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Abstract: In this work, we construct a family of seventh order iterative methods for finding multiple
roots of a nonlinear function. The scheme consists of three steps, of which the first is Newton’s step
and last two are the weighted-Newton steps. Hence, the name of the scheme is ‘weighted-Newton
methods’. Theoretical results are studied exhaustively along with the main theorem describing
convergence analysis. Stability and convergence domain of the proposed class are also demonstrated
by means of using a graphical technique, namely, basins of attraction. Boundaries of these basins
are fractal like shapes through which basins are symmetric. Efficacy is demonstrated through
numerical experimentation on variety of different functions that illustrates good convergence behavior.
Moreover, the theoretical result concerning computational efficiency is verified by computing the
elapsed CPU time. The overall comparison of numerical results including accuracy and CPU-time
shows that the new methods are strong competitors for the existing methods.
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1. Introduction

Finding numerically a root of an equation is an interesting and challenging problem. It is also
very important in many diverse areas such as Mathematical Biology, Physics, Chemistry, Economics
and Engineering, to name a few [1–4]. This is due to the fact that many problems from these disciplines
are ultimately reduced to finding the root of an equation. Researchers are using iterative methods for
approximating root since closed form solutions cannot be obtained in general. In particular, here we
consider the problem of computing multiple roots of equation f (x) = 0 by iterative methods. A root
(say, α) of f (x) = 0 is called multiple root with multiplicity m, if f (j)(α) = 0, j = 0, 1, 2, . . . , m− 1 and
f (m)(α) 6= 0.

A basic and widely used iterative method is the well-known modified Newton’s method

xn+1 = xn −m
f (xn)

f ′(xn)
∀ n = 0, 1, 2, . . . . (1)

This method efficiently locates the required multiple root with quadratic order of convergence
provided that the initial value x0 is sufficiently close to root [5]. In terms of Traub’s classification
(see [1]), Newton’s method (1) is called one-point method. Some other important methods that belong
to this class have been developed in [6–9].
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Recently, numerous higher order methods, either independent or based on the modified Newton’s
method (1), have been proposed and analyzed in the literature, see e.g., [10–23] and references
cited therein. Such methods belong to the category of multipoint methods [1]. Multipoint iterative
methods compute new approximations to root α by sampling the function f (x), and its derivatives at
several points of the independent variable, per each step. These methods have the strategy similar to
Runge–Kutta methods for solving differential equations and Gaussian quadrature integration rules in
the sense that they possess free parameters which can be used to ensure that the convergence speed is
of a certain order, and that the sampling is done at some suitable points.

In particular, Geum et al. in [22,23] have proposed two- and three-point Newton-like methods
with convergence order six for finding multiple roots. The two-point method [22], applicable for m > 1,
is given as

yn = xn −m
f (xn)

f ′(xn)

xn+1 = yn −Q(u, s)
f (yn)

f ′(yn)
(2)

where u =
(

f (yn)
f (xn)

) 1
m

and s =
(

f ′(yn)
f ′(xn)

) 1
m−1

and Q : C2 → C is a holomorphic function in some

neighborhood of origin (0, 0). The three-point method [23] for m ≥ 1 is given as

yn = xn −m
f (xn)

f ′(xn)

zn = xn −mQ f (u)
f (xn)

f ′(xn)

xn+1 = xn −mK f (u, v)
f (xn)

f ′(xn)
(3)

wherein u =
(

f (yn)
f (xn)

) 1
m

and v =
(

f (zn)
f (xn)

) 1
m

. The function Q f : C→ C is analytic in a neighborhood of 0

and K f : C2 → C is holomorphic in a neighborhood of (0, 0). Both schemes (2) and (3) require four
function evaluations to obtain sixth order convergence with the efficiency index (see [24]), 61/4 ≈ 1.565.

The goal and motivation in constructing iterative methods is to attain convergence of order as
high as possible by using function evaluations as small as possible. With these considerations, here we
propose a family of three-point methods that attain seventh order of convergence for locating multiple
roots. The methodology is based on Newton’s and weighted-Newton iterations. The algorithm requires
four evaluations of function per iteration and, therefore, possesses the efficiency index 71/4 ≈ 1.627.
This shows that the proposed methods have better efficiency (1.627) than the efficiency (1.565) of
existing methods (2) and (3). Theoretical results concerning convergence order and computational
efficiency are verified by performing numerical tests. In the comparison of numerical results with
existing techniques, the proposed methods are observed computationally more efficient since they
require less computing time (CPU-time) to achieve the solution of required accuracy.

Contents of the article are summarized as follows. In Section 2, we describe the approach to
develop new methods and prove their seventh order convergence. In Section 3, stability of the methods
is checked by means of using a graphical technique called basins of attraction. In Section 4, some
numerical tests are performed to verify the theoretical results by implementing the methods on some
examples. Concluding remarks are reported in Section 5.

2. Formulation of Method

Let m ≥ 1 be the multiplicity of a root of the equation f (x) = 0. To compute the root let us
consider the following three-step iterative scheme:
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
yn = xn −m f (xn)

f ′(xn)

zn = yn −muH(u) f (xn)
f ′(xn)

xn+1 = zn −mvG(u, w) f (xn)
f ′(xn)

(4)

where u =
(

f (yn)
f (xn)

) 1
m

, v =
(

f (zn)
f (xn)

) 1
m

, w =
(

f (zn)
f (yn)

) 1
m

, and the function H : C→ C is analytic in some

neighborhood of 0 and G : C2 → C is holomorphic in a neighborhood of (0, 0). Notice that the first
step is Newton iteration (1) whereas second and third steps are weighted by employing the factors
H(u) and G(u, w), and so we call the algorithm (4) by the name weighted-Newton method. Factors H
and G are called weight factors or more appropriately weight functions.

In the sequel we shall find conditions under which the algorithm (4) achieves high convergence
order. Thus, the following theorem is stated and proved:

Theorem 1. Assume that f : C→ C is an analytic function in a domain enclosing a root α with multiplicity m.
Suppose that initial point x0 is closer enough to the root α, then the iterative formula defined by (4) has seventh order
of convergence, if the functions H(u) and G(u, w) verify the conditions: H(0) = 1, H′(0) = 2, H′′(0) = −2,
G(0, 0) = 1, G10(0, 0) = 2, G01(0, 0) = 1, G20(0, 0) = 0, |H′′′(0)| < ∞ and |G11(0, 0)| < ∞, where
Gij(0, 0) = ∂i+j

∂ui∂wj G(u, w)|(0,0).

Proof. Let en = xn − α be the error at n-th iteration. Taking into account that f (j)(α) = 0,
j = 0, 1, 2, . . . , m− 1, we have by the Taylor’s expansion of f (xn) about α

f (xn) =
f (m)(α)

m!
em

n +
f (m+1)(α)

(m + 1)!
em+1

n +
f (m+2)(α)

(m + 2)!
em+2

n +
f (m+3)(α)

(m + 3)!
em+3

n +
f (m+4)(α)

(m + 4)!
em+4

n

+
f (m+5)(α)

(m + 5)!
em+5

n +
f (m+6)(α)

(m + 6)!
em+6

n +
f (m+7)(α)

(m + 7)!
em+7

n + O
(
em+8

n
)

or:

f (xn) =
f (m)(α)

m!
em

n
(
1 + C1en + C2e2

n + C3e3
n + C4e4

n + C5e5
n + C6e6

n + C7e7
n + O(e8

n)
)

(5)

where Ck =
m!

(m + k)!
f (m+k)(α)

f (m)(α)
for k ∈ N.

also

f ′(xn) =
f (m)(α)

m!
em−1

n
(
m + C1(m + 1)en

+ C2(m + 2)e2
n + C3(m + 3)e3

n + C4(m + 4)e4
n

+ C5(m + 5)e5
n + C6(m + 6)e6

n + C7(m + 7)e7
n + O(e8

n)
)
, (6)

where Ck =
m!

(m+k)!
f (m+k)(α)

f (m)(α)
for k ∈ N.

Using (5) and (6) in first step of (4), it follows that

yn − α =
C1

m
e2

n +
5

∑
i=1

ωiei+2
n + O(e8

n), (7)

where ωi = ωi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7 with explicitly written two

coefficients ω1 =
2mC2−(m+1)C2

1
m2 , ω2 = 1

m3

(
3m2C3 + (m + 1)2C3

1 −m(4 + 3m)C1C2
)
. Here, rest of the

expressions of ωi are not being produced explicitly since they are very lengthy.
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Expansion of f (yn) about α yields

f (yn) =
f (m)(α)

m!

(C1

m

)m
e2m

n

(
1 +

2C2m− C2
1(m + 1)

C1
en+

1
2mC2

1

(
(3 + 3m + 3m2 + m3)C4

1 − 2m(2 + 3m + 2m2)C2
1C2

+ 4(−1 + m)m2C2
2 + 6m2C1C3

)
e2

n +
4

∑
i=1

ω̄iei+2
n + O(e8

n)
)

, (8)

where ω̄i = ω̄i(m, C1, C2, . . . , C7).
Using (5) and (8) in the expression of u, it follows that

u =
C1

m
en +

2C2m− C2
1(m + 2)

m2 e2
n +

5

∑
i=1

ηiei+2
n + O(e8

n), (9)

where ηi = ηi(m, C1, C2, . . . , C7) with explicitly written one coefficient η1 = 1
2m3

(
C3

1(2m2 + 7m + 7) +
6C3m2 − 2C2C1m(3m + 7)

)
.

Developing weight function H(u) in neighborhood 0,

H(u) ≈ H(0) + uH′(0) +
1
2!

u2H′′(0) +
1
2!

u3H′′′(0). (10)

Inserting Equations (5), (8) and (10) in the second step of (4), after some simplifications we
have that

zn − α = − A
m

C1e2
n +

1
m2

(
− 2mAC2 + C2

1(−1 + mA + 3H(0)− H′(0))
)
e3

n

+
1

2m3

(
− 6Am2C3 + 2mC1C2(−4 + 3Am + 11H(0)− 4H′(0))

+ C3
1(2− 2Am2 − 13H(0) + 10H′(0)

+ m(4− 11H(0) + 4H′(0))− H′′(0))
)
e4

n

+
3

∑
i=1

γiei+4
n + O(e8

n), (11)

where A = −1 + H(0) and γi = γi(m, H(0), H′(0), H′′(0), H′′′(0), C1, C2, . . . , C7).
In order to accelerate convergence, the coefficients of e2

n and e3
n should be equal to zero. That is

possible only if we have
H(0) = 1, H′(0) = 2. (12)

By using the above values in (11), we obtain that

zn − α =
−2mC1C2 + C3

1(9 + m− H′′(0))
2m3 e4

n +
3

∑
i=1

γiei+4
n + O(e8

n). (13)

Expansion of f (zn) about α yields

f (zn) =
f (m)(α)

m!
(zn − α)m(1 + C1(zn − α) + C2(zn − α)2 + O((zn − α)3)

)
. (14)

From (5), (8) and (14), we obtain forms of v and w as

v =
(9 + m)C3

1 − 2mC1C2

2m3 e3
n +

4

∑
i=1

τiei+3
n + O(e8

n), (15)
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where τi = τi(m, H′′(0), H′′′(0), C1, C2, . . . , C7) and

w =
(9 + m− H′′(0))C2

1 − 2mC2

2m3 e2
n +

5

∑
i=1

ςiei+2
n + O(e8

n), (16)

where ςi = ςi(m, H′′(0), H′′′(0), C1, C2, . . . , C7).
Expanding G(u, w) in neighborhood of origin (0, 0) by Taylor series, it follows that

G(u, w) ≈ G00(0, 0) + uG10(0, 0) +
1
2

u2G20(0, 0) + w(G01(0, 0) + uG11(0, 0)), (17)

where Gij(0, 0) = ∂i+j

∂ui∂wj G(u, w)|(0,0).
Then by substituting (5), (6), (15)–(17) into the last step of scheme (4), we obtain that

en+1 =
1

2m3

(
(−1 + G00(0, 0))C1

(
2mC1 − (9 + m− H′′(0))C2

1
))

e4
n

+
3

∑
i=1

ξiei+4
n + O(e8

n), (18)

where ξi = ξi(m, H′′(0), H′′′(0), G00(0, 0), G10(0, 0), G20(0, 0), G01(0, 0), G11(0, 0), C1, C2, . . . , C7).
From Equation (18) it is clear that we can obtain at least fifth order convergence when G00(0, 0) = 1.

In addition, using this value in ξ1 = 0, we will obtain that

G10(0, 0) = 2. (19)

By using G00 = 1 and (19) in ξ2 = 0, the following equation is obtained

C1

(
2mC2 − C2

1(9 + m− H′′(0))
)

(
− 2mC2(−1 + G01(0, 0)) + C2

1(−11 + m(−1 + G01(0, 0))

− (−9 + H′′(0))G01(0, 0) + G20(0, 0))
)

= 0, (20)

which further yields
G01(0, 0) = 1, G20(0, 0) = 0 and H′′(0) = −2. (21)

Using the above values in (18), we obtain the error equation

en+1 =
1

360m6

(
360m3((39 + 5m)C3

2 − 6mC2
3 − 10mC2C4

)
+ 120m3C1

(
(515 + 78m)C2C3

− 12mC5
)
− 60m2C3

1C3

(
1383 + 845m + 78m2 + 12H′′′(0)

)
+ 10mC4

1C2
(
21571

+ 8183m2 + 558m3 + 515H′′′(0) + 324G11(0, 0) + 36m
(
667 + 6H′′′(0) + G11(0, 0)

))
− 60m2C2

1

(
− 6m(55 + 9m)C4 + C2

2
(
2619 + 1546m + 135m2 + 24H′′′(0) + 6G11(0, 0)

))
− C6

1

(
55017 + 17005m + 978m4 + 2775H′′′(0) + 7290G11(0, 0) + 15m2(4463 + 40H′′′(0)

+ 6G11(0, 0)) + 5m(21571 + 515H′′′(0) + 324G11(0, 0))
))

e7
n + O(e8

n). (22)

Thus, the seventh order convergence is established.

Based on the conditions on H(u) and G(u, w) as shown in Theorem 1, we can generate numerous
methods of the family (4). However, we restrict to the following simple forms:
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2.1. Some Concrete Forms of H(u)

Case 1. Considering H(u) a polynomial function, i.e.,

H(u) = A0 + A1u + A2u2.

Using the conditions of Theorem 1, we get A0 = 1, A1 = 2 and A2 = −1. Then

H(u) = 1 + 2u− u2.

Case 2. When H(u) is a rational function, i.e.,

H(u) =
1 + A0u

A1 + A2u
.

Using the conditions of Theorem 1, we get that A0 = 5
2 , A1 = 1 and A2 = 1

2 . So

H(u) =
2 + 5u
2 + u

.

Case 3. Consider H(u) as another rational weight function, e.g.,

H(u) =
1 + A0u + A1u2

1 + A2u
.

Using the conditions of Theorem 1, we obtain A0 = 3, A1 = 2 and A2 = 1. Then H(u) becomes

H(u) =
1 + 3u + u2

1 + u
.

Case 4. When H(u) is a yet another rational function of the form

H(u) =
1 + A0u

1 + A1u + A2u2 .

Using the conditions of Theorem 1, we have A0 = 1, A1 = −1 and A2 = 1. Then

H(u) =
1 + u

1− u + 3u2 .

2.2. Some Concrete Forms of G(u, w)

Case 5. Considering G(u, w) a polynomial function, e.g.,

G(u, w) = A0 + A1u + A2u2 + A3w.

From the conditions of Theorem 1, we get A0 = 1, A1 = 2, A2 = 0 and A3 = 1. So

G(u, w) = 1 + 2u + w.

Case 6. Considering G(u, w) a sum of two rational functions, that is

G(u, w) =
A0 + 2u
1 + A1u

+
B0

1 + B1w
.
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By using the conditions of Theorem 1, we find that A0 = 0, A1 = 0, B0 = 1 and B1 = −1.
G(u, w) becomes

G(u, w) = 2u +
1

1− w
.

Case 7. When G(u, w) is a product of two rational functions, that is

G(u, w) =
1 + A0u
1 + A1u

× B0

1 + B1w
.

Then the conditions of Theorem 1 yield A0 = 2, A1 = 0, B0 = 1 and B1 = −1. So

G(u, w) =
1 + 2u
1− w

.

3. Complex Dynamics of Methods

Here we analyze the complex dynamics of new methods based on a graphical tool ‘the basins
of attraction’ of the roots of a polynomial p(z) in Argand plane. Analysis of the basins gives an
important information about the stability and convergence region of iterative methods. Wider is the
convergence region (i.e., basin), better is the stability. The idea of complex dynamics was introduced
initially by Vrscay and Gilbert [25]. In recent times, many authors have used this concept in their work,
see, for example [26,27] and references therein. We consider some of the cases corresponding to the
previously obtained forms of H(u) and G(u, w)) of family (4) to assess the basins of attraction. Let us
select the combinations: cases 1 and 2 of H(u) with the cases 5, 6 and 7 of G(u, w)) in the scheme (4),
and denote the corresponding methods by NM-i(j), i = I, II and j = a, b, c.

To start with we take the initial point z0 in a rectangular region R ∈ C that contains all the roots
of a polynomial p(z). The iterative method when starts from point z0 in a rectangle either converges
to the root P(z) or eventually diverges. The stopping criterion for convergence is considered to be
10−3 up to a maximum of 25 iterations. If the required accuracy is not achieved in 25 iterations, we
conclude that the method with initial point z0 does not converge to any root. The strategy adopted is
as follows: A color is allocated to each initial point z0 lying in the basin of attraction of a root. If the
iteration initiating at z0 converges, it represents the attraction basin painted with assigned color to it,
otherwise, the non-convergent cases are painted by the black color.

To view the geometry in complex plane, we characterize attraction basins associated with the
methods NM-I(a–c) and NM-II(a–c) considering the following four polynomials:

Problem 1. Consider the polynomial p1(z) = (z2 − 1)3, which has roots {−1, 1} with multiplicity three.
We use a grid of 400× 400 points in a rectangle R ∈ C of size [−3, 3]× [−3, 3] and assign red color to each
initial point in the attraction basin of root −1 and green color to each point in the attraction basin of root 1.
The basins so plotted for NM-I(a–c) and NM-II(a–c) are displayed in Figure 1. Looking at these graphics, we
conclude that the method NM-II(c) possesses better stability followed by NM-I(c) and NM-II(b). Black zones in
the figures show the divergent nature of a method when it starts assuming initial point from such zones.

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

NM-I(a).
-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

NM-I(b).
-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

NM-I(c).
-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

NM-II(a).
-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-

NM-II(b).
-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

NM-II(c).

Figure 1. Basins of attraction for NM-I(a–c) and NM-II(a–c) in polynomial p1(z).
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Problem 2. Let p2(z) = (z3 − 1)2 that has three roots {−0.5± 0.866025i, 1} each with multiplicity two.
To plot the graphics, we use a grid of 400× 400 points in a rectangle R ∈ C of size [−3, 3]× [−3, 3] and assign
the colors blue, green and red corresponding to each point in the basins of attraction of 1, −0.5 + 0.866025i and
−0.5− 0.866025i. Basins drawn for the methods NM-I(a–c) and NM-II(a–c) are shown in Figure 2. As can be
observed from the pictures, the method NM-I(c) and NM-II(c) possess a small number of divergent points and
therefore have better convergence than the remaining methods.

-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-I(a).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-I(b).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-I(c).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-3.

NM-II(a).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-

NM-II(b).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-II(c).

Figure 2. Basins of attraction for NM-I(a–c) and NM-II(a–c) in polynomial p2(z).

Problem 3. Let p3(z) = (z6 − 1)3 with six roots {±1,−0.5 ± 0.866025i, 0.5 ± 0.866025i} each with
multiplicity m = 3. Basins obtained for the considered methods are presented in Figure 3. To draw the
pictures, the red, blue, green, pink, cyan and magenta colors have been assigned to the attraction basins of the six
roots. We observe from the graphics that the method NM-I(c) and NM-II(c) have better convergence behavior
since they have lesser number of divergent points. On the other hand NM-I(a) and NM-II(a) contain large black
regions followed by NM-I(b) and NM-II(b) indicating that the methods do not converge in 25 iterations starting
at those points.

-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-I(a).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-I(b).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-

NM-I(c).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-

NM-II(a).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-

NM-II(b).
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-II(c).

Figure 3. Basins of attraction for NM-I(a–c) and NM-II(a–c) in polynomial p3(z).

Problem 4. Consider the polynomial p4(z) = z4 − 6z2 + 8 that has four simple roots {±2,±1.414 . . .}.
In this case also, we use a grid of 400× 400 points in a rectangle R ∈ C of size [−3, 3]× [−3, 3] and allocate the
red, blue, green and yellow colors to the basins of attraction of these four roots. Basins obtained for the methods
are shown in Figure 4. Observing the basins, we conclude that the method NM-II(c) possesses better stability
followed by NM-I(c). Remaining methods show chaotic nature along the boundaries of the attraction basins.
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Figure 4. Basins of attraction for NM-I(a–c) and NM-II(a–c) in polynomial p4(z).

Looking at the graphics, one can easily judge the stable behavior and so the better convergence
of any method. We reach to a root, if we start the iteration choosing z0 anywhere in the basin of that
root. However, if we choose an initial guess z0 in a region wherein different basins of attraction meet
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each other, it is difficult to predict which root is going to be attained by the iterative method that starts
from z0. So, the choice of z0 in such a region is not a good one. Both black regions and the regions with
different colors are not suitable to assume the initial guess as z0 when we are required to achieve a
particular root. The most intricate geometry is between the basins of attraction, which corresponds
to the cases where the method is more demanding with respect to the initial point. From the basins,
one can conclude that the method NM-II(c) possesses better stability followed by NM-I(c) than the
remaining methods.

4. Numerical Tests

In this section, we apply the special cases NM-i(j), i = I, II and j = a, b, c of the scheme (4),
corresponding to the combinations of H(u): cases 1 and 2 with that of G(u, w)): cases 5, 6 and 7,
to solve some nonlinear equations for validation of the theoretical results that we have derived.
The theoretical seventh order of convergence is verified by calculating the computational order of
convergence (COC)

COC =
ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)| ,

which is given in (see [28]). Comparison of performance is also done with some existing methods
such as the sixth order methods by Geum et al. [22,23], which are already expressed by (2) and (3).
To represent Q f (u, s), we choose the following four special cases in the formula (2) and denote the
respective methods by GKN-I(j), j = a, b, c, d:

(a) Q f (u, s) = m(1 + 2(m− 1)(u− s)− 4us + s2).

(b) Q f (u, s) = m(1 + 2(m− 1)(u− s)− u2 − 2us).

(c) Q f (u, s) = m+au
1+bu+cs+dus , where a = 2m

m−1 , b = 2− 2m, c = 2(2−2m+m2)
m−1 , d = −2m(m− 1).

(d) Q f (u, s) = m+a1u
1+b1u+c1u2

1
1+d1s , where a1 = 2m(4m4−16m3+31m2−30m+13

(m−1)(4m2−8m+7) , b1 = 4(2m2−4m+3)
(m−1)(4m2−8m+7) ,

c1 = − 4m2−8m+3
4m2−8m+7 , d1 = 2(m− 1).

For the formula (3), considering the following four combinations of the functions Q f (u) and
K f (u, v), and denoting the corresponding methods by GKN-II(j), j = a, b, c, d:

(a) Q f (u) = 1+u2

1−u , K f (u, v) = 1+u2−v
1−u+(u−2)v .

(b) Q f (u) = 1 + u + 2u2, K f (u, v) = 1 + u + 2u2 + (1 + 2u)v.

(c) Q f (u) = 1+u2

1−u , K f (u, v) = 1 + u + 2u2 + 2u3 + 2u4 + (2u + 1)v.

(d) Q f (u) =
(2u−1)(4u−1)

1−7u+13u2 , K f (u, v) = (2u−1)(4u−1)
1−7u+13u2−(1−6u)v .

Computational work is compiled in the programming package of Mathematica software using
multiple-precision arithmetic. Numerical results as displayed in Tables 1–5 contain: (i) number of
iterations (n) needed to converge to desired solution, (ii) last three successive errors en = |xn+1 − xn|,
(iii) computational order of convergence (COC) and (iv) CPU-time (CPU-t) in seconds elapsed during
the execution of a program. Required iteration (n) and elapsed CPU-time are computed by selecting
|xn+1 − xn|+ | f (xn)| < 10−350 as the stopping condition.

For numerical tests we select seven problems. The first four problems are of practical interest
where as last three are of academic interest. In the problems we need not to calculate the root
multiplicity m and it is set a priori, before running the algorithm.

Example 1 (Eigen value problem). Finding Eigen values of a large sparse square matrix is a challenging task
in applied mathematics and engineering sciences. Calculating the roots of a characteristic equation of matrix of
order larger than 4 is even a big job. We consider the following 9 × 9 matrix.
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A =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 0 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


.

We calculate the characteristic polynomial of the matrix (A) as

f1(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960.

This function has a multiple root α = 3 with multiplicity 4. We select initial value x0 = 2.25 and
obtain the numerical results as shown in Table 1.

Table 1. Comparison of the numerical results for Example 1.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 4 1.06× 10−9 3.86× 10−56 9.03× 10−335 6.0000 0.1567
GKN-I(b) 4 1.06× 10−9 3.91× 10−56 9.85× 10−335 6.0000 0.1583
GKN-I(c) 4 1.06× 10−9 4.34× 10−56 2.02× 10−334 6.0000 0.1525
GKN-I(d) 4 1.07× 10−9 1.17× 10−55 2.02× 10−331 6.0000 0.1600
GKN-II(a) 4 1.19× 10−6 5.39× 10−38 4.56× 10−226 5.9999 0.1835
GKN-II(b) 4 1.20× 10−6 1.61× 10−37 9.49× 10−223 5.9999 0.1640
GKN-II(c) 4 1.20× 10−6 1.12× 10−37 7.51× 10−224 5.9999 0.1718
GKN-II(d) 4 1.20× 10−6 1.87× 10−37 2.76× 10−222 5.9999 0.1680
NM-I(a) 3 9.83× 10−8 4.34× 10−51 0 7.0000 0.1562
NM-I(b) 3 1.16× 10−9 1.38× 10−64 0 7.0000 0.1170
NM-I(c) 3 6.30× 10−10 7.75× 10−67 0 7.0000 0.1485
NM-II(a) 3 9.83× 10−8 4.41× 10−51 0 7.0000 0.1367
NM-II(b) 3 1.16× 10−9 1.40× 10−64 0 7.0000 0.1562
NM-II(c) 3 6.30× 10−10 8.07× 10−67 0 7.0000 0.1405

Example 2 (Manning equation for fluid dynamics). Next, the problem of isentropic supersonic flow around
a sharp expansion corner is chosen (see [2]). Relation among the Mach number before the corner (say M1) and
after the corner (say M2) is given by

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2
− tan−1

(M2
1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

,

where b = γ+1
γ−1 and γ is the specific heat ratio of gas.

For a specific case, the above equation is solved for for M2, given that M1 = 1.5, γ = 1.4 and δ = 100.
Then, we have that

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)
− tan−1 (1

2

√
5
6
))
− 11

63
= 0

where x = M2.
Let us consider this particular case seven times using same values of the involved parameters and then

obtain the nonlinear function

f2(x) =
[

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)
− tan−1 ( 1

2

√
5
6
))
− 11

63

]7
.
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The above function has one root at α = 1.8411027704 . . . of multiplicity 7 with initial approximations
x0 = 1.50. Computed numerical results are shown in Table 2.

Table 2. Comparison of the numerical results for Example 2.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 4 2.17× 10−8 4.61× 10−25 1.01× 10−152 6.0000 1.4218
GKN-I(b) 4 2.17× 10−8 4.60× 10−25 2.27× 10−151 6.0000 1.4923
GKN-I(c) 4 2.11× 10−8 4.21× 10−25 1.03× 10−150 6.0000 1.4532
GKN-I(d) 4 1.77× 10−8 2.48× 10−25 2.68× 10−151 6.0000 1.4960
GKN-II(a) 4 4.83× 10−7 1.36× 10−41 6.84× 10−249 6.0000 1.3867
GKN-II(b) 4 4.90× 10−7 2.89× 10−41 1.21× 10−246 6.0000 1.3790
GKN-II(c) 4 4.88× 10−7 2.22× 10−41 1.98× 10−247 6.0000 1.4110
GKN-II(d) 4 4.89× 10−7 3.22× 10−41 2.62× 10−246 6.0000 1.3982
NM-I(a) 3 1.65× 10−8 2.82× 10−58 0 7.0000 1.1367
NM-I(b) 3 7.69× 10−9 1.35× 10−60 0 7.0000 1.1915
NM-I(c) 3 3.65× 10−9 3.19× 10−63 0 7.0000 1.1407
NM-II(a) 3 1.65× 10−9 2.86× 10−58 0 7.0000 1.1290
NM-II(b) 3 7.69× 10−9 1.36× 10−60 0 7.0000 1.2540
NM-II(c) 3 3.65× 10−9 3.27× 10−63 0 7.0000 1.1445

Example 3 (Beam designing model). We consider the problem of beam positioning (see [4]) where a beam of
length r unit leans against the edge of a cubical box of sides 1 unit distance each, such that one end of the beam
touches the wall and the other end touches the floor, as depicted in Figure 5.

Figure 5. Beam positioning problem.

The problem is: What will be the distance alongside the floor from the base of wall to the bottom
of beam? Suppose that y is distance along the beam from the floor to the edge of the box and x is the
distance from the bottom of box to the bottom of beam. For a given r, we can obtain the equation

f3(x) = x4 + 4x3 − 24x2 + 16x + 16 = 0.

One of the roots of this equation is the double root x = 2. We select the initial guess x0 = 3 to find
the root. Numerical results by various methods are shown in Table 3.
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Table 3. Comparison of numerical results for Example 3.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 4 1.29× 10−3 5.18× 10−20 2.19× 10−118 6.0000 0.0313
GKN-I(b) 4 1.48× 10−3 1.63× 10−19 2.19× 10−115 5.9998 0.0390
GKN-I(c) 4 1.45× 10−3 1.76× 10−19 5.56× 10−115 5.9997 0.0352
GKN-I(d) 4 1.97× 10−3 1.80× 10−18 1.07× 10−108 5.9996 0.0428
GKN-II(a) 4 5.67× 10−4 1.20× 10−22 1.06× 10−134 5.9999 0.0314
GKN-II(b) 4 2.39× 10−3 5.78× 10−18 1.16× 10−105 5.9996 0.0396
GKN-II(c) 4 1.70× 10−3 4.26× 10−19 1.08× 10−112 5.9997 0.0392
GKN-II(d) 4 1.55× 10−2 5.18× 10−13 7.23× 10−76 6.0000 0.0354
NM-I(a) 4 1.13× 10−4 6.52× 10−23 1.41× 10−157 6.9998 0.0275
NM-I(b) 4 9.26× 10−4 1.63× 10−23 8.75× 10−162 6.9998 0.0313
NM-I(c) 4 4.64× 10−4 4.44× 10−26 3.23× 10−180 6.9998 0.0275
NM-II(a) 4 1.13× 10−4 6.83× 10−23 2.00× 10−157 6.9998 0.0316
NM-II(b) 4 9.33× 10−4 1.77× 10−23 1.58× 10−161 6.9998 0.0275
NM-II(c) 4 4.78× 10−4 5.86× 10−26 2.43× 10−179 6.9998 0.0354

Example 4 (van der Waals equation). Consider the Van der Waals equation

(
P +

a1n2

V2

)
(V − na2) = nRT,

that describes nature of a real gas by adding in the ideal gas equation two parameters, a1 and a2, which are
specific for each gas. To find the volume V in terms of rest of the parameters one requires to solve the equation

PV3 − (na2P + nRT)V2 + a1n2V = a1a2n3.

Given a set of values of a1 and a2 of a particular gas, one can find values for n, P and T, so that this
equation has three real roots. Using a particular set of values (see [3]), we have the equation

f4(x) = x3 − 5.22x2 + 9.0825x− 5.2675 = 0,

where x = V. This equation has a multiple root α = 1.75 with multiplicity 2. The initial guess chosen to obtain
the root 1.75 is x0 = 2. Numerical results are shown in Table 4.

Table 4. Comparison of numerical results for Example 4.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 5 1.90× 10−5 9.03× 10−22 1.05× 10−119 6.0000 0.0471
GKN-I(b) 5 2.31× 10−5 3.69× 10−21 6.14× 10−116 6.0000 0.0472
GKN-I(c) 5 2.18× 10−5 3.18× 10−21 3.14× 10−116 6.0000 0.0465
GKN-I(d) 5 3.58× 10−5 1.01× 10−19 5.02× 10−107 6.0000 0.0483
GKN-II(a) 5 3.00× 10−6 4.91× 10−27 9.51× 10−152 6.0000 0.0474
GKN-II(b) 5 4.78× 10−5 5.42× 10−19 1.17× 10−102 6.0000 0.0472
GKN-II(c) 5 2.51× 10−5 6.82× 10−21 2.75× 10−114 6.0000 0.0481
GKN-II(d) 7 3.85× 10−11 1.78× 10−55 1.75× 10−321 6.0000 0.0625
NM-I(a) 5 1.06× 10−5 4.09× 10−26 5.33× 10−169 7.0000 0.0368
NM-I(b) 5 5.10× 10−6 2.51× 10−28 1.73× 10−184 7.0000 0.0322
NM-I(c) 5 1.15× 10−6 2.55× 10−33 6.75× 10−220 7.0000 0.0327
NM-II(a) 5 1.05× 10−5 4.13× 10−23 5.89× 10−169 7.0000 0.0316
NM-II(b) 5 5.16× 10−6 2.76× 10−23 3.48× 10−184 7.0000 0.0323
NM-II(c) 5 1.20× 10−6 3.65× 10−26 9.09× 10−219 7.0000 0.0314
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Example 5. Consider now the standard nonlinear test function (see [23])

f5(x) =
(
9− 2x− 2x4 + cos 2x

)(
5− x− x4 − sin2 x

)
.

The root α = 1.29173329244360 . . . of multiplicity 2 is computed with initial guess x0 = 1.5.
Numerical results are displayed in Table 5.

Table 5. Comparison of the numerical results for Example 5.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 4 1.12× 10−4 5.78× 10−24 1.10× 10−139 6.0000 0.2772
GKN-I(b) 4 1.55× 10−4 7.30× 10−23 8.07× 10−133 6.0000 0.2462
GKN-I(c) 4 1.39× 10−4 4.40× 10−23 4.43× 10−134 6.0000 0.2497
GKN-I(d) 4 2.32× 10−4 1.95× 10−21 6.85× 10−124 6.0000 0.2812
GKN-II(a) 4 3.36× 10−5 8.72× 10−28 2.66× 10−163 6.0000 0.3397
GKN-II(b) 4 3.39× 10−5 2.19× 10−20 1.57× 10−117 6.0000 0.2695
GKN-II(c) 4 2.16× 10−5 7.70× 10−22 1.58× 10−126 6.0000 0.2460
GKN-II(d) 4 3.51× 10−3 3.25× 10−14 2.03× 10−80 6.0000 0.2342
NM-I(a) 4 1.52× 10−4 8.45× 10−26 1.41× 10−174 6.9999 0.1445
NM-I(b) 4 1.25× 10−4 2.22× 10−26 1.23× 10−178 6.9999 0.1522
NM-I(c) 4 5.26× 10−4 1.58× 10−29 3.54× 10−201 6.9999 0.1640
NM-II(a) 4 1.52× 10−4 9.05× 10−26 2.36× 10−174 6.9999 0.1482
NM-II(b) 4 1.27× 10−4 2.49× 10−26 2.84× 10−178 6.9999 0.1492
NM-II(c) 4 5.54× 10−4 2.51× 10−29 9.82× 10−200 6.9999 0.1642

Example 6. Let us assume another nonlinear test function given as (see [22])

f6(x) =
(

x−
√

3x3 cos
(πx

6

)
+

1
x2 + 1

− 11
5

+ 4
√

3
)
(x− 2)4.

The root α = 2 of this function is of multiplicity 5. This root is calculated assuming the initial approximation
x0 = 1.5. Results so obtained are shown in Table 6.

Table 6. Comparison of the numerical results for Example 6.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 4 1.20× 10−5 6.82× 10−31 2.31× 10−182 6.0000 0.6797
GKN-I(b) 4 1.20× 10−5 6.86× 10−31 2.40× 10−182 6.0000 0.6680
GKN-I(c) 4 1.21× 10−5 7.72× 10−31 5.18× 10−182 6.0000 0.6992
GKN-I(d) 4 1.58× 10−5 1.00× 10−29 6.51× 10−175 6.0000 0.6720
GKN-II(a) 4 3.17× 10−5 1.64× 10−28 3.21× 10−168 6.0000 0.8047
GKN-II(b) 4 3.50× 10−5 6.90× 10−28 4.05× 10−164 6.0000 0.8280
GKN-II(c) 4 3.41× 10−5 4.42× 10−28 2.09× 10−165 6.0000 0.7967
GKN-II(d) 4 3.54× 10−5 8.45× 10−28 1.56× 10−163 6.0000 0.8242
NM-I(a) 4 5.14× 10−6 4.35× 10−38 1.35× 10−262 7.0000 0.5625
NM-I(b) 4 3.45× 10−6 2.68× 10−39 4.53× 10−271 7.0000 0.5782
NM-I(c) 4 2.05× 10−6 2.95× 10−41 3.76× 10−285 7.0000 0.5277
NM-II(a) 4 5.14× 10−6 4.42× 10−38 1.53× 10−262 7.0000 0.4805
NM-II(b) 4 3.45× 10−6 2.73× 10−39 5.24× 10−271 7.0000 0.4725
NM-II(c) 4 2.05× 10−6 3.07× 10−41 5.17× 10−285 7.0000 0.4610

Example 7. Lastly, consider the test function

f7(x) =
(

x2 + 1
)(

2xex2+1 + x3 − x
)

cosh2
(πx

2

)
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The function has multiple root α = i of multiplicity 4. We choose the initial approximations x0 = 1.25i for
obtaining the root of the function. The results computed by various methods are shown in Table 7.

Table 7. Comparison of the numerical results for Example 7.

Methods n |en−3| |en−2| |en−1| COC CPU-t (s)

GKN-I(a) 4 2.53× 10−6 3.79× 10−35 4.32× 10−208 6.0000 1.1564
GKN-I(b) 4 2.53× 10−6 3.92× 10−35 5.33× 10−208 6.0000 1.1577
GKN-I(c) 4 2.68× 10−6 6.07× 10−35 8.23× 10−207 6.0000 1.1415
GKN-I(d) 4 4.80× 10−6 5.34× 10−33 1.01× 10−194 6.0000 1.0473
GKN-II(a) 4 5.04× 10−6 1.82× 10−33 4.04× 10−198 6.0000 1.0212
GKN-II(b) 4 7.15× 10−6 4.23× 10−32 1.81× 10−189 6.0000 1.1215
GKN-II(c) 4 6.39× 10−6 1.51× 10−32 2.64× 10−192 6.0000 1.2035
GKN-II(d) 4 8.22× 10−6 1.41× 10−31 8.09× 10−187 6.0000 1.1416
NM-I(a) 4 1.08× 10−6 6.96× 10−43 3.13× 10−296 7.0000 0.5787
NM-I(b) 4 9.01× 10−7 1.91× 10−43 3.71× 10−300 7.0000 0.5632
NM-I(c) 4 4.64× 10−7 7.44× 10−46 2.01× 10−317 7.0000 0.5586
NM-II(a) 4 1.09× 10−6 7.21× 10−43 4.10× 10−296 7.0000 0.5478
NM-II(b) 4 9.04× 10−7 2.00× 10−43 5.10× 10−300 7.0000 0.5946
NM-II(c) 4 4.68× 10−7 8.21× 10−46 4.20× 10−317 7.0000 0.5644

From the numerical values of errors we observe the increasing accuracy in the values of successive
approximations as the iteration proceed, which points to the stable nature of the methods. Like the
existing methods, the convergence behavior of new methods is also consistent. At the stage when
stopping criterion |xn+1 − xn| + | f (xn)| < 10−350 has been satisfied we display the value ‘0’ of
|xn+1 − xn|. From the calculation of computational order of convergence shown in the penultimate
column in each table, we verify the theoretical convergence of seventh order. The entries of last column
in each table show that the new methods consume less CPU-time during the execution of program
than the time taken by existing methods. This confirms the computationally more efficient nature of
the new methods. Among the new methods, the better performers (in terms of accuracy) are NM-I(c)
and NM-II(c) since they produce approximations of the root with small error. However, this is not true
when execution time is taken into account because if one method is better in some situations, then the
other is better in some other situation. The main purpose of implementing the new methods for solving
different type of nonlinear equations is purely to illustrate the better accuracy of the computed solution
and the better computational efficiency than existing techniques. Similar numerical experimentation,
performed on a variety of numerical problems of different kinds, confirmed the above remarks to a
large extent.

5. Conclusions

In the present work, we have constructed a class of seventh order methods for solving nonlinear
equations containing multiple roots. Analysis of the convergence has been carried out, which proves
the seventh order of convergence under standard conditions of the function whose zeros we are looking
for. Some particular cases of the family are presented. The stability of these cases are tested by means
of visual display of the basins of attraction when the methods are applied on different polynomials.
The methods are also implemented to solve nonlinear equations including those arising in practical
problems. The performance is compared with existing methods in numerical testing. Superiority of
proposed methods over the known techniques is endorsed by the numerical tests including the elapsed
CPU-time in execution of program.
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