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Abstract: In this paper we extend one of the main problems of near-rings to the framework of algebraic
hypercompositional structures. This problem states that every near-ring is isomorphic with a near-ring
of the transformations of a group. First we endow the set of all multitransformations of a hypergroup
(not necessarily abelian) with a general hypernear-ring structure, called the multitransformation
general hypernear-ring associated with a hypergroup. Then we show that any hypernear-ring can
be weakly embedded into a multitransformation general hypernear-ring, generalizing the similar
classical theorem on near-rings. Several properties of hypernear-rings related with this property are
discussed and illustrated also by examples.
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1. Introduction

Generally speaking, the embedding of an algebraic structure into another one requires the
existence of an injective map between the two algebraic objects, that also preserves the structure, i.e.,
a monomorphism. The most natural, canonical and well-known embeddings are those of numbers:
the natural numbers into integers, the integers into the rational numbers, the rational numbers
into the real numbers and the real numbers into the complex numbers. One important type of
rings is that one of the endomorphisms of an abelian group under function pointwise addition and
composition of functions. It is well known that every ring is isomorphic with a subring of such
a ring of endomorphisms. But this result holds only in the commutative case, since the set of the
endomorphisms of a non-abelian group is no longer closed under addition. This aspect motivates the
interest in studying near-rings, that appear to have applications also in characterizing transformations
of a group. More exactly, the set of all transformations of a group G, i.e., T(G) = { f : G → G} can be
endowed with a near-ring structure under pointwise addition and composition of mappings, such a
near-ring being called the transformation near-ring of the group G.

In 1959 Berman and Silverman [1] claimed that every near-ring is isomorphic with a near-ring
of transformations. At that time only some hints were presented, while a direct and clear proof of
this result appeared in Malone and Heatherly [2] almost ten years later. Since T(G) has an identity,
it immediately follows that any near-ring can be embedded in a near-ring with identity. Moreover,
in the same paper [2], it was proved that a group (H,+) can be embedded in a group (G,+) if and only
if the near-ring T0(H), consisting of all transformations of H which multiplicatively commute with the
zero transformation, can be embedded into the similar near-ring T0(G) on G under a kernel-preserving
monomorphism of near-rings.

Similarly to near-rings, but in the framework of algebraic hyperstructures, Dašić [3] defined the
hypernear-rings as hyperstructures with the additive part being a quasicanonical hypergroup [4,5]
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(called also a polygroup [6,7]), and the multiplicative part being a semigroup with a bilaterally
absorbing element, such that the multiplication is distributive with respect to the hyperaddition on the
left-hand side. Later on, this algebraic hyperstructure was called a strongly distributive hypernear-ring,
or a zero-symmetric hypernear-ring, while in a hypernear-ring the distributivity property was replaced
by the “inclusive distributivity” from the left (or right) side. Moreover, when the additive part
is a hypergroup and all the other properties related to the multiplication are conserved, we talk
about a general hypernear-ring [8]. The distributivity property is important also in other types of
hyperstructures, see e.g., [9]. A detailed discussion about the terminology related to hypernear-rings
is included in [10]. In the same paper, the authors defined on the set of all transformations of a
quasicanonical hypergroup that preserves the zero element a hyperaddition and a multiplication
(as the composition of functions) in such a way to obtain a hypernear-ring. More general, the set of all
transformations of a hypergroup (not necessarily commutative) together with the same hyperaddition
and multiplication is a strongly distributive hypernear-ring [3]. In this note we will extend the study
to the set of all multimappings (or multitransformations) of a (non-abelian) hypergroup, defining first
a structure of (left) general hypernear-ring, called the multitransformation general hypernear-ring
associated with a hypergroup. Then we will show that any hypernear-ring can be weakly embedded
into a multitransformation general hypernear-ring, generalizing the similar classical theorem on
near-rings [2]. Besides, under same conditions, any additive hypernear-ring is weakly embeddable
into the additive hypernear-ring of the transformations of a hypergroup with identity element that
commute multiplicatively with the zero-function. The paper ends with some conclusive ideas and
suggestions of future works on this topic.

2. Preliminaries

We start with some basic definitions and results in the framework of hypernear-rings and
near-rings of group mappings. For further properties of these concepts we refer the reader to the
papers [2,3,11,12] and the fundamental books [13–15]. For the consistence of our study, regarding
hypernear-rings we keep the terminology established and explained in [8,16].

First we recall the definition introduced by Dašić in 1978.

Definition 1. [12] A hypernear-ring is an algebraic system (R,+, ·), where R is a non-empty set endowed with
a hyperoperation + : R× R→ P∗(R) and an operation · : R× R→ R, satisfying the following three axioms:

1. (R,+) is a quasicanonical hypergroup (named also polygroup [6]), meaning that:

(a) x + (y + z) = (x + y) + z for any x, y, z ∈ R,
(b) there exists 0 ∈ R such that, for any x ∈ R, x + 0 = 0 + x = {x},
(c) for any x ∈ R there exists a unique element −x ∈ R, such that 0 ∈ x + (−x) ∩ (−x) + x,
(d) for any x, y, z ∈ R, z ∈ x + y implies that x ∈ z + (−y), y ∈ (−x) + z.

2. (R, ·) is a semigroup endowed with a two-sided absorbing element 0, i.e., for any x ∈ R, x · 0 = 0 · x = 0.
3. The operation “·” is distributive with respect to the hyperoperation “+” from the left-hand side: for any

x, y, z ∈ R, there is x · (y + z) = x · y + x · z.

This kind of hypernear-ring was called by Gontineac [11] a zero-symmetric hypernear-ring. In our
previous works [10,16], regarding the distributivity, we kept the Vougiouklis’ terminology [17],
and therefore, we say that a hypernear-ring is a hyperstructure (R,+, ·) satisfying the above mentioned
axioms 1. and 2., and the new one:

3′. The operation “·” is inclusively distributive with respect to the hyperoperation “+” from the
left-hand side: for any x, y, z ∈ R, x · (y + z) ⊆ x · y + x · z. Accordingly, the Dašić ’s hypernear-ring
(satisfying the axioms 1., 2., and 3.) is called strongly distributive hypernear-ring.

Furthermore, if the additive part is a hypergroup (and not a polygroup), then we talk about a
more general type of hypernear-rings.
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Definition 2. [8] A general (left) hypernear-ring is an algebraic structure (R,+, ·) such that (R,+) is a
hypergroup, (R, ·) is a semihypergroup and the hyperoperation “·” is inclusively distributive with respect to
the hyperoperation “+” from the left-hand side, i.e., x · (y + z) ⊆ x · y + x · z, for any x, y, z ∈ R. If in the
third condition the equality is valid, then the structure (R,+, ·) is called strongly distributive general (left)
hypernear-ring. Besides, if the multiplicative part (R, ·) is only a semigroup (instead of a semihypergroup),
we get the notion of general (left) additive hypernear-ring.

Definition 3. Let (R1,+, ·) and (R2,+, ·) be two general hypernear-rings. A map ρ : R1 → R2 is called an
inclusion homomorphism if the following conditions are satisfied:

1. ρ(x + y) ⊆ ρ(x) + ρ(y)
2. ρ(x · y) ⊆ ρ(x) · ρ(y) for all x, y ∈ R1.

A map ρ is called a good (strong) homomorphism if in the conditions 1. and 2. the equality is valid.

In the second part of this section we will briefly recall the fundamentals on near-rings of
group mappings. A left near-ring (N,+, ·) is a non-empty set endowed with two binary operations,
the addition + and the multiplication ·, such that (N,+) is a group (not necessarily abelian) with
the neutral element 0, (N, ·) is a semigroup, and the multiplication is distributive with respect to the
addition from the left-hand side. Similarly, we have a right near-ring. Several examples of near-rings
are obtained on the set of “non-linear” mappings and here we will see two of them.

Let (G,+) be a group (not necessarily commutative) and let T(G) be the set of all functions from
G to G. On T(G) define two binary operations: “+” is the pointwise addition of functions, while the
multiplication “·” is the composition of functions. Then (T(G),+, ·) is a (left) near-ring, called the
transformation near-ring on the group G. Moreover, let T0(G) be the subnear-ring of T(G) consisting of
the functions of T(G) that commute multiplicatively with the zero function, i.e., T0(G) = { f ∈ T(G) |
f (0) = 0}. These two near-rings, T(G) and T0(G), have a fundamental role in embeddings. Already in
1959, it was claimed by Berman and Silverman [1] that every near-ring is isomorphic with a near-ring
of transformations. One year later the proof was given by the same authors, but using an elaborate
terminology and methodology. Here below we recall this result together with other related properties,
as presented by Malone and Heatherly [2].

Theorem 1. [2] Let (R,+, ·) be a near-ring. If (G,+) is any group containing (R,+) as a proper subgroup,
then (R,+, ·) can be embedded in the transformation near-ring T(G).

Corollary 1. [2] Every near-ring can be embedded in a near-ring with identity.

Theorem 2. [2] A group (H,+) can be embedded in a group (G,+) if and only if T0(H) can be embedded in
T0(G) by a near-ring monomorphism which is kernel-preserving.

Theorem 3. [2] A group (H,+) can be embedded in a group (G,+) if and only if the near-ring T(H) can be
embedded in the near-ring T(G).

3. Weak Embeddable Hypernear-Rings

In this section we aim to extend the results related to embeddings of near-rings to the case of
hypernear-rings. In this respect, instead of a group (G,+) we will consider a hypergroup (H,+) and
then the set of all multimappings on H, which we endow with a structure of general hypernear-ring.

Theorem 4. Let (H,+) be a hypergroup (not necessarily abelian) and T∗(H) = {h : H → P∗(H)}
the set of all multimappings of the hypergroup (H,+). Define, for all ( f , g) ∈ T∗(H) × T∗(H), the
following hyperoperations:

f ⊕ g = {h ∈ T∗(H) | (∀x ∈ H) h(x) ⊆ f (x) + g(x)}
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f � g = {h ∈ T∗(H) | (∀x ∈ H) h(x) ⊆ g( f (x)) =
⋃

u∈ f (x)

g(u)}.

The structure (T∗(H),⊕,�) is a (left) general hypernear-ring.

Proof. For any f , g ∈ T∗(H) it holds: f ⊕ g 6= ∅. Indeed, for any x ∈ H, it holds f (x) 6= ∅
and g(x) 6= ∅ and thus, f (x) + g(x) 6= ∅. Therefore, for the map h : H → P∗(H) defined by:
h(x) = f (x) + g(x) for all x ∈ H, it holds h ∈ f ⊕ g. Now, we prove that the hyperoperation ⊕ is
associative. Let f , g, h ∈ T∗(H) and set

L = ( f ⊕ g)⊕ h =
⋃
{h′ ⊕ h | h′ ∈ f ⊕ g} =

=
⋃
{h′ ⊕ h | (∀x ∈ H) h′(x) ⊆ f (x) + g(x)}.

Thus, if h′′ ∈ L, then, for all x ∈ H, it holds: h′′(x) ⊆ h′(x) + h(x) ⊆ ( f (x) + g(x)) + h(x).
Conversely, if h′′ is an element of T∗(H) such that: h′′(x) ⊆ ( f (x) + g(x)) + h(x), for all x ∈ H,
and if we choose h′ such that h′(x) = f (x) + g(x) for all x ∈ H, then h′ ∈ f ⊕ g and h′′ ∈ h′ ⊕ h
i.e., h′′ ∈ L. So, L = {h′′ ∈ T∗(H)|(∀x ∈ H)h′′(x) ⊆ ( f (x) + g(x)) + h(x)}. On the other side,
take D = f ⊕ (g ⊕ h). Then, D = {h′′ ∈ T∗(H)|(∀x ∈ H)h′′(x) ⊆ f (x) + (g(x) + h(x))}. By the
associativity of the hyperoperation + we obtain that L = D, meaning that the hyperoperation ⊕
is associative.

Let f , g ∈ T∗(H). We prove that the equation f ∈ g ⊕ a has a solution a ∈ T∗(H). If we set
a(x) = H, for all x ∈ H, then a ∈ T∗(H) and for all x ∈ H it holds g(x) + a(x) = H ⊇ f (x). So,
f ∈ g⊕ a. Similarly, the equation f ∈ a⊕ g has a solution in T∗(H). Thus, (T∗(H),⊕) is a hypergroup.

Now, we show that (T∗(H),�) is a semihypergroup. Let f , g ∈ T∗(H). For all x ∈ H it holds
g(x) 6= ∅ and so g( f (x)) 6= ∅. Let h : H → P∗(H) be a multimapping defined by h(x) = g( f (x)),
for all x ∈ H. Obviously, h ∈ f � g and so f � g 6= ∅. Let us prove that � is a associative.
Let f , g, h ∈ T∗(H). Set:

L = ( f � g)� h =
⋃
{h′ � h | h′ ∈ f � g} = {h′ � h | (∀x ∈ H) h′(x) ⊆ g( f (x))} =

= {h′′ | (∀x ∈ H) h′′(x) ⊆ h(h′(x)) ∧ h′(x) ⊆ g( f (x))}.

So, if h′′ ∈ L, then h′′(x) ⊆ h(g( f (x))), for all x ∈ H. On the other side, if h′′ ∈ T∗(H) and h′′(x) ⊆
h(g( f (x))) for all x ∈ H, then we choose h′ ∈ T∗(H) such that h′(x) = g( f (x)) and consequently we
obtain that h′′ ⊆ h(h′(x)). Thus, h′′ ∈ L. So, L = {h′′ ∈ T∗(H) | (∀x ∈ H) h′′(x) ⊆ h(g( f (x)))}.

Similarly, D = f � (g� h) = {h′′ | (∀x ∈ H) h′′(x) ⊆ h(g( f (x)))}. Thus, L = D.
It remains to prove that the hyperoperation ⊕ is inclusively distributive with respect to the

hyperoperation � on the left-hand side. Let f , g, h ∈ T∗(H). Set L = f � (g⊕ h) =
⋃{ f � h′|h′ ∈

g⊕ h} = ⋃{ f � h′|h′ ∈ T∗(H) ∧ (∀x)h′(x) ⊆ g(x) + h(x)}. So, if k ∈ L then for all x ∈ H it holds:
k(x) ⊆ h′( f (x)) ⊆ g( f (x)) + h( f (x)).

On the other hand, D = ( f � g)⊕ ( f � h) =
⋃{k1⊕ k2|k1 ∈ f � g, k2 ∈ f � h}. Let k ∈ L. Choose,

k1, k2 ∈ T∗(H) such that k1(x) = g( f (x)) and k2(x) = h( f (x)) for all x ∈ H. Then k1 ∈ f � g and
k2 ∈ f � h. Thus, k(x) ⊆ k1(x) + k2(x) for all x ∈ H, i.e., k ∈ k1 ⊕ k2 and k1 ∈ f � g, k2 ∈ f � h.
So, k ∈ D. Therefore, L ⊆ D.

Definition 4. T∗(H) is called the multitransformations general hypernear-ring on the hypergroup H.

Remark 1. Let (G,+) be a group and T(G) be the transformations near-ring on G. Obviously, T(G) ⊂
T∗(G) = { f : G → P∗(G)} and, for all f , g ∈ T(G), it holds: f ⊕ g = f + g, f � g = f · g, meaning that
the hyperoperations defined in Theorem 4 are the same as the operations in Theorem 1. It follows that T(G) is a
sub(hyper)near-ring of (T∗(G),⊕,�).



Symmetry 2019, 11, 964 5 of 10

Definition 5. We say that the hypernear-ring (R1,+, ·) is weak embeddable (by short W− embeddable) in the
hypernear-ring (R2,+, ·) if there exists an injective inclusion homomorphism µ : R1 → R2.

The next theorem is a generalization of Theorem 1 [5].

Theorem 5. For every general hypernear-ring (R,+, ·) there exists a hypergroup (H,+) such that R is W−
embeddable in the associated hypernear-ring T∗(H).

Proof. Let (R,+, ·) be a hypernear-ring and let (H,+) be a hypergroup such that (R,+) is a proper
subhypergroup of (H,+). For a fixed element r ∈ R we define a multimapping fr : H → P∗(H)

as follows

fr(g) =

{
g · r, if g ∈ R
r, if g ∈ H \ R.

Let us define now the mapping µ : R→ T∗(H) as µ(r) = fr, which is an inclusion homomorphism.
Indeed, if a, b ∈ R then we have µ(a + b) = { fc | c ∈ a + b} and µ(a)⊕ µ(b) = fa ⊕ fb = {h | (∀g ∈
H) h(g) ⊆ fa(g) + fb(g)}.

Consider c ∈ a + b and g ∈ H. If g ∈ R, then fc(g) = g · c ⊆ g · (a + b) ⊆ g · a + g · b =

fa(g) + fb(g). If g ∈ H \ R, then fc(g) = c ∈ a + b = fa(g) + fb(g). It follows that, for all g ∈ H, we
have fc(g) ⊆ fa(g) + fb(g) and therefore fc ∈ µ(a)⊕ µ(b), meaning that µ(a + b) ⊆ µ(a)⊕ µ(b).

Similarly, there is µ(a · b) = { fc | c ∈ a · b} and µ(a)� µ(b) = fa � fb = {h ∈ T∗(H) | (∀g ∈
H) h(g) ⊆ fb( fa(g))}. Let c ∈ a · b. Then, for g ∈ R, it holds: fc(g) = g · c ⊆ g · (a · b) = (g · a) · b =

fb( fa(g)). If g ∈ H \ R, then there is fc(g) = c ∈ a · b = fb(a) = fb( fa(g)). Thus, fc ∈ µ(a)� µ(b) and
so µ(a� b) ⊆ µ(a)� µ(b).

Based on Definition 3, we conclude that µ is an inclusive homomorphism. It remains to show that
µ is injective. If µ(a) = µ(b), then for all g ∈ H, it holds fa(g) = fb(g). So, if we choose g ∈ H \ R,
then we get that a = fa(g) = fb(g) = b.

These all show that the general hypernear-ring R is W-embeddable in T∗(H).

Remark 2. If (R,+, ·) is a near-ring such that (R,+) is a proper subgroup of a group (G,+), then for a fixed
r ∈ R the multimapping fr constructed in the proof of Theorem 5 is in fact a map from G to G, since in this
case the multiplication · is an ordinary operation, i.e., g · r ∈ G, for all g ∈ R. Thus fr : G → G and thereby
µ(R) ⊆ T(G). By consequence µ : R→ T(G) is an ordinary monomorphism. In other words, Theorem 5 is a
generalization of Theorem 1.

Example 1. Let (R,+, ·) be a left near-ring. Let P1 and P2 be non-empty subsets of R such that R · P1 ⊆ P1

and P1 ⊆ Z(R), where Z(R) is the center of R, i.e., Z(R) = {x ∈ R | (∀y ∈ R)x + y = y + x}. For any
(x, y) ∈ R2 define:

x⊕P1 y = x + y + P1, x�P2 y = xP2y.

Then the structure (R,⊕P1 ,�P2) is a general left hypernear-ring [8,18]. Let H = R ∪ {a} and define on
H the hyperoperation ⊕′P as follows:

x⊕′P1
y =

{
x⊕P1 y, if x, y ∈ R
H, if x = a ∨ y = a.

It is clear that H is a hypergroup such that (R,+) is a proper subhypergroup of (H,+). Besides, based on
Theorem 5, for every r ∈ R the multimapping fr : H → P∗(H) is defined as

fr(g) =

{
g�P2 r, if g ∈ R
r, if g = a

=

{
gP2r, if g ∈ R
r, if g = a.
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Clearly it follows that µ : R → P∗(H), defined by µ(r) = fr, is an inclusive homomorphism, so the
general left hypernear-ring (R,⊕P1 ,�P2) is W-embeddable in T∗(H).

Example 2. Consider the semigroup (N, ·) of natural numbers with the standard multiplication operation and
the order “≤”. Define on it the hyperoperations +≤ and ·≤ as follows:

x +≤ y = {z | x ≤ z ∨ y ≤ z}

x ·≤ y = {z | x · y ≤ z}.

Then the structure (N,+≤, ·≤) is a strongly distributive general hypernear-ring (in fact it is a hyperring).
This follows from Theorem 4.3 [19]. Furthermore, for any a /∈ N, it can be easily verified that (N,+≤) is a
proper subhypergroup of (N∪ {a},+′≤), where the hyperoperation +′≤ is defined by:

x +′≤ y =

{
x +≤ y, if x, y ∈ N
N∪ {a}, if x = a ∨ y = a.

In this case, for a fixed n ∈ N, we can define the multimapping fn : N∪ {a} → P∗(N∪ {a}) as follows:

fn(g) =

{
g ·≤ n, if g ∈ N
n, if g = a

=

{
{k ∈ N | g · n ≤ k}, if g ∈ N
n, if g = a

and therefore the mapping µ : N → P∗(N ∪ {a}) is an inclusive homomorphism. Again this shows that the
general hypernear-ring (N,+≤, ·≤) is W-embeddable in T∗(N∪ {a}).

Example 3. Let R = {0, 1, 2, 3}. Consider now the semigroup (R, ·) defined by Table 1:

Table 1. The Cayley table of the semigroup (R, ·)

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

Define on R the hyperoperation +≤ as follows: x +≤ y = {z | x ≤ z ∨ y ≤ z}, so its Cayley table is
described in Table 2:

Table 2. The Cayley table of the hypergroupoid (R,+≤)

+≤ 0 1 2 3

0 R R R R
1 R {1,2,3} {1,2,3} {1,2,3}
2 R {1,2,3} {2,3} {2,3}
3 R {1,2,3} {2,3} {3}

Obviously, the relation ≤ is reflexive and transitive and, for all x, y, z ∈ R, it holds: x ≤ y⇒ z · x ≤ z · y.
Thus, (R,+≤, ·) is an (additive) hypernear-ring. Let H = R∪ {4} and define the hyperoperation +≤ as follows:

x +≤ y =

{
x +≤ y, if x, y ∈ {0, 1, 2, 3}

H, if x = 4∨ y = 4
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It follows that (R,+) is a proper subhypergroup of (H,+) and for a fixed r ∈ R it holds fr(x) = r, for all
x ∈ H. This implies that the mapping µ : H → P∗(H), defined by µ(r) = fr for any r ∈ R, is an
inclusive homomorphism.

Now we will construct a left general additive hypernear-ring associated with an
arbitrary hypergroup.

Theorem 6. Let (H,+) be a hypergroup and T(H) = { f : H → H}. On the set T(H) define the
hyperoperation ⊕T and the operation �T as follows:

f ⊕T g = {h ∈ T(H) | (∀x ∈ H) h(x) ∈ f (x) + g(x)},

( f �T g)(x) = g( f (x)), for all x ∈ H.

The obtained structure (T(H),⊕T ,�T) is a (left) general additive hypernear-ring.

Proof. Let f , g ∈ T(H). We prove that there exists h ∈ T(H) such that h(x) ∈ f (x) + g(x) for all
x ∈ H. Let x ∈ H. Since f (x) + g(x) 6= ∅ we can choose hx ∈ f (x) + g(x) and define h(x) = hx.
Obviously, h ∈ f ⊕T g. Now we prove that the hyperoperation ⊕T is associative. Let f , g, h ∈ T(H).
Set L = ( f ⊕T g) ⊕T h = {h′′ | (∀x) h′′(x) ∈ h′(x) + h(x) ∧ h′(x) ∈ f (x) + g(x)} and D = f ⊕T
(g⊕T h) = { f ′′ | (∀x) f ′′(x) ∈ f (x) + f ′(x) ∧ f ′(x) ∈ g(x) + h(x)}. Thus, if h′′ ∈ L, then h′′(x) ∈
( f (x) + g(x)) + h(x) = f (x) + (g(x) + h(x)). Thereby, for any x ∈ H, there exists ax ∈ g(x) + h(x)
such that h′′(x) ∈ f (x) + ax. Define f ′(x) = ax. Then, f ′ ∈ g ⊕T h and for all x ∈ H it holds
h′′(x) ∈ f (x) + f ′(x). Therefore, h′′ ∈ D. So, L ⊆ D. Similarly, we obtain that D ⊆ L. Now,
let f , g ∈ T(H). We prove that the equation f ∈ g ⊕T h has a solution h ∈ T(H). Since (H,+)

is a hypergroup, it follows that, for any x ∈ H, there exists bx ∈ H such that f (x) ∈ g(x) + bx.
Define h : H → H by h(x) = bx. Then h ∈ T(H) and f ∈ g⊕T h. Similarly, we obtain that the equation
f ∈ h⊕T g has a solution in T(H). We may conclude that (T(H),⊕T) is a hypergroup.

Obviously, (T(H),�T) is a semigroup, because the composition of functions is associative.
Now we prove that the hyperoperation ⊕T is left inclusively distributive with respect to the
operation �T . Let f , g, h ∈ T(H). Set L = f �T (g ⊕T h) = { f �T k | k ∈ g ⊕T h} and
D = ( f �T g) ⊕T ( f �T h) = {h′ | (∀x ∈ H) h′(x) ∈ g( f (x)) + h( f (x))}. Let k ∈ g ⊕ h. Then,
for all x ∈ H, it holds ( f � k)(x) = k( f (x)) ⊆ g( f (x)) + h( f (x)). Thus, f � k ∈ D, meaning that
L ⊆ D.

For an arbitrary group G, Malone and Heatherly [2] denote by T0(G) the subset of T(G) consisting
of the functions which commute multiplicatively with the zero-function, i.e., T0(G) = { f : G → G |
f (0) = 0}. Obviously, T0(G) is a sub-near-ring of (T(G),+, ·). The next result extends this property to
the case of hyperstructures.

Theorem 7. Let (H,+) be a hypergroup with the identity element 0 (i.e., for all x ∈ H, it holds x ∈
x + 0 ∩ 0 + x), such that 0 + 0 = {0}. Let T0(H) = { f : H → H | f (0) = 0}. Then, T0(H) is a
subhypernear-ring of the general additive hypernear-ring (T(H),⊕T ,�T).

Proof. Let f , g ∈ T0(H). If h ∈ f ⊕T g, then h(0) ∈ f (0) + g(0) = 0 + 0 = {0}, i.e., h(0) = 0.
Thus, h ∈ T0(H). Let f , g ∈ T0(H). We prove now that the equation f ∈ g ⊕ a has a solution
a ∈ T0(H). If we set a(0) = 0 and a(x) = ax, where f (x) ∈ g(x) + ax, for x 6= 0 and ax ∈ H,
then a ∈ T0(H) and f ∈ g + a. Similarly the equation f ∈ a ⊕ g has a solution a ∈ T0(H). Thus,
(T0(H),⊕T) is a subhypergroup of (T(H),⊕T). Obviously, if f , g ∈ T0(H), then it follows that
( f �T g)(0) = g( f (0)) = g(0) = 0, i.e., f �T g ∈ T0(H). So, (T0(H),�T) is a subsemihypergroup of
(T(H),�T), implying that T0(H) is a subsemihypernear-ring of T(H).
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Theorem 8. Let (R,+, ·) be an additive hypernear-ring such that (R,+) is a proper subhypergroup of the
hypergroup (H,+), having an identity element 0 satisfying the following properties:

1. 0 + 0 = {0} and
2. 0 · r = 0, for all r ∈ R.

Then the hypernear-ring (R,+, ·) is W−embeddable in the additive hypernear-ring T0(H).

Proof. For a fixed r ∈ R, define a map f : H → H as follows

fr(g) =

{
g · r, if g ∈ R
r, if g ∈ H \ R.

Obviously, fr(0) = 0 · r = 0. So, fr ∈ T0(H) and, similarly as in the proof of Theorem 5,
we obtain that the map ρ : (R,+, ·)→ (T0(H),⊕T ,�T) defined by ρ(r) = fr is an injective inclusion
homomorphism.

Example 4. On the set H = {0, 1, 2, 3, 4, 5, 6} define an additive hyperoperation and a multiplicative operation
having the Cayley tables described in Tables 3 and 4, respectively:

Table 3. The Cayley table of the hypergroupoid (H,+)

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 {0, 6} 1
2 2 3 4 5 {0, 6} 1 2
3 3 4 5 {0, 6} 1 2 3
4 4 5 {0, 6} 1 2 3 4
5 5 {0, 6} 1 2 3 4 5
6 6 1 2 3 4 5 0

Table 4. The Cayley table of the semigroup (H, ·)

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 5 4 3 2 1 0
2 0 1 2 3 4 5 0
3 0 0 0 0 0 0 0
4 0 5 4 3 2 1 0
5 0 1 2 3 4 5 0
6 0 0 0 0 0 0 0

The structure (H,+, ·) is an (additive) hypernear-ring [16].

Let R = {0, 3, 6}. Then (R,+, ·) is a hypernear-ring (in particular it is a subhypernear-ring of (H,+, ·)).
Obviously, (R,+) is a proper subhypergroup of the hypergroup (H,+), which has the identity 0 such that
0 + 0 = {0} and 0 · r = 0, for all r ∈ R. It follows that, for each r ∈ {0, 3, 6}, fr : H → H is a map such that
f0(g) = 0, for all g ∈ H,

f3(g) =

{
g · 3, if g ∈ {0, 3, 6}

3, if g ∈ {1, 2, 4} =

{
0, if g ∈ {0, 3, 6}
3, if g ∈ {1, 2, 4},

while

f6(g) =

{
g · 6, if g ∈ {0, 3, 6}

6, if g ∈ {1, 2, 4} =

{
0, if g ∈ {0, 3, 6}
6, if g ∈ {1, 2, 4}.
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Clearly, the map ρ : (R,+, ·) → (T0(H),⊕T ,�T), defined by ρ(r) = fr, is an injective inclusion
homomorphism, so the hypernear-ring R is W-embeddable in T0(H).

Remark 3. If (G,+) is a group, then, for any f , g ∈ T(G) = { f : G → G}, it holds f ⊕T g = f + g
and f �T g = f · g, meaning that the transformation near-ring (T(G),+, ·) of a group G is in fact the
structure (T(G),⊕T ,�T). Furthermore, if (R,+, ·) is a zero-symmetric near-ring, i.e., a near-ring in which
any element x satisfies the relation x · 0 = 0 · x = 0, then the map ρ constructed in the proof of Theorem 8 is the
injective homomorphism ρ : R→ T0(G). Thus, according with Theorem 8, it follows that the zero-symmetric
near-ring (R,+, ·) is W-embeddable in the near-ring T0(G), where (G,+) is any group containing (R,+) as a
proper subgroup.

Remark 4. If (G,+) is a group, then the following inclusions hold: T0(G) ⊆ T(G) ⊆ T∗(G), where both
T(G) and T0(G) are sub-(hyper)near-rings of the hypernear-ring T∗(G). Considering now (H,+) a
hypergroup, the same inclusions exist: T0(H) ⊆ T(H) ⊆ T∗(H), but generally T(H) and T0(H) are
not subhypernear-rings of T∗(H).

Proposition 1. Let (H,+) be a hypergroup with the identity element 0 (i.e., for all x ∈ H it holds x ∈
x + 0 ∩ 0 + x) such that 0 + 0 = {0}. Let T∗0 (H) = { f : H → P∗(H) | f (0) = 0}. Then, T∗0 (H) is a
subhypernear-ring of the general hypernear-ring (T∗(H),⊕,�).

Proof. Let f , g ∈ T∗0 (H). If h ∈ f ⊕ g, then it holds h(0) ⊆ f (0) + g(0) = 0 + 0 = {0}. Since h(0) 6= ∅,
it follows that h(0) = {0}. Thus, h ∈ T∗0 (H). Let f , g ∈ T∗0 (H). We prove that the equation f ∈ g⊕ a
has a solution a ∈ T∗0 (H). If we set a(0) = 0 and a(x) = H, for all x 6= 0, then a ∈ T∗0 (H) and,
for all x 6= 0, it holds g(x) + a(x) = H ⊇ f (x) and g(0) + a(0) = {0} = f (0), meaning that
f ∈ g⊕ a. Similarly, the equation f ∈ a⊕ g has a solution in T∗0 (H). So, (T∗0 (H)) is a subhypergroup
of (T∗(H),⊕). Obviously, if h ∈ f � g, then h(0) ⊆ g( f (0)) = {0}. So, h ∈ T∗0 (H). Thus T∗0 (H) is a
subsemihypergroup of (T∗(H),�). Therefore, T∗0 (H) is a subhypernear-ring of (T∗(H),⊕,�).

4. Conclusions

Distributivity property plays a fundamental role in the ring-like structures, i.e., algebraic structures
endowed with two operations, usually denoted by addition and multiplication, where the
multiplication distributes over the addition. If this happens only from one-hand side, then we
talk about near-rings. Similarly, in the framework of algebraic hypercompositional structures,
a general hypernear-ring has the additive part an arbitrary hypergroup, the multiplicative part is a
semihypergroup, and the multiplication hyperoperation inclusively distributes over the hyperaddition
from the left or right-hand side, i.e., for three arbitrary elements x, y, z, there is x · (y + z) ⊆ x · y + x · z
for the left-hand side, and respectively, (y + z) · x ⊆ y · x + z · x for the right-hand side. If the inclusion
is substituted by equality, then the general hypernear-ring is called strongly distributive. We also recall
here that there exist also hyperrings having the additive part a group, while the multiplicative one is a
semihypergroup, being called multiplicative hyperrings [20].

The set of all transformations of a group G, i.e., T(G) = {g : G → G}, can be endowed with
a near-ring structure, while similarly, on the set of all multitransformations of a hypergroup H,
i.e., T∗(H) = {h : H → P∗(H)}, can be defined a general hypernear-ring structure, called the
multitransformations general hypernear-ring associated with the hypergroup H. We have shown that
for every general hypernear-ring R there exists a hypergroup H such that R is weakly embeddable
in the associated multitransformations general hypernear-ring T∗(H) (see Theorem 5). Moreover,
considering the set T(H) = { f : H → H} of all transformations of a hypergroup H, we have defined
on it a hyperaddition and a multiplication such that T(H) becomes a general additive hypernear-ring.
We have determined conditions under which the set T0(H), formed with the transformations of H
that multiplicatively commute with the zero function on H, is a subhypernear-ring of T(H). Besides,
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an additive hypernear-ring satisfying certain conditions can be weakly embedded in the additive
hypernear-ring T0(H) (see Theorem 8).

In our future work, we intend to introduce and study properties of ∆−endomorphisms and
∆−multiendomorphisms of hypernear-rings as generalizations of similar notions on near-rings.
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19. Jančić-Rašović, S.; Dasic, V. Some new classes of (m, n)-hyperrings. Filomat 2012, 26, 585–596. [CrossRef]
20. Ameri, R.; Kordi, A.; Hoškova-Mayerova, S. Multiplicative hyperring of fractions and coprime hyperideals.

Ann. Univ. Ovidius Constanta Ser. Mat. 2017, 25, 5–23. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00029890.1959.11989236
http://dx.doi.org/10.1093/qmath/20.1.81
http://dx.doi.org/10.1016/0021-8693(84)90225-4
http://dx.doi.org/10.1515/auom-2017-0032
http://dx.doi.org/10.2478/auom-2018-0036
http://dx.doi.org/10.2298/FIL1804133J
http://dx.doi.org/10.2298/FIL1203585J
http://dx.doi.org/10.1515/auom-2017-0001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Weak Embeddable Hypernear-Rings
	Conclusions
	References

