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Abstract: Routing selection in opportunistic social networks is a complex and challenging issue due
to intermittent communication connections among mobile devices and dynamic network topologies.
The structural characteristics of opportunistic social networks indicate that the social attributes
of mobile nodes play a significant role on data dissemination. To this end, in this paper,
we propose an adaptive routing-forwarding control scheme (FPRDM) based on an intelligent fuzzy
decision-making system. On the foundation of the conception of fuzzy inference logic, two techniques
are used in the proposed routing algorithm. Information fusion of social characteristics of message
users and node identification are implemented based on the fuzzy recognition strategy, and the fuzzy
decision-making mechanism is applied to control message replication and optimize data transmission.
Simulation results demonstrate that, in the best case, the proposed scheme presents an average
delivery ratio of 0.8, reduces the average end-to-end delay by nearly 45% as compared with the
Epidemic routing protocol, and lowers the network overhead by about 75% as compared to the Spray
and Wait routing algorithm.

Keywords: opportunistic social networks; routing algorithm; fuzzy inference logic; intelligent fuzzy
decision-making system; data dissemination

1. Introduction

Opportunistic social networks (OSNs) [1,2], a type of complex intermittently connected network
architecture with a foundation in opportunistic communication and node profiles, have emerged
from both a type of delay tolerant network (DTN) [3] and social network service (SNS) [4],
and it has been considered a promising network model to improve data transmission reliability.
Additionally, the structure in OSNs is characterized by several features such as node mobility, network
topology, and social attributes [5]. As reliable and continuous data connectivity can not be available in
OSNs, nodes in unpredictable online communities typically take the opportunity of encountering the
peers created by their social attributes to communicate with each other at unpredictable intervals [6].
In recent years, the research interests in OSNs mainly consist of the routing-forwarding approach [5],
mobility patterns [7], security with privacy [8], and data storage and management [9].

With the increasing expansion of 5G networks and big data environments [10], the high-quality
requirements for mass-data multiprocessing have led to a tremendous growth in the number of smart
mobile devices, such as Bluetooth devices, smart phones, laptops or other wearable sensor devices [10].
This is more conducive for the construction of opportunistic mobile social networks in urban or
remote areas [11]. Moreover, the dawn of big data environments and 5G networks means that the
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high-fast, low-consumption and low-delay data transmission mode requires higher storage spaces
and processing capacity from smart mobile devices. The data packets circulating in peer-to-peer
communication may be text messages, pictures, or files such as video that occupy relatively large cache
spaces [12]. However, due to the insufficient storage spaces and relatively low processing capacity of
smart mobile devices, it is particularly difficult for nodes to implement the peer-to-peer communication
between message applications in 5G networks and big data environments. Therefore, opportunistic
mobile social networks propose that an end-to-end communication connectivity can be established
using several suitable relay nodes to carry out the store-carry-forward mechanism [13], which indicates
mobile nodes with smart devices temporarily store data packets in their buffer memory and carry
them until they encounter other suitable relay nodes to forward these data packets. Therefore it is
extremely important for a node in OSNs to select suitable next hop nodes for data dissemination [14].

As various applicable routing-forwarding strategies [15] have been proposed to tackle the problem
of data dissemination for different scenarios in OSNs, most of them make an accurate message delivery
decision by comprehensively assessing reliable social information associated with nodes such as
social features [6], human mobility [1], contact history [13], or level of credibility. As a general rule,
the social features of humans, which can be easily extracted from portable mobile devices, are the
most widely utilized metric information for relay node selection in OSNs. On the one hand, as the
main carriers of mobile devices, humans in opportunistic mobile social networks commonly present
multiple different social attributes, even including several significant features that facilitate the data
transmission process [16]; on the other hand, it is practicable to implement the recognition of relay
nodes or destinations via the social features of humans in OSNs [17].

Additionally, how to utilize the effective social features of humans to implement an efficient data
dissemination process between source nodes and destinations, is one of the most long-standing and
elusive challenges in OSNs. With the aim of yielding low overhead, low network delay, and high
delivery ratio, multitudinous routing approaches employ various strategies to create a better data
dissemination environment in the OSNs. As one of the dominant algorithms, flooding-based routing
protocols [18] transmit message replications to every node that the carriers encounter, which causes
the overspread of data packets and a huge waste of cache spaces. Then, several routing protocols
have been proposed to reduce the high overhead through controlling the number of message copies.
Moreover, there are many other routing protocols based on message replication [19], direct delivery [20],
mobility prediction [21], phase division [22], and probability evaluation [23] that have been utilized
in the OSNs. Meanwhile, profile-based routing protocols employ different social attributes of mobile
users such as spatial and temporal mobility features, social bonds, social influence, or node similarity,
to enhance transmission efficiency in the OSNs, which mainly focus on single or multiple attribute
characteristics of message users such as hobbies and interests, selfish behavior, encounter history,
or distance and location of node mobility [24–26].

However, in the social scenarios of opportunistic mobile social networks, there are still many
challenges for these routing methods that have not been well addressed: (1) It is challenging to construct
an applicable mathematical framework to comprehensively consider the numerous attribute features
of mobile users, including long-term stability characteristics and short-term variable characteristics,
such as occupation, appearance, location or online community [27]. (2) Because each attribute feature
of mobile users plays a different role in the process of message routing and forwarding, how to
dynamically allocate a reasonable weight value to them is another key issue to be tackled [28].

To address these open questions, we propose and develop an adaptive routing-forwarding control
scheme based on fuzzy pattern recognition and decision-making system (FPRDM) for opportunistic
social networks, which mainly consists of four phases: fuzzy recognition for node classification,
weight adjustment for social features, fuzzy relationship inference, and fuzzy decision-making process.
To be specific, after the social attributes of mobile users are formalized, quantization vectors of these
features will be regarded as fuzz input values [29] that are adopted to recognize node classification
(relay node or irrelevant node). Then, this approach utilizes the improved analytic hierarchy process
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(AHP) [30] to allocate a seemly weight value to each fuzzy input, thereby determining the fuzzy
mathematical mapping of the social features of mobile users into a transmission priority value.
Eventually, the message routing-forwarding process will be performed via a feedback mechanism and
a defuzzification component. On the whole, the main contributions of this paper are listed as follows:

• A fuzzy inference model is proposed to implement the fusion of multiple social information of
mobile users, thereby providing a reliable and stable strategy for opportunistic message routing
and forwarding.

• To synthetically evaluate the impact of each social characteristic on the data transmission process
in OSNs, we combine the fuzzy inference logic with the analytic hierarchy process, and more
importantly, with exploring the data transmission relationships among mobile users.

• On the basis of a feedback mechanism, we are able to build a relatively stable and sustained data
transmission connectivity between the source nodes and destinations in opportunistic mobile
social network environments.

• Ultimately, simulation results demonstrate that this scheme reduces the network delay and the
overhead ratio, and enhances the delivery ratio as compared to several other typical or latest
routing protocols in the OSNs.

As a supplement to routing algorithms in multi-layer social networks, this FPRDM mechanism
constructs an effective communication link between nodes in different online communities or the same
online community by transforming the social attribute characteristics of nodes into a strong basis for
data dissemination.

2. Related Works

In recent several years, for the sake of the construction of a efficient data transmission connectivity
between source node and destination, more and more routing algorithms [5] which try using
new techniques and theories have been proposed for different application scenarios in the OSNs.
The routing protocols that utilize node profile to establish the data transmission connectivity are called
profile-aware algorithms. On the contrary, the routing approaches that do not employ node profiles to
perform the data transmission process are profile-ignorant algorithms [27]. We will introduce the two
categories of routing algorithms related to our works in detail.

2.1. The Proposed Profile-Aware Routing Algorithms for Opportunistic Mobile Social Networks

In opportunistic mobile social networks, the Epidemic routing protocol [31] is commonly regarded
as a benchmark for most routing strategies because of its high delivery ratio and network delay. For this
reason, Halikul L and Mohamad A [2] introduced a social-based Epidemic-based routing protocol
(EpSoc). This approach adopts a significant social feature of mobile users which is degree centrality to
effectively control the number of message replications. To improve the data dissemination environment,
K. Liu et al. [6] proposed a fuzzy routing-forwarding approach, which utilizes a type of comprehensive
node similarity that is the combination of mobile and social similarities to make an accurate decision
on relay node selection and message forwarding. Borrego C et al. [22] recommended a composite
routing-delivery scheme, namely explore and wait, for node profile-casting in OSNs. In the explore
phase, a profile-based model that allows data packets to be transmitted to profiles that are defined
by a delivery function; and message carriers wait until it encounters a node that satisfies the delivery
function and then sends data packets to the node in the wait phase.

Additionally, the social relationship and features of mobile users could be exploited to improve
the performance of message delivery. Yang Y et al. [32] introduced a routing protocol called the
Geo-Social-Interest algorithm, which fully considers the impact of geographical information, social
characteristics and node interests and then implements a complete data transmission connectivity.
Q. Xu et al. [33] developed a routing algorithm on the grounds of Epidemic information dissemination,
which defines the social characteristics of mobile users as pre-immunity and immunity, establishing an
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analytical system by ordinary different formulas to mimic Epidemic information transmission in OSNs.
In addition, Li N et al. [34] proposed a cross-layer and reliable routing protocol that utilizes fuzzy
inference logic and network topology control strategies to enhance the efficiency and the reliability of
message routing and forwarding in mobile ad hoc networks.

Moreover, in the multi-layer opportunistic social networks [35], the routing algorithm based on
social community division employs some different real mobility traces to evaluate their performance.
Magnani et al. [36] introduced a novel algorithm model for multi-layer opportunistic social networks,
where mobile users belong to different types of networks in the same time, and the SNA (social network
analysis) centrality metrics have been extended in a real mobility dataset. Additionally, Q. Xu et al. [33]
developed a novel analytical model to assess the Epidemic data dissemination in mobile opportunistic
social networks. This algorithm adopts two novel elements (per-immunity and immunity) to evaluate
the change of mobile nodes’ interests. Through experimental evaluation, this analytical model based
on users’ behaviors and interests outperforms other existing ones.

2.2. The Proposed Profile-Ignorant Routing Algorithms for Opportunistic Mobile Social Networks

To improve the delivery ratio and reduce the end-to-end delay and the network overhead,
the profile-ignorant routing approaches in OSNs commonly prefer to try using many new mathematical
methods and theories. J. Wu [9] designed a cache management routing algorithm, and a node extend
routing algorithm, which respectively utilize probability prediction, and node cooperation to improve
the data transmission environment. Additionally, Luo J et al. [17] recommended an opportunistic
routing algorithm that employs optimization methods and distance estimation to control the number of
relay nodes. Prodhan A T et al. [18] introduced a new quota-based routing algorithm, which increases
the chance of message forwarding by evaluating the transmission priority of the data packet that has
the earliest deadline. Wang, Y et al. [28] developed a novel cooperative store-carry-forward method
to decrease the parking time of the vehicle in dark areas, utilizing bidirectional vehicle streams and
selecting two vehicles in both directions for the target vehicle.

In addition, many mathematical methods such as graph theory [37], Markov chain [38] or
information entropy [39] have been utilized to implement the combination of node recognition and data
transmission in opportunistic mobile social networks. Moreover, the fuzzy inference logic [40], which is
capable of converting numerical or textual input vectors into an evaluation fuzzy subset [29], is a novel
and feasible approach in the research field of opportunistic routing and forwarding, establishing a
nonlinear or linear mathematical mapping from the social features of mobile users to the metric values
of data dissemination [41]. Based on that, message carriers are able to make more reasonable next-hop
node selections and message delivery decisions in the OSNs [6].

Compared with these existing algorithms, our work mainly focuses on the data dissemination
relationship between mobile nodes, which means that this scheme transforms the social behaviors
and characteristics of nodes into the data transmission association between them. That also becomes
a strong basis for information routing and forwarding. Besides, we transform the social connection
between nodes into the fuzzy relation of data transmission through the method of fuzzy inference
logic, and evaluate the data transmission relationship between mobile users through the defuzziness.

3. System Model Design

Fuzzy recognition and decision-making systems [40], novel adaptive techniques with a foundation
in fuzzy inference and mathematics, are emerging in recent years as a decision support system,
promising to be applied to provide more accurate decisions for routing selection, and data transmission
in 5G networks, and big data environments. Because the relationship between nodes’ transmission
characteristics and their social attributes is fuzzy and uncertain, we attempt to employ a fuzzy inference
system [41] to evaluate their importance on data transmission, thereby establishing a more efficient
dissemination process. Then, we develop an adaptive routing-forwarding model exploiting fuzzy
recognition and decision-making for OSNs.
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3.1. The Overall Structure of Intelligent Fuzzy Decision-Making System for Opportunistic Mobile
Social Networks

Referring to the classical applied fuzzy control system [29], the overall structure of the fuzzy
recognition and decision-making model for opportunistic mobile social networks can be divided
into five successive phases, including information acquisition, data processing and feature extraction,
pattern matching and model building, model training and testing, and decision-making. Because the
operational processes in this system are independent of each other, message application carriers in the
OSNs are able to gather, collate and manage a large amount of effective information from multiple
different neighbor nodes synchronously. Next, the detailed description of each procedure (as shown in
Figure 1) in this system is summarized as follows:

Figure 1. The overall structure of fuzzy recognition and decision-making model for opportunistic
social networks.

As shown in Figure 1, message application users with mobile high-tech devices (smart phones,
smart watches, tablet computers, laptops or Bluetooth headsets) in different online communities of
opportunistic mobile social networks commonly present multiple disparate social characteristics, even
including many significant features that facilitate the data transmission process. Consequently, several
important social attributes of nodes will be collected by this system and could be adopted to evaluate
the special social relationship between destination and relay nodes, which is especially conducive to
establishing a sustaining and stable data transmission link.
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Then, all of the data associated with social attributes, obtained from neighbor nodes, are suitably
processed from irregular and unrecognizable to regular and identifiable formats. The process
of pattern matching and model building is scrupulously divided into two parts: The course of
membership recognition for nodes, and the course of fuzzy relationship inference. Each membership
function is determined based on the guidelines of the tripartite method. According to the concept of
the intersection membership method, three different levels of a single membership degree could
be generated from different membership degrees, and afterwards the final fuzzy control result
is obtained from three different levels of single membership degrees on the basis of maximum
membership principle.

Afterwards, weight adjustment for the fuzzy relationship assessment matrix and data training
are implemented based on the analytic hierarchy process (AHP) [30]. As shown in Figure 1,
the weight matrix is gradually determined thorough the AHP after multiple systematic and manual
parameter evaluations. In addition, the inference result of the fuzzy relationship will be calculated
through the weight matrix and the fuzzy relationship assessment matrix. Ultimately, the processes of
data fusion and data transmission decision-making are performed in this system. Message application
users constantly collect and compare the transmission value of message application users,
comprehensively assess the attributive characters of these neighbor nodes, and come to an accurate
decision on data dissemination based on the feedback mechanism.

3.2. Fuzzy Pattern Recognition Process for Node Classification in Opportunistic Mobile Social Networks

From different online communities of opportunistic social networks, message application users
carrying high-tech devices must present some different actions, such as executing conversations,
subscribing to information, interactions and mutual following, posting and reposting, publishing
advertisements or following applications. As a consequence, these message application users attempt to
gather more effective information associated with social attributes from their neighbor nodes so that an
accurate message routing-forwarding decision will be achieved. The detailed fuzzy pattern recognition
process for node classification is implemented based on three steps, including data quantification,
structure construction, and pattern recognition.

3.2.1. Information Quantification and Determining Membership Degrees for Fuzzy Input

In OSNs, nodes with multiple different social attributes in unknown online communities try
to communicate with each other, so their social attribute characteristics form a strong basis for
position locating and data transmission. In general, node profile contains several important social
attributes of message application users. To implement a high-performance data transmission process,
the FPRDM model reasonably adopts the node profile of message application users to evaluate the
special connection relationship between neighbor nodes and destinations.

Specifically, as shown in Figure 1, message application users usually embody multiple different
social attributes, such as interests, specialities, physical characteristics, workplaces or residence places.
For each attribute of the nodex, we define a feature vector as a container that is used to load the related
and valuable information, and the feature vector is shown as

f vnodex (X) = X1, X2, X3, X4 · · ·Xn (1)

where X1, X2, X3, X4 · · ·Xn represent n different social attributes of the message application user nodex,
and n is the number of social attributes of mobile nodes in the networks. By extension, each of these
social attributes can be refined into a smaller eigenvector einodex (X).

Moreover, when the user nodex contains the same feature value as a destination, the corresponding
value of the eigenvector is set to 1, otherwise to 0. For example, if the feature vector of interest is
defined as einodex (interest) = {movie, basketball, music, game, book}, and the user nodex likes movie,
music and book as well as the destinations, then this feature vector could be rigorously initialized to
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einodex (interest) = {1, 0, 1, 0, 1}. For the sake of the identifiability of the FPRDM system, we set the
module length of each feature vector as the fuzzy input of this system, which is obtained by

FInodex (i) =



|ei(X1)| i = 1

|ei(X2)| i = 2

|ei(X3)| i = 3

· · · · · ·
|ei(Xn)| i = n

(2)

in which FInodex (i), namely the quantization vector, denotes different fuzzy inputs of the
FPRDM system. Acquired from message application users in the OSNs, the data information associated
with social attributes of mobile users is translated from text into a digital format that can be read,
recognized, utilized and processed by this system.

Originating from the theory of fuzzy control engineering, the fuzzy inference system is able
to transform the piecewise function into some curves, thereby making a vague judgement on the
transmission priority of each node in the OSNs. After the process of ambiguity resolution, the specific
digital value could be regarded as an accurate assessment foundation for message routing and
forwarding decision-making. Refer to the traditional and classical Mamdani fuzzy control system,
which is a highly extensible and applicable fuzzy inference model. The FPRDM system model [29]
could be established using three continuous components, including Fuzzifier, Fuzzy Inference,
and Defuzzifier. Next, a detailed description of the three fuzzy components will be presented in
the following sections.

As shown in Figure 1, FInodex(i), a specified queue defined by Equation (2) is regarded as the fuzzy
input of fuzzy pattern recognition and decision-making system, and it is also the discourse domain
of variable fuzzy subsets in this system model, further we adopt tripartite method to define three
different levels of membership subsets (low, medium and high). Moreover, these related initialization
definitions could be formalized as

FSnodex (FInodex (i)) =MDlow(FInodex (i)), MDmedium(FInodex (i)), MDhigh(FInodex (i)) (3)

where MDlow(FInodex (i)), MDmedium(FInodex (i)), MDhigh(FInodex (i)), which respectively correspond
to low, medium and high fuzzy subsets, are three different grades of membership degrees for the
quantization vector FInodex (i). As shown in Figure 1, for each message application user nodex, this
system will generate a corresponding quantization vector. In addition, for each level of membership
function, the quantization vector FInodex (i) simultaneously generates n different corresponding
membership degrees. The fuzzy subsets Ãlow, Ãmedium and Ãhigh are regarded as an evaluation set and
the fuzzy inputs are considered as a factor set in the proposed routing strategy, so the mathematical
mapping from fuzzy input FInodex (i) to fuzzy subsets could be defined as

MF(FInodex (i)) : R→ {Ãlow, Ãmedium, Ãhigh} (4)

On the basis of the theory of tripartite method, when ∀eix ∈ R, Equation (4) could be expanded as

MFµ,η(FInodex (i)) =


Ãlow FInodex (i) ≤ µ

Ãmedium µ < FInodex (i) < η

Ãhigh FInodex (i) > η

(5)

where µ represents a demarcation point between low and medium membership degrees, and η is
another demarcation point between medium and high membership degrees. Furthermore, Ãlow,
Ãmedium and Ãhigh denote the determined low, medium and high membership function, respectively.
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Accordingly, it is essential for us to define three different levels of membership functions
Ãlow, Ãmedium and Ãhigh for the quantization vector FInodex (i) based on the application of the
tripartite method, which shows a general mathematical symmetry. In theory, there exist many
membership function references in fuzzy control mathematics, such as trapezoidal distribution and
semi-trapezoidal distribution, K-order parabolic distribution, Cauchy distribution, normal distribution,
and Ridge distribution.

Naturally, in opportunistic social networks, high-tech mobile device users come to generate a large
amount of data when accessing the application platform, including social, mobile, behavioral, physical
characteristics and a large amount of text information. Generally, when message application users
are in urban areas, relatively developed communication infrastructures contribute to a high-speed
and stable network environment. Therefore, the frequent communication among mobile nodes in an
online community is likely to generate a great amount of social information. On the contrary, poor
and dated communication infrastructures in suburbs or remote areas may result in congested, slow
and intermittent communications between mobile users [1], hence there will be less social information
about mobile users in this type of network environment. Furthermore, hot issues, novel topics, popular
entertainment, and public preferences are the areas that the public is deeply concerned about, even
though the distinction in age, occupation, and gender may lead to a slight difference in attention.
Through strict data analysis and theoretical proof, the data related to social attributes that come from
message application users should be subject to a relatively standard normal distribution [2].

Consequently, through referring to the normal distribution membership functions in a traditional
fuzzy control system and the existing data distribution model in opportunistic mobile social networks,
Ãlow, Ãmedium and Ãhigh could be strictly calculated by

FÃlow
(FInodex (i)) =


1 FInodex (i) ≤ a1

e
−(

FInodex(i) − a1

σ1
)

2

FInodex (i) > a1

(6)

FÃmedium
(FInodex (i)) = e

−(
FInodex(i) − a2

σ2
)

2

(7)

FÃhigh
(FInodex (i)) =


0 FInodex (i) ≤ a3

e
−(

FInodex(i) − a3

σ3
)

2

FInodex (i) > a3

(8)

in which a1, a2 and a3 represent three different levels of location parameters, and σ1, σ2 and σ3

denote the scale parameter for the low, medium and high membership functions FÃlow
, FÃmedium

and
FÃhigh

, respectively. As exhibited in Figure 2a–c, when the quantization vector changes over time, low,
medium and high membership functions present different curves and the codomain is always between
0 and 1. Eventually, the trend of these three membership functions depends on the location parameter
and scale parameter, which could be determined by the distribution of the data obtained from message
application users.
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(a) (b)

(c)

Figure 2. Three different grades of membership functions quantization vectors.

3.2.2. Fuzzy Pattern Recognition for Node Classification in Opportunistic Mobile Social Networks

In opportunistic mobile social networks, two message application users, which possess a
relatively high social similarity between them, are more likely to be in the same online community,
and information communication between them is expected to be more frequent. Therefore, a user with a
high social similarity to the destination should be a reliable relay node in the data transmission process.
Then, the process of pattern recognition for node classification employs fuzzy inference logic to evaluate
the social similarity between mobile users, so as to select some suitable relay nodes for message routing
and forwarding, and eventually achieves an efficient and sustainable data transmission link.

For effectively assessing the pattern recognition results of node classification, we define the
membership degree of each quantization vector as Amn, in which m represents different levels of
membership subsets and n denotes different fuzzy input values. Thereupon, each fuzzy subset could
be represented by n different fuzzy inputs, which is mathematically quantified as

Am =


Ãlow m = 1

Ãmedium m = 2

Ãhigh m = 3

(9)

Am(FInodex (i)) =(Am1(FInodex (i)), Am2(FInodex (i)) · · · · · · Amn(FInodex (i))) (m = 1, 2, 3) (10)
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where Amn(FInodex (i)) indicates the membership degree of FInodex (i) from the membership subset
MDm. In a traditional fuzzy inference system, the goal of the defuzzifier component is to convert
fuzzy membership subsets and membership degrees into an accurate judgment value. As a
commonly-used approach to calculate the membership degree in a traditional fuzzy inference
system [6], maximum membership principle means the membership degree of each level (low, medium,
and high) is equal to the maximum membership of n quantization vectors from the corresponding level.
Consequently, the membership degree Am(FInodex (i)) of fuzzy input FInodex (i) for membership subset
MDm(FInodex (i)) could be calculated by

Am(FInodex (i)) =
n∧

i=1

{Ami(FInodex (i))} (m = 1, 2, 3). (11)

Generally, there are several paradigms of defuzzification strategies in a fuzzy inference system,
such as center of area (CoA) or mean of maximum (MoM) [29]. The maximum membership principle
will be regarded as the defuzzification method in the proposed algorithm due to its expansibility.
Based on that, the membership degree of fuzzy control result Dnodex for pattern recognition of nodex

classification could be expressed as the union of three different membership degrees that correspond
to three different levels of membership subsets, which is shown as

Dnodex =
3∨

m=1

{
n∧

i=1

{Ami(FInodex (i))}}

= Alow(FInodex (i))
∨

Amedium(FInodex (i))
∨

Ahigh(FInodex (i)).

(12)

After determining the threshold K accurately, we can compare Dnodex with K to evaluate whether
the nodex is a suitable relay node. To be specific, when the value of Dnodex is greater than or equal to K,
the nodex may be an appropriate next hop; otherwise, the node may not be suitable to participate in
the process of message routing and forwarding.

3.3. Reasonable Weight Allocation and Inference of Fuzzy Relationships Via the Analytic Hierarchy Process

The main aim of fuzzy pattern recognition is to present a preliminary judgment on
node classification. For the sake of a more precise decision-making on data transmission, it is
essential to execute the process of weight adjustment and fuzzy relationship inference. By synthetically
evaluating the control result of pattern recognition and fuzzy relation inference, message application
users are able to determine the next hop, even the third hop, from their neighbor nodes efficiently.

The procedure of weight adjustment plays a significant role in fuzzy relation evaluation, which
aims to reasonably assess the status of each fuzzy input in the whole data transmission. The social
attributes of nodes are layered and interlaced, which is specifically reflected in the fact that the social
attributes of message application users are related to each other. Therefore, we adopt the analytic
hierarchy process (AHP) [30] to evaluate the weight of their social attributes in routing selection and
data forwarding.

Firstly, we need to determine the comparison weight between n different fuzzy inputs and
construct a n-order comparison matrix, which is shown as Table 1.

Table 1. Weight scale for n different fuzzy inputs.

W |ei(X1)| |ei(X2)| · · · |ei(Xn)|
|ei(X1)| 1 Ra(1,2) · · · Ra(1,n)
|ei(X2)| 1/Ra(1,2) 1 · · · Ra(2,n)

...
...

...
. . .

...
|ei(Xn)| 1/Ra(1,n) 1/Ra(2,n) · · · 1
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AHP directly and effectively combines the results of human experience and objective judgment
of machines, and quantitatively describes the importance of pairwise comparison of elements in
a hierarchy. Then, the weight value reflecting the relative importance order of elements at each level is
calculated by mathematical method, and the relative weight of all elements is calculated and sorted
by the total order between all levels [30]. The adjustment of weight parameters in our experiment is
based on the characteristics of the real data set. Consequently, from Table 1, the weight ratio Ra(i, j) is
the ratio of all the elements in the first row to all the elements in the first column, which could be set as

Ra(i,j) =
|ei(Xi)|
|ei(Xj)|

. (13)

Then, we normalize each of the columns in the above matrix CM, which can be shown as

Rb(i,j) =
Ra(i,j)

∑n
i=1 Ra(i,j)

(14)

where ∑ Ra(i, j) denotes the sum of the Ra(i, j) for each column and Rb(i, j) is the new comparison
weight. After that, the eigenvector wi of the i-th fuzzy input is summed from each row of the new
matrix, which can be formalized as

B(i) =
n

∑
j=1

Rb(i,j) (15)

wi =
B(i)

∑n
i=1 B(i)

. (16)

To reasonably record the weight value of each social attribute of mobile nodes in the networks,
the proposed algorithm loads the weight value corresponding to each fuzzy input into a row vector.
Then, the weight vector W(w1, w2 · · ·wn) for n different fuzzy inputs could be defined as

W(w1, w2 · · ·wn) = [w1, w2, w3 · · ·wn]. (17)

Based on the above formulas, n weight values for n different fuzzy inputs (social attributes
of nodes) can be obtained from wi. After determining the importance of each social attribute of
message application users on the process of message routing and forwarding, the system comes
to assign each fuzzy input an appropriate weight automatically, which is in favor of the final
comprehensive evaluation of the fuzzy relationship between fuzzy input factor sets and fuzzy subsets.
Additionally, the fuzzy relationship matrix R f could be induced by f , which can be represented as

R f =


A11(FInodex (1)) A21(FInodex (1)) A31(FInodex (1))
A12(FInodex (2)) A22(FInodex (2)) A32(FInodex (2))
A13(FInodex (3)) A23(FInodex (3)) A33(FInodex (3))

...
...

...
A1n(FInodex (n)) A2n(FInodex (n)) A3n(FInodex (n))

 (18)

where A1i(FInodex (i)), A2i(FInodex (i)) and A3i(FInodex (i)) denote low, medium and high
membership degrees of the i-th fuzzy input of the message application user nodex, respectively.
Through synthetically considering the impact of different weights of fuzzy inputs, the fuzzy
transformation mapping Bnodex from U′nodex

to Vnodex is calculated by

Bnodex = W(w1, w2 · · ·wn) ◦ R f

= bnodex (1), bnodex (2) · · · bnodex (n).
(19)
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After assessing the importance of each social attribute of message application users, the FPRDM
system comes to assign a high weight value to the attribute feature that performs a relatively vital role
in the data transmission process. And on the contrary, a small weight value will be allocated to other
general fuzzy inputs. Additionally, the fuzzy mapping from factor set to evaluation set actually is to
explore the fuzzy link between social attributes and message routing-forwarding. Hence the value of
Bnodex could be used as an important basis for fuzzy decision after defuzzification.

3.4. Information Fusion and Fuzzy Decision-Making for Message Routing-Forwarding in Opportunistic Mobile
Social Networks

On the grounds of the constant and slight change of attribute features of message users in
the data transmission process, it must be inaccurate to evaluate the transmission priority of nodes
through some exact values of these attribute features at a certain time. This also leads to a large
deviation in decision-making on node classification and data transmission. Therefore, through
analysing the network routing environments and the distribution of the data related with node
movement, the fuzzy inference system can be employed to comprehensively evaluate the transmission
relationship between relay nodes and destinations, constructing a relatively complete and efficient
message routing-forwarding link.

To effectively quantify the whole process of data transmission from source nodes to destinations,
this model defines CR(nodex) and IR(nodex) as the final fuzzy control result and the inference result of
fuzzy relationship for nodex, respectively, and the two definitions are shown as{

CRnodex = c1, c2, c3, c4 · · · cq

IRnodex = r1, r2, r3, r4 · · · re
(20)

where c1, c2, c3, c4 · · · cq represent different fuzzy subsets that the nodex belongs in, and r1, r2, r3, r4 · · · re

denote e different fuzzy transformation relationships from factor set Unodex to evaluation set Vnodex .
For more accurately assessing the transmission relationship between nodes, feature vectors

CRnodex and IRnodex will be reasonably digitized to specific values Dnodex and Bnodex , respectively.
Eventually, the above system of equations (20) could be translated into another form, which is shown as

Fnodey = FRDM(Dnodex , Bnodex ) (21)

where FRDM denotes the process of fuzzy recognition and decision-making for node classification
and data transmission, and Dnodex and Bnodex represent the membership degree of fuzzy control and
fuzzy relationship inference, respectively. Since the fluctuation ranges of Dnodex and Bnodex are both
from 0 to 1, the FPRDM strategy adopts the tanh function (shown as Equation (22)) to comprehensively
evaluate the transmission value TV, which can be regarded as the final reference to data transmission
between relay nodes and destinations.

TV = tanh(Dnodex + Bnodex )

=
e(Dnodex+Bnodex ) − e−(Dnodex+Bnodex )

e(Dnodex+Bnodex ) + e−(Dnodex+Bnodex )
.

(22)

From the above formula, when (Dnodex + Bnodex ) is between 0 and 2, the slope of Fnodey is relatively
large and the value of TV fluctuates enormously, which is conducive to clearly distinguish the
transmission priority between nodes. On the basis of feedback mechanism, message application
users are able to make an accurate decision on message routing and forwarding by comparing the TV
value of the future two-hop nodes during the data transmission process.

Theoretically, most of the traditional and classical routing strategies in opportunistic mobile
social networks commonly seeks the next-hop node only from its neighbors and then forward
data packets, which is likely to cause the interruption or instability of data transmission.
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Consequently, we investigate a routing feedback mechanism approach, concentrating on not only the
next-hop nodes but also the third-hop nodes, which facilitates the construction of a continuous and
stable link in the data transmission process.

To be specific, as shown in Figure 3, nodeA, nodeB and nodeC are in the online community 1 at
the current moment. Additionally, nodeD and nodeE are in the online community 2, while nodeF,
nodeG, nodeH and nodeI are in the online community 3. nodeA and nodeG are respectively the source
node and destination. Moreover, the black point represents the relay node, while the red one denotes
an irrelevant node in opportunistic social networks. The number of mobile nodes in a community
represents the corresponding node density. Each message application user calculates its own TV
according to the attribute characteristics of the destinations provided by the source nodeA. As a
message carrier, nodeA comes to collect and compare the TV values of its future two-hop message users.
As shown in Figure 3, because TVI > TVE and TVE > TVC, the source node nodeA only transmits data
packets to nodeC, and then sends data packets to nodeE and nodeI . Finally, these data packets will be
forwarded to the destination nodeG. According to the different node density and membership degree
within each online community, the proposed scheme comes to adopt different strategies to implement
message routing and forwarding. The duplicate controlling model is adopted among the mobile nodes
in the same community. Moreover, due to a low node density within the online community 2, nodeC
transmits messages to nodeE via the mechanism of copying messages, which is able to avoid the loss of
data packets. On the contrary, the node density in community 3 is relatively high, hence nodeE employs
the method of direct forwarding to transmit messages to nodeI , and more importantly, preventing the
flooding of data packets in the online community.

Figure 3. The fuzzy decision-making process for data transmission in opportunistic mobile
social networks.

3.5. Algorithm Complexity Analysis

To describe the extensibility and applicability of fuzzy recognition and the decision-making
system, we rigorously built the Fuzzy pattern cognition and decision model (shown as Algorithm
1) to show the time complexity of this system. Specifically speaking, in the process of determining
the membership degree of each message user, n attribute features may correspond to three levels of
fuzzy subsets (low, medium and high) that contain 3n membership degrees values, which presents the
time complexity of O(3n). Additionally, the time complexity of the analytic hierarchy process [30] is
O(n), because there exist n different attribute features which need to be assigned n different weight
values. Ultimately, in the process of fuzzy decision-making for message routing and forwarding, source
nodes and message carriers transmit data packages to their future two-hop nodes by gathering and
comparing the value of TV, therefore the corresponding time complexity is O(log2n). Consequently,
the total time complexity of fuzzy recognition and decision-making models for opportunistic social
networks can be calculated by O(3n + n + log2n) = O(n), which highlights a relatively low calculation
consumption of this model.
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Algorithm 1 Fuzzy pattern cognition and decision model

Input: social attributes X1, X2 · · ·Xn of users nodei
Output: TVnode1 , TVnode2 · · · TVnoden

1: Acquiring data related to attribute features of nodes;
2: Data preprocessing and feature extraction;
3: Quantifying feature information as FInodex (i);
4: Defining decision function F(Dnodex , Bnodex );
5: for (i = 1; i ≤ n; i ++) do
6: FInodex (i) = |ei(Xi)|;
7: FSnodex (FInodex (i))= {MDlow(FInodex (i)), MDmedium(FInodex (i)), MDhigh(FInodex (i))};
8: end for
9: for (i = 1; i ≤ n; i ++) do

10: Obtain the eigenvector B(i) = ∑n
j=1 Rb(i,j);

11: Computing the weight value of the i− th fuzzy input wi =
B(i)

∑n
i=1 B(i)

;

12: end for
13: Computing the weight vector W = [w1, w2 · · ·wn];
14: Checking the consistency of the weight assessment matrix CM;
15: Defining the factor set U′nodex

and the evaluation set Vnodex ;
16: Constructing the fuzzy relationship matrix R f ;
17: Bnodex = W(w1, w2 · · ·wn) ◦ R f ;
18: Calculating Bnodex based on the maximum membership principle;
19: TVnodei

= tanh(Dnodex + Bnodex );
20: for (i = 1; i ≤ n; i ++) do
21: Output TVnodei

;
22: end for
23: for (i = 1; i ≤ n; i ++) do
24: if (nodei.hasMessage()) then
25: if ((TVi > TVm)

∧
(TVm > TVn)) then

26: nodei sends data to nodem and noden;
27: end if
28: end if
29: end for

4. Simulation And Analysis

In our experiment, the simulator opportunistic network environment (ONE) is utilized to evaluate
the experimental performance of the FPRDM routing algorithm, and the mathematical tool MATLAB
could be used to assign different weight values to each social features of mobile users in OSNs.
In addition, to comprehensively assess the performance of the FPRDM routing algorithm, it will
be compared with other four traditional or latest routing protocols in OSNs: Spray and wait [13],
Epidemic [2], ICMT (information cache management and data transmission algorithm exploiting
comprehensive node similarity) [9], and FCNS (a fuzzy routing-forwarding algorithm exploiting
comprehensive node similarity) [6]. Spray and wait, and Epidemic are traditional methods in
opportunistic social networks. ICMT attempts to achieve an efficient routing connectivity using
memory management and node collaboration, while the FCNS is a fuzzy routing-forwarding algorithm
based on the Mamdani fuzzy system.

4.1. Setting of Experimental Parameters

In this experiment, for constructing a simulation environment which is conducive to testing the
performance of FPRDM algorithm, this paper employs the real datasets acquired from the Community
Resource for Archiving Wireless Data At Dartmouth (CRAWDAD) , which consists of data sets Infocom
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5, Infocom 6, Cambridge and Intel (Table 2), and the experimental setting of parameters is shown as
Table 3.

Table 2. The mobility model of the simulation environment.

Dataset Infocom5 Infocom6 Cambridge Intel

Device iMote iMote iMote iMote
Duration (days) 3.5 4 11 3.5

Number of experimental devices 41 98 50 8
Number of internal contacts iMote 2245 1706 1087 1364

Table 3. The experimental setting of the simulation environment.

Simulation Environment Description

Simulator Opportunistic Network Environment (ONE)
Communication area 3000 × 3000

Total simulation time (h) 10–20
Number of nodes N 100 (initial value), 200, 400, 600

Cache space of a node C (Mb) 10 (initial value), 15, 20, 25, 30, 35, 40
Speed of a node (m/s) 1-25

Initial energy for a node (J) 200
Number of social features 8

Three location parameters a1, a2, a3 a1 = 0.75, a2 = 0.5, a3 = 0.25
Three scale parameters σ2

1 , σ2
2 , σ2

3 σ2
1 = σ2

2 = σ2
3 = 0.96

In particular, the movement trajectory of mobile users in the communication area is subject to the
datasets in Table 2 [42], because these models could be based on community division and node profiles.
Furthermore, the total energy for a node is initialized to 200 J, and each data transmission consumes
0.25 J of energy. The speed for a node fluctuates from 1 to 25 m/s, which could be the mobile speed of
walking, biking, or driving. As shown in Figure 4, for each type of the real data set and each group of
parameter setting, a set of simulation data is generated in this experiment, therefore 24 different sets
of data will be obtained from 24 simulation experiments. Because three measurement metrics in this
experiment cannot reach the highest value at the same time, the delivery ration is given priority in the
optimization process. Among the 24 groups of experimental data, the parameters are generally set
based on the optimal group of experimental data (the highest delivery ration and relatively low delay),
which is referred to the optimal performance in the 10th experiment from Figure 4. Referring to
the parameter initialization from the paradigm of fuzzy inference system and experimental results,
the location and scale parameters are set as a1 = 0.75, a2 = 0.5, a3 = 0.25, and σ2

1 = σ2
2 = σ2

3 = 0.96
from the parameter settings of the 10th experiment. In addition, based on the common settings of the
opportunistic network environment, the number of nodes in this communication area N is set as 100,
200, 400 and 600, and the cache space for a node C is set as 10, 15, 20, 25, 30, 35, and 40 MB.
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Figure 4. The average delivery ratio from each group of experimental data.

Moreover, because the social attribute information of nodes does not exist in the four real data
sets, this simulation defines eight different social characteristics for each node, including interests,
occupation, common friends, preferences, browsing history, repost record, comments, and online time.
Each of these social features consists of several feature words, and each mobile user randomly
corresponds to a different number of feature words. This simulation allocates specific feature words to
each mobile node in the communication area. If a pair of nodes have more identical feature words,
the opportunities of message transmission between them are even greater. Moreover, the number of
repeated feature words also reflects the weight of the corresponding social attribute. If a social attribute
includes more repeated feature words, then this attribute can be considered as a more important
foundation to find the destination node. As shown in Figure 5, the number of repeated feature words
in social attributes “preference”, “browsing history”, and “comment” are relatively less, while the
social attributes of “interest”, “occupation”, and “common friend” present more identical feature
words in the simulation. As shown in Figure 6, the analytic hierarchy process (AHP) algorithm
allocates weights to each social characteristic based on the four real data sets. This also indicates
that the social features of “interest”, “occupation”, and “common friend” play a relatively important
role in the data transmission process, while the characteristics of “preference”, “browsing history”,
and “comment” are not particularly important on community division.

100

200

400

600

comment browsing history preference occupation

report record online time common friend interest

Figure 5. The number of repeated feature words for mobile nodes in the communication domain.
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Figure 6. Weight value distribution for social features of mobile users.

4.2. Experimental Measurement Metrics

For evaluating the performance of the FPRDM routing algorithm comprehensively, the final result
obtained from this experiment is the average value of the four testing results from the above mobility
models, and we will analyze the experimental results in terms:

(1) Delivery ratio: This measurement metric represents the probability of neighbor and destination
nodes acquiring data packets, which is expressed as

Dnode = Dreceive/Dsend (23)

where Dreceive represents the number of messages obtained from the neighbor nodes in the same online
community, and Dsend denotes the number of messages transmitted by mobile users. There may be data
packets loss and packet damage phenomenon in the data dissemination process, so Dsend > Dreceive
and Dnode < 1.

(2) Average end-to-end delay: This parameter is the average delay of routing selection, waiting
for messages, node mobility, and message forwarding. It could be computed as

Anode = Asum/N (24)

in which Asum denotes the total delay of data transmission from source nodes to destinations and N
represents the total number of mobile users in the communication area.

(3) Network overhead on average: This parameter denotes the average overhead of a successful
message forwarding between a pair of mobile users. The network overhead on average is the network
overhead of each mobile node in data transmission, including memory consumption, time delay
between nodes, energy consumption, etc. Therefore this parameter can be expressed as the ratio of total
network overhead to the number of nodes in the communication area, which could be formalized as

Onode = O f or −Osec/N (25)

where O f or is the total time of data transmission and Osec represents the total time of successful message
forwarding between mobile users, and N denotes the total number of mobile nodes.

4.3. Analysis of Experimental Results

In this experiment, we mainly pay attention to the impact of the cache space and number of nodes
on the performance of various routing algorithms. In big data and 5G network environments, due to
the large amount of transmitted data between mobile devices, the cache space of a node becomes a
crucial index to measure the performance of routing strategies in OSNs. In addition, defined by the
number of nodes and mobile pattern, the network topology has also been an essential consideration in
the data transmission process.



Symmetry 2019, 11, 1095 18 of 24

Firstly, we investigate the impact of the cache space and number of mobile devices on
delivery ratio. As shown in Figure 7, with the increase of the cache space and number of nodes,
the delivery ratio from these five routing algorithms generally maintains a slow upward trend,
and FPRDM scheme shows a slight enhancement as compared with other four routing protocols.
In particular, from Figure 7d, when N = 600 and C = 40 Mb, the delivery ratio from FPRDM is about
0.88, which is the highest value this algorithm shows. Moreover, from Figure 7a, when N = 100 and
C = 25 Mb, the delivery ratio from the FCNS routing protocol exceeds that from FPRDM for only the
one time.
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Figure 7. Performance comparison of delivery ratio with various cache spaces and various number
of nodes. (a) N = 100. (b) N = 200. (c) N = 400. (d) N = 600.

As shown in Figure 7, the delivery ratio of the ICMT routing algorithm is always in the middle
degree, while the traditional routing approaches Epidemic and Spray and Wait present a relatively
low delivery ratio all the time. This is because these methods only roughly control the number of
message replications or data packages, but do not pay attention to the life cycle time of the message or
changes in network topology. When selecting a suitable relay node, the Epidemic routing algorithm
adopts the flooding model to widely spread data packages in the network, so the large number of
message duplicates circulating in the networks may promote the increase of delivery ratio, and cause
a sharp rise in costs and delays. ICMT, Spray and Wait, and FCNS employ data management,
encountering history, and fuzzy control to make a more accurate decision on message routing and
forwarding, respectively. However, these approaches still transmit messages to multiple unrelated
nodes which do not participate in the data dissemination process. The FPRDM scheme first performs a
classification identification of nodes, and then allocates a suitable weight to each social characteristic of
message user and determines three different grades of membership functions (high, medium, and low)
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for the quantization vector, thereby selecting the appropriate relay nodes through the process of a
defuzzifier component. For this reason, a relatively high delivery ratio with an average of 0.8 could be
presented from the FPRDM scheme.

Furthermore, Figure 8 displays the performance comparison of these five routing algorithms in
terms of the average end-to-end delay with various cache spaces and various number of nodes. On the
whole, the Epidemic routing algorithm consistently exhibits the highest end-to-end delay among
these strategies due to the flooding dissemination of messages. Additionally, because the Spray and
Wait and ICMT routing protocols respectively employ two-phases and a cooperative mechanism to
reduce the number of messages appropriately, they present an average end-to-end delay of 300 s when
enlarging the cache space of mobile devices from 10 to 40 Mb, which is within the middle range among
these approaches.
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Figure 8. Performance Please comparison of average end-to-end delay with various cache spaces and
various number of nodes. B: Spray and wait; C: Epidemic; D: ICMT; E: FCNS; F: FPRDM (a) N = 100.
(b) N = 200. (c) N = 400. (d) N = 600.

As shown in Figure 8a–d, the average end-to-end delay from the FPRDM algorithm is always
the lowest, while that from the FCNS method is the second lowest. It should be noted that the
average end-to-end delay from FPRDM reaches the lowest value of 68 s when N = 100 in Figure 8a.
From Figure 8c, the gap of average end-to-end delay between FPRDM and FCNS reaches the maximum
of 60 s when N = 300, which indicates that the fuzzy control strategy of the FPRDM scheme is superior
to that of the FCNS algorithm. To be specific, the FCNS algorithm focuses on node similarity, which is
a flexible metric due to the changes in nodes attributes; while the FPRDM scheme considers the
fuzzy data transmission relationship between nodes through their social online features, which can be
converted into a digitized index and utilized to make a more reasonable data transmission decisions in
OSNs. Besides, with the application of the mechanisms of node cooperation and cache management,
the ICMT algorithm is able to maximally and rationally utilize the buffer memory space of each
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node , and more importantly, tremendously improving the efficiency of the data dissemination and
simultaneously decreasing the average end-to-end delay.

Finally, we explore the performance comparison of the network overhead from the five routing
schemes with various cache spaces and various number of nodes. As demonstrated in Figure 9, when
the buff memory space of nodes constantly increases from 10 to 40 Mb, the network overhead from each
algorithm declines dramatically. On the contrary, when the number of nodes in the communication
area continually increases, the network overhead of each algorithm slowly goes down. As exhibited in
Figure 9, the network overhead of these algorithms could be ranked from high to low as: Spray and
Wait, Epidemic, ICMT, FCNS, and FPRDM. Specially, the network overhead of the FPRDM algorithm
is always the lowest among these methods, presenting an average network overhead of 150.

Figure 9. Performance comparison of network overhead with various cache spaces and various number
of nodes. B: Spray and wait; C: Epidemic; D: ICMT; E: FCNS; F: FPRDM. (a) N = 100. (b) N = 200.
(c) N = 400. (d) N = 600.

From Figure 9a, when N = 100 and C = 40 Mb, the network overhead of the FPRDM scheme
reaches the minimum value of 50, which means that this strategy adopts fuzzy inference theory
to effectively control the number of message replications and simultaneously reduce the number
of relay nodes. From Figure 9d, when N = 600 and C = 10 Mb, the network overhead from the
Spray and Wait approach reaches the maximum approximately 660. When selecting a suitable relay
node, the Epidemic routing algorithm adopts the flooding model to widely spread data packages
in the network. ICMT, Spray and Wait, and FCNS employ data management, encountering history,
and fuzzy control to make a more accurate decision on message routing and forwarding, respectively.
This is because message replications are widely propagated in the Spray phase, while in the next phase
the number of messages is tightly controlled, thereby resulting in an increase in the number of hops.
Besides, the network overhead from ICMT and FCNS routing algorithms is in the middle level all the
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time, because some effective message controlling strategies such as information management, fuzzy
routing selection have been adopted.

To sum up, the experimental results demonstrate the proposed scheme reduces the network delay
and the overhead ratio, and increases the delivery ratio as compared with several typical and latest
routing protocols. Especially, in the best case, the proposed scheme presents an average delivery
ratio of 0.8, reduces the average end-to-end delay by nearly 45% as compared with the Epidemic
routing protocol, and lowers the network overhead by about 75% as compared to the Spray and Wait
routing algorithm.

5. Conclusions

In this study, for investigating the problem of data transmission in opportunistic mobile social
networks, we propose and develop an adaptive routing-forwarding control scheme based on fuzzy
recognition and decision-making model (FPRDM), which contains three interlocking steps: fuzzy
recognition for node classification, weight adjustment for social features, and the inference process
for the fuzzy relationship between node profile and data transmission. In an opportunistic mobile
social network, message users carrying smart mobile devices randomly move around within a certain
communication area, so they could be identified and located by several crucial and representative
social attributes. After the social characteristics of mobile users have been formalized from context
information to digital eigenvector, the obtained quantization vector is considered as a fuzzy input
and will be utilized to determine the corresponding fuzzy subset and membership degree. Based on
the training results from the improved AHP testing in a real dataset, the FPRDM approach allocates
a suitable weight to each social characteristic of message user and determines three different grades
of membership functions (high, medium, and low) for the quantization vector. A high membership
degree between two nodes indicates that there is a relatively high social similarity between them and
they are more likely to belong to the same online community. On the contrary, a low membership
between a pair of message users suggests that they do not communicate with each other frequently and
there are fewer opportunities for message routing and forwarding between them. Afterwards, on the
basis of the application of a defuzzfier component, the fuzzy relationship between social attribute and
node recognition could be translated into a specific transmission priority value, which is regarded as a
significant reference for message routing and forwarding in the networks. To evaluate the optimization
performance of the FPRDM algorithm, simulation results demonstrate that it dramatically reduces the
end-to-end delay and the network overhead, and slightly enhances the delivery ratio as compared
with the other four routing strategies.

In future studies, we will work on the information fusion of more social features of mobile users
in OSNs so that some more credible decisions on data dissemination could be provided, and more
importantly, constructing an effective routing security protocol for tackling the issue of privacy
protection in the data transmission process.
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Abbreviations

The following abbreviations are used in this manuscript:

OSNs opportunistic social networks
DTNs delay tolerant networks
SNS social network service
AHP analytic hierarchy process
EpSoc a flooding-based social-based routing protocol
Tanh tanhyperbolic function
Markov markov Andrey chain
CoA center of area
MoM mean of maximum
ONE opportunistic networking environment
FPRDM an adaptive control scheme based on intelligent fuzzy decision-making system
FCNS fuzzy routing-forwarding algorithm exploiting comprehensive node similarity
ICMT information cache management and data transmission algorithm
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