. The reduced system will not admit all the
remaining Lie symmetries. The Lie symmetries that survive under a reduction process are given as
described in the following example.

Let a PDE admit the Lie point symmetries Γ1, Γ2, which are such that [Γ1, Γ2] = C1
12X1,

with C1
12 6= 0. Reduction with the symmetry vector Γ1 leads to a reduced differential equation,

which admits Γ2 as the Lie symmetry. On the other hand, reduction of the mother equation with
respect to the Lie symmetry Γ2 leads to a different reduced differential equation, which does not admit
as a Lie point symmetry the vector field Γ1. In case the two Lie symmetries form an Abelian Lie algebra,
i.e., C1

12 = 0, then under any reduction process, symmetries are preserved by any reduction.
We found that the optimal system admits twenty-three one-dimensional Lie symmetries and

possible independent reductions. All the possible twenty-three Lie invariants are presented in
Tables A2 and A3.

An application of the Lie invariants is presented below.

Application of ξ145

Let us now demonstrate the results of Tables A2 and A3 by the Lie invariants of the symmetry
vector ξ145 and construct the similarity solution for the system.

The application of ξ145 in the nonrotating system (1)–(3) reduces the PDEs in the following system:

(hu)z + (hv)w = 0 (13)

α + uuz + vuw + hγ−2hz = 0 (14)

β + uvz + vvw + hγ−2hw = 0 (15)

where z = x− α
2 t2 and w = y− β

2 t2.
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System (13)–(15) admits the Lie point symmetries:

∂z , ∂w , z∂z + w∂w +
2

γ− 1
h∂h + u∂u + v∂v (16)

Reduction with the symmetry vector ∂z + c∂w provides the following system of first-order ODEs:

Fhσ = (cα− β) h2, (17)

Fvσ =
(α− cβ) chγ − αh (v− cu)2

v− cu
, (18)

Fhσ =
(α− cβ) cuγ − βh (v− cu)2

v− cu
. (19)

where F =
(
1 + c2) hγ − h (v− cu)2 and σ = z + cw.

By performing the change of variable dσ = f dτ, function f can be removed from the above
system. For h (τ) = 0, the system (17)–(19) admits a solution u = u0, v = v0, which is a critical point.
The latter special solutions are always unstable when αc > β.

We proceed with our analysis by considering the rotating system.

4. Symmetries and Optimal System for Rotating Shallow Water

For the rotating system ( f 6= 0), the Lie symmetries are:

Y1 = ∂t , Y2 = ∂x , Y3 = ∂y ,

Y4 = y∂x − x∂y + v∂u − u∂v ,

Y5 = sin ( f t) ∂x + cos ( f t) ∂y + f (cos ( f t) ∂u − sin ( f t) ∂v)

Y6 = cos ( f t) ∂x − sin ( f t) ∂y − f (sin ( f t) ∂u + cos ( f t) ∂v)

Y7 = (γ− 1)
(

x∂x + y∂y + u∂u + v∂v
)
+ 2h∂h

The commutators and the adjoint representation are given in Table 2 and Table A4. The Lie
symmetries for the rotating system form a smaller dimension Lie algebra than the non-rotating
system. That is not the case when γ = 2, where the two Lie algebras have the same dimension and
are equivalent under point transformation [22]. Therefore, for γ > 2, the Coriolis force cannot be
eliminated by a point transformation as in the γ = 2 case.

Table 2. Commutators of the admitted Lie point symmetries for the rotating 2D shallow water.

[ , ] Y1 Y2 Y3 Y4 Y5 Y6 Y7

Y1 0 0 0 0 f Y6 − f Y5 0
Y2 0 0 0 −Y3 0 0 (γ− 1)Y2
Y3 0 0 0 Y2 0 0 (γ− 1)Y3
Y4 0 Y3 −Y2 0 −Y6 Y5 0
Y5 − f Y6 0 0 Y6 0 0 (γ− 1)Y5
Y6 f Y5 0 0 −Y5 0 0 (γ− 1)Y6
Y7 0 − (γ− 1)Y2 − (γ− 1)Y3 0 − (γ− 1)Y5 − (γ− 1)Y6 0

As for the admitted Lie symmetries admitted by the given system of PDEs with or without the
Coriolis terms for γ > 2, we remark that the rotating and the nonrotating systems have a common Lie
subalgebra of one-parameter point transformations consisting of the symmetry vectors Y1, Y2, Y3, Y4,
and Y7 or for the nonrotating system X1, X2, X3, X6, and X8.
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We proceed with the determination of the one-dimensional optimal system and the invariant
functions. Specifically, the relative invariants for the adjoint representation are calculated to be
a1 , a7 and a8. From Table 2 and Table A4, we can find the one-dimensional optimal system, which is:

Y1, Y2, Y3, Y4, Y5, Y6, Y7, χ12 = Y1 + αY2, χ13 = Y1 + αY3,

χ14 = Y1 + αY4 , χ15 = Y1 + αY5, χ16 = Y1 + αY6, χ17 = Y1 + αY7,

χ23 = Y2 + αY3 , χ45 = Y4 + αY5, χ46 = Y4 + αY6, χ56 = Y5 + αY6

χ47 = Y4 + αY6 , χ123 = Y1 + αY2 + βY3, χ147 = Y1 + αY4 + βY7.

The Lie invariants, which correspond to all the above one-dimensional Lie algebras, are presented
in Tables A5 and A6.

Let us demonstrate the application of the Lie invariants by the following, from which we can
see that the Lie invariants reduce the nonlinear field equations into a system of integrable first-order
ODEs, which can be solved with quadratures.

4.1. Application of χ12

We consider the travel-wave similarity solution in the x-plane provided by the symmetry vector
χ12 and the vector field Y3. The resulting equations are described by the following system of first
order ODEs:

vz = f
u

α− u
(20)

F̄uz = f (α− u) vh (21)

F̄hz = f vh2 (22)

where F̄ = hγ − (a− u)2 h and z = t − αx. Because we performed reduction with a subalgebra
admitted by the nonrotating system, by setting f = 0 in (20)–(22), we get the similarity solution for the
nonrotating system, where in this case, it is found to be h (z) = h0, u (z) = u0 and v (z) = v0.

We perform the substitution dz = F̄
f v dτ, and the latter system is simplified as follows:

v
F̄

vτ =
u

α− u
(23)

uτ = (α− u) h (24)

hτ = h2 (25)

from which we get the solution:

h (τ) = (h0 − τ)−1 , u (τ) = α + u0 −
u0

h0
τ (26)

and:

v (t)2 = 2
∫ (

a + u0 − u0
h0

τ
)

u0
h0

(h0 − τ)

(
(h0 − τ)−γ +

(
u0

h0

)2
τ − (u0)

2

h0

)
dτ. (27)

4.2. Application of χ23

Consider now the reduction with the symmetry vector fields χ23. The resulting system of 1 + 1
differential equations admits five Lie point symmetries, and they are:

∂t, ∂w , (sin ( f t) + α cos ( f t)) ∂w + f (sin ( f t) ∂u + cos ( f t) ∂v)

(α sin ( f t)− cos ( f t)) ∂w − f (cos ( f t) ∂u − sin ( f t) ∂v) , (γ− 1) (∂w + u∂u + v∂v) + 2h∂h.
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where w = y− αx. For simplicity of our calculations, let us assume γ = 3.
Reduction with the scaling symmetry provides the following system of first order ODEs:

Ht = 2H (αU −V) , (28)

Ut = αH2 + u (αU −V) + f V, (29)

Vt = −H2 − v (αU −V)− f U, (30)

where h = wH, u = wU, and v = wU. The latter system is integrable and can be solved
with quadratures.

Reducing with respect to the symmetry vector (α sin ( f t)− cos ( f t)) ∂w − f (cos ( f t) ∂u − sin ( f t) ∂v),
we find the reduced system:

Ht

H
= −α cos ( f t) + sin ( f t)

cos ( f t)− α sin ( f t)
, (31)

Ut = −α f
sin ( f t)V − cos ( f t)U

cos ( f t)− α sin ( f t)
, (32)

Vt = − f
sin ( f t)V − cos ( f t)U

cos ( f t)− α sin ( f t)
, (33)

where now:

h = H (t) , (34)

u =
cos ( f t)

cos ( f t)− α sin ( f t)
f w + U (t) , (35)

v = − sin ( f t)
cos ( f t)− α sin ( f t)

f w + V (t) . (36)

System (31)–(33) is integrable, and the solution is expressed in terms of quadratures.

5. Conclusions

In this work, we determined the one-dimensional optimal system for the two-dimensional ideal
gas equations. The nonrotating system was found to be invariant under an eight-dimensional group of
one-parameter point transformations. and there were twenty-three independent one-dimensional Lie
algebras. One the other hand, when the Coriolis force was introduced, the dynamical admitted seven
Lie point symmetries and twenty one-dimensional Lie algebras.

For all the independent Lie algebras, we determined all the invariant functions, which corresponded
to all the independent similarity solutions.

In a future work, we plan to classify all the independent one-dimensional Lie algebras, which lead
to analytic forms for the similarity solutions.
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Appendix A

In this Appendix, we present the Tables A1–A6, which are referenced in the main article.
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Table A1. Adjoint representation of the admitted Lie point symmetries for the nonrotating 2D shallow water.

Ad
(

e(εXi)
)

Xj X1 X2 X3 X4 X5 X6 X7 X8

X1 X1 X2 X3 X4 − εX2 X5 − εX3 X6 X7 + ε (γ− 1) X1 X8
X2 X1 X2 X3 X4 X5 X6 + εX3 X7 X8 − ε (γ− 1) X2
X3 X1 X2 X3 X4 X5 X6 − εX2 X7 X8 − ε (γ− 1) X3
X4 X1 + εX2 X2 X3 X4 X5 X6 + εX5 X7 − ε (γ− 1) X4 X8 − ε (γ− 1) X4
X5 X1 + εX3 X2 X3 X4 X5 X6 − εX4 X7 − ε (γ− 1) X5 X8 − ε (γ− 1) X5
X6 X1 X2 cos ε− X3 sin ε X2 sin ε + X3 cos ε X4 cos ε− X5 sin ε X4 sin ε + X5 cos ε X6 X7 X8
X7 e−(γ−1)εX1 X2 X3 e−(γ−1)εX4 e−(γ−1)εX5 X6 X7 X8
X8 X1 e(γ−1)εX3 e(γ−1)εX4 e−(γ−1)εX4 e−(γ−1)εX5 X6 X7 X8

Table A2. Lie invariants for the optimal system of the nonrotating system.

Symmetry Invariants

X1 x, y, h (x, y) , u (x, y) , v (x, y)
X2 t, y, h (t, y) , u (t, y) , v (t, y)
X3 t, x, h (t, x) , u (t, x) , v (t, x)
X4 t, y, h (t, y) , x

t + U (t, y) , v (t, y)
X5 t, x, h (t, x) , u (t, x) , y

t + V (t, x)

X6 t, x2 + y2, h
(
t, x2 + y2) ,

xU(t,x2+y2)+yV(t,x2+y2)√
x2+y2

,
yU(t,x2+y2)−xV(t,x2+y2)√

x2+y2

X7
x
t , y

t , h
( x

t , y
t
)

, u
( x

t , y
t
)

, v
( x

t , y
t
)

X8 H (x, y) t
2

1−γ , U (x, y) t−1 , V (x, y) t−1

ξ(12) x− αt, y, h (x− αt, y) , u (x− αt, y) , v (x− αt, y)
ξ(13) x, y− αt, h (x, y− αt) , u (x, y− αt) , v (x, y− αt)
ξ(14) x− α

2 t2, y, h
(
x− α

2 t2, y
)

, u
(

x− α
2 t2, y

)
, v
(
x− α

2 t2, y
)

ξ(15) x, y− α
2 t2, h

(
x, y− α

2 t2) , u
(
x, y− α

2 t2) , v
(
x, y− α

2 t2)
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Table A3. Lie invariants for the optimal system of the nonrotating system.

Symmetry Invariants

ξ(16)
t, e−αt (x2 + y2) , u

(
t, e−αtx2 + y2) cos (αt) + v

(
t, e−αtx2 + y2) sin (αt)

y
x , h

(
e−αtx2 + y2, y

x
)

, u
(
t, e−αtx2 + y2) sin (αt)− v

(
t, e−αtx2 + y2) cos (αt)

ξ(23) t, x− αy, h (t, x− αy) , u (t, x− αy) , v (t, x− αy)
ξ(34) t, y− x

αt , h
(
t, y− x

αt
)

, u
(
t, y− x

αt
)

, v
(
t, y− x

αt
)

ξ(25) t, y− αtx, h (t, y− αtx) , u (t, y− αtx) , v (t, y− αtx)
ξ(45) t, y− αx, h (t, y− αx) , α x

t + U (t, y− αx) , α x
t + V (t, y− αx)

ξ(123) t− αx, t− βy, h (t− αx, t− βy) , u (t− αx, t− βy) , v (t− αx, t− βy)

ξ(145) x− α
2 t2, y− β

2 t2, h
(

x− α
2 t2, y− β

2 t2
)

, αt + U
(

x− α
2 t2, y− β

2 t2
)

, βt + V
(

x− α
2 t2, y− β

2 t2
)

ξ(125) x− αt, y− β
2 t2, h

(
x− αt, y− β

2 t2
)

, u
(

x− αt, y− β
2 t2
)

, βt + V
(

x− αt, y− β
2 t2
)

ξ(134) x− β
2 t2, y− αt, h

(
x− β

2 t2, y− αt
)

, βt + U
(

x− β
2 t2, y− αt

)
, V

(
x− β

2 t2, y− αt
)

ξ(67)

ln t
α , w = t−

α+
√

α(α−4)−4
2α

2
√

α(α−4)−4

(
x−

(
α +

√
α (α− 4)− 4

)
y
)

, z = t−
α+
√

α(α−4)−4
2α

2
√

α(α−4)−4

(
x +

(
α +

√
α (α− 4)− 4

)
y
)

h (w, z) , U (w, z) sin
(

ln t
α

)
+ V (w, z) sin

(
ln t
α

)
, U (w, z) cos

(
ln t
α

)
− V (w, z) sin

(
ln t
α

)
ξ(68) t, x2 + y2 , x−

2
γ−1 h

(
t, x2 + y2) ,

U(t,x2+y2) cos( ln x
α )+V(t,x2+y2) sin( ln x

α )
x ,

U(t,x2+y2) sin( ln x
α )−V(t,x2+y2) cos( ln x

α )
x

ξ(78) w = xt−
(γ−1)

α(γ−1)−2 , z = yt−
(γ−1)

α(γ−1)−2 , t−
2α

α(γ−1)−2 h (w, z) , t−
(γ−1)α

α(γ−1)−2 u (w, z) , t−
(γ−1)α

α(γ−1)−2 v (w, z)

ξ(678)
t , t−1−β

(
x2 + y2) , t−β

(
U
(
t, x2 + y2) sin (αt) + V

(
t, x2 + y2) cos (αt)

)
t−

2β
γ−1 H

(
t, x2 + y2) , t−β

(
U
(
t, x2 + y2) cos (αt)−V

(
t, x2 + y2) sin (αt)

)
Table A4. Adjoint representation of the admitted Lie point symmetries for the rotating 2D shallow water.

Ad
(

e(εYi)
)

Yj Y1 Y2 Y3 Y4 Y5 Y6 Y7

Y1 Y1 Y2 Y3 Y4 Y5 cos ( f ε)−Y6 sin ( f ε) Y5 sin ( f ε) + Y6 cos ( f ε) Y7
Y2 Y1 Y2 Y3 Y4 + εY3 Y5 Y6 Y7 − ε (γ− 1)Y2
Y3 Y1 Y2 Y3 Y4 − εY2 Y5 Y6 Y7 − ε (γ− 1)Y3
Y4 Y1 Y2 cos ε−Y3 sin ε Y2 sin ε + Y3 cos ε Y4 Y5 cos ε + Y6 sin ε Y6 cos ε−Y5 sin ε Y7
Y5 Y1 + f εY6 Y2 Y3 Y4 − εY6 Y5 Y6 Y7 − ε (γ− 1)Y5
Y6 Y1 − f εY5 Y2 Y3 Y4 + εY5 Y5 Y6 Y7 − ε (γ− 1)Y6
Y7 Y1 e(γ−1)εY2 e(γ−1)εY3 Y4 e(γ−1)εY5 e(γ−1)εY6 Y7
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Table A5. Lie invariants for the optimal system of the rotating system.

Symmetry Invariants

Y1 x, y, h (x, y) , u (x, y) , v (x, y)
Y2 t, y, h (t, y) , u (t, y) , v (t, y)
Y3 t, x, h (t, x) , u (t, x) , v (t, x)

Y4 t, x2 + y2, h
(
t, x2 + y2) ,

xU(t,x2+y2)+yV(t,x2+y2)√
x2+y2

,
yU(t,x2+y2)−xV(t,x2+y2)√

x2+y2

Y5 t, x cot ( f t)− y , h (t, x cot ( f t)− y) , f x cot ( f t) + U (t, x cot ( f t)− y) , − f x + V (t, x cot ( f t)− y)
Y6 t, x tan ( f t) + y, h (t, x tan ( f t) + y) , − f x tan ( f t) + U (t, x tan ( f t) + y) , − f x + V (t, x tan ( f t) + y)
Y7

x
t , y

t , h
( x

t , y
t
)

, u
( x

t , y
t
)

, v
( x

t , y
t
)

χ(12) x− αt, y, h (x− αt, y) , u (x− αt, y) , v (x− αt, y)
χ(13) x, y− αt, h (x, y− αt) , u (x, y− αt) , v (x, y− αt)

χ(14)
t, e−αt (x2 + y2) , u

(
t, e−αtx2 + y2) cos (αt) + v

(
t, e−αtx2 + y2) sin (αt)

y
x , h

(
e−αtx2 + y2, y

x
)

, u
(
t, e−αtx2 + y2) sin (αt)− v

(
t, e−αtx2 + y2) cos (αt)

Table A6. Lie invariants for the optimal system of the rotating system.

Symmetry Invariants

χ(15)
x + α

f cos ( f t) , y− α
f sin ( f t) , h

(
x + α

f cos ( f t) , y− α
f sin ( f t)

)
,

α sin ( f t) + U
(

x + α
f cos ( f t) , y− α

f sin ( f t)
)

, α cos ( f t) + V
(

x + α
f cos ( f t) , y− α

f sin ( f t)
)

χ(16)
x− α

f sin ( f t) , y− α
f cos ( f t) , h

(
x− α

f sin ( f t) , y− α
f cos ( f t)

)
,

α cos ( f t) + U
(

x− α
f sin ( f t) , y− α

f cos ( f t)
)

, −α sin ( f t) + V
(

x− α
f sin ( f t) , y− α

f cos ( f t)
)

χ(17) xe−αt, ye−αt, e
2α

γ−1 th
(

xe−αt, ye−αt) , eαtu
(

xe−αt, ye−αt) , eαtv
(

xe−αt, ye−αt)
χ(23) t, x− αy, h (t, x− αy) , u (t, x− αy) , v (t, x− αy)

χ(45) t, w =
(

x2 + y2 − 2x cos ( f t) + 2y sin ( f t)
)

, U(t,w)+ f sin( f t)
V(t,w)+ f cos( f t) , U(t,w)2+V(t,w)2

2 + f (U (t, w) sin ( f t) + V (t, w) cos ( f t))

χ(46) t, w =
(

x2 + y2 − 2x sin ( f t)− 2y cos ( f t)
)

, U(t,w)− f cos( f t)
V(t,w)+ f sin( f t) , U(t,w)2+V(t,w)2

2 + f (V (t, w) sin ( f t)−U (t, w) cos ( f t))

χ(56) t, z = y− x(cos( f t)−α sin( f t))
sin( f t)+α cos( f t) , h (t, z) , f x(cos( f t)−α sin( f t))

sin( f t)+α cos( f t) + U (t, z) , −x + V (t, z)

χ(47) t, x2 + y2 , x−
2

γ−1 h
(
t, x2 + y2) ,

U(t,x2+y2) cos( ln x
α )+V(t,x2+y2) sin( ln x

α )
x ,

U(t,x2+y2) sin( ln x
α )−V(t,x2+y2) cos( ln x

α )
x

χ(123) t− αx, t− βy, h (t− αx, t− βy) , u (t− αx, t− βy) , v (t− αx, t− βy)

χ(147)
z = e−t(γ−1) (x cos t− y sin t) , w = e−t(γ−1) (y cos t + x sin t) ,
e−t(γ−1)h (z, w) , e−t(γ−1) (U (z, w) cos t−V (z, w) sin t) , e−t(γ−1) (U (z, w) sin t + V (z, w) cos t)
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