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Abstract: In this article, we give ten examples of 2-connected seven dimensional Sasaki-Einstein
manifolds for which the third homology group is completely determined. Using the Boyer-Galicki
construction of links over particular Kähler-Einstein orbifolds, we apply a valid case of Orlik’s
conjecture to the links so that one is able to explicitly determine the entire third integral homology
group. We give ten such new examples, all of which have the third Betti number satisfy 10 ≤
b3(L f ) ≤ 20.
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1. Introduction

A rich source of constructing Sasaki-Einstein (SE) metrics of positive Ricci curvature pioneered
by Boyer and Galicki in Reference [1] is via links of isolated hypersurface singularities defined by
weighted homogenous polynomials. These smooth manifolds have been used to show the existence of
SE metrics on many types of manifolds such as exotic spheres [2], rational homology spheres ([3,4])
and connected sums of S2 × S3 [1] (see Reference [5] for more comprehensive survey.) SE manifolds
are also extremely important in relation to the AdS/CFT Correspondence which is a conjecture that,
in certain environments, relates Sasaki-Einstein geometries to particular superconformal theories.
(See for example, Reference [6] for recent progress in the relationship between SE geomtries and
the AdS/CFT conjecture.) In general it is very difficult to determine the diffeomorphism or even
homeomorphism type of a given link so determining any such geometric or topological data about the
link is always helpful. Along these lines, for a given link of dimension 2n− 1, Milnor and Orlik [7]
determined a formula for the n− 1 Betti number of the link and later on Orlik conjectured a formula
[8] (or see section two) for the torsion in n− 1 integral homology group. This conjecture due to Orlik
regarding the torsion in integral homology of links is known to hold in certain cases. Both of these
formulas have been instrumental in extracting some topological data on certain SE manifolds arising as
links. For example, based on work of Cheltsov [9], Boyer gave fourteen examples [10] of SE 7-manifolds
arising from links of isolated hypersurface singularities for which the third integral homology group is
completely determined. He used Brieskorn-Pham polynomials and Orlik polynomials (see Section 1),
both of which are cases in which the aforementioned conjecture holds. Inspired by these examples,
the main motivation for this article is to find other examples of SE 7-manifolds arising as links generated
by Brieskorn-Pham polynomials or Orlik polynomials so that one can explicitly calculate the third
integral homology group.

In general, there are obstructions to finding SE metrics (e.g., Bishop obstruction and Lichnerowicz
obstruction [11]) so it is worth finding as many examples as possible of manifolds which due admit SE
metrics. Indeed, the main result of the paper is a list of ten examples (see Section 2) of SE links defined
by Orlik polynomials. Because of this, we are then able to calculate the torsion in the third integral
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homology group explicitly. In Section 2, we review the necessary background and in Section 3 we give
the table of ten examples together with the third Betti number and explicit forms of H3.

2. Background

Define the weighted C∗ action on Cn+1 by

(z0, ..., zn) 7−→ (λw0 z0, ..., λwn zn)

where wi are the weights which are positive integers and λ ∈ C∗. We use the standard notation
w = (w0, ..., wn) to denote a weight vector. In addition, we assume

gcd(w0, ..., wn) = 1.

Definition 1. A polynomial f ∈ C[z0, ..., zn] is weighted homogenous if it satisfies

f (λw0 z0, ..., λwn zn) = λd f (z0, ..., zn)

for any λ ∈ C∗ and the positive integer d is the degree of f .

The link L f of an isolated hypersurface singularity defined by a weighted homogenous polynomial
f with isolated singularity only at the origin is given by

L f = C f ∩ S2n+1

where C f is the weighted affine cone defined by f = 0 in Cn+1. By Milnor [12], L f is a smooth n− 2
connected manifold of dimension 2n− 1.

Recall a Fano orbifold Z is an orbifold for which the orbifold anticanonical bundle is ample.

Theorem 1 ([1]). The link L f as defined above admits as Sasaki-Einstein structure if and only if the Fano
orbifold Z f admits a Kähler-Einstein orbifold metric of scalar curvature 4n(n + 1)

Note that one simply needs to rescale a Kähler-Einstein metric of positive scalar curvature to get
the desired scalar curvature in the statement of the theorem. We can think of the weighted hypersurface
Z f as the quotient space of the link L f by the locally free circle action where this circle action comes
from the weighted Sasakian structure on the link L f . In fact this whole process is summarized in the
commutative diagram [1]

L f S2n+1

Z f P(w)

π

where S2n+1
w denotes the unit sphere with a weighted Sasakian structure, P(w) is weighted projective

space coming from the quotient of S2n+1
w by a weighted circle action generated from the weighted

Sasakian structure. The top horizontal arrow is a Sasakian embedding and the bottom arrow is Kähler
embedding. Moreover the vertical arrows are orbifold Riemannian submersions.

Thus, a mechanism for constructing 2-connected Sasaki-Einstein 7-manifolds boils down to
finding orbifold Fano Kähler-Einstein hypersurfaces in weighted projective 4-space P(w). Johnson
and Kollár in Reference [13] construct 4442 Fano orbifolds and of this list, 1936 of these are known to
admit orbifold Kähler-Einstein metrics. Therefore, by the above construction we state a theorem of
Boyer, Galicki and Nakamaye:
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Theorem 2 ([3]). There exists 1936 2-connected Sasaki-Einstein 7-manifolds realized as links of isolated
hypersurface singularities defined by weighted homogenous polynomials.

In Reference [3], the authors were able to determine many from the list of 1936 which yield rational
homology 7-spheres and they also determined the order of H3(L f ,Z). In this paper, we identify
ten links of isolated hypersurface singularities which can be given by so called Orlik polynomials,
thus allowing us to calculate the third integral homology group explicitly. First, we need to define
some quantities [7]:

ui =
d

gcd(d, wi)
, vi =

wi
gcd(d, wi)

Let L f denote a link of an isolated hypersurface singularity defined by a weighted homogenous
polynomial. The formula for the Betti number bn−1(L f ) is given by:

bn−1(L f ) = ∑(−1)n+1−s ui1 , . . . uis
vi1 . . . vis lcm(ui1 , . . . , uis)

.

Here the sum is over all possible 2n+1 subsets {i1, . . . , is} of {0, . . . n}.
For the torsion data, Orlik conjectured [8] that for a given link L f of dimension 2n− 1 one has

Hn−1(L f ,Z)tor = Zd1 ⊕Zd2 ⊕ · · · ⊕Zdr (1)

We should now review how the di data are given, using the presentation given in Reference [5].
Given an index set {i1, i2, ...., is}, define I to be the set of all of the 2s subsets and let us designate J to
be all of the proper subsets. For each possible subset, we must define (inductively) a pair of numbers
ci1,...,is and ki1,...,is . For each ordered subset {i1, ..., is} ⊂ {0, 1, 2, ..., n}with i1 < i2 < · · · < is one defines
the set of 2s positive integers, beginning with c∅ = gcd(u0, ..., un) :

ci1,...,is =
gcd(u0, . . . , ûi1 , . . . , ûis , . . . , un)

∏
J

cj1,...,jt
.

Now, to get the k′s:

ki1,...,is = εn−s+1κi1,...,is = εn−s+1 ∑
I
(−1)s−t uj1 · · · ujt

vj1 · · · vjt lcm(uj1 , . . . , ujt)

where

εn−s+1 =

{
0, if n− s + 1 is even

1, if n− s + 1 is odd.

Then for each 1 ≤ j ≤ r = bmax{ki1,...,is}c we put

dj = ∏
ki1,...,is≥j

ci1,...,is .

Though the full conjecture is still open 45 years later, it is known to hold in certain cases. If the
link is given by either of the polynomials below

za0
0 + za1

1 + · · ·+ zan
n , za0

0 + z0za1
1 + · · ·+ zn−1zan

n (2)

then the conjecture holds [8,14]. The first type of polynomial is called Brieskorn-Pham and the second
one is called Orlik. We will discuss these a bit more in the next section.

The formulas for the Betti numbers and torsion would indeed be quite tedious to compute by
hand, especially when the degree and the weights are large. Fortunately, Evan Thomas developed
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a program written in C which computes the Betti numbers and the numbers di, which generates the
torsion in Hn−1(L f ,Z). Hence if the link is generated by a Brieskorn-Pham polynomial or an Orlik
polynomial, then one explicitly knows the torsion in Hn−1. This program was also used extensively in
References [5,10,15]. I would like to thank Evan Thomas for giving me permission to use the program
and to make it available. See the Appendix A.

3. Examples

The paper of Johnson and Kollár [13] lists (see appendix for link to list) Kähler-Einstein and Tiger
of Fano orbifolds in weighted projective space P(w) gives the weight vector w = (w0, w1, w2, w3, w4)

with w0 ≤ w1 ≤ w2 ≤ w3 ≤ w4 (which can always be done after an affine change of coordinates) and
it indicates if the weighted hypersurface admits an orbifold Kähler-Einstein structure. The degree d is
given by d = (w0 + · · ·+ w4)− 1. It is easy to identify whether or not Kähler-Einstein orbifolds on the
list come from Brieskorn-Pham polynomials since for a given weight vector w on the list, the exponents
of the Brieskorn-Pham polynomial would have to be ai = d/wi for i = 0, ..., 4 and therefore one can do
a computer search to see if one gets integer results for the exponents. But are there any coming from
Orlik polynomials? To get some Orlik examples, one must search among the weighted hypersurfaces
in the list of 1936 Kähler-Einstein orbifolds and see if the given weights can be represented by Orlik
polynomials. This is more difficult than in the Brieskorn-Pham case since the constraints, given in
3.1, are more complicated. The search was done within the range 9 ≤ w0 ≤ 11 where there are 436
Fano orbifolds. Of this lot, 149 Fano orbifolds are known to admit an orbifold Fano Kähler-Einstein
structure. Therefore, for a given weight vector w = (w0, w1, w2, w3, w4) one needs to see if there exists
exponents ai, in the Orlik polynomials satisfying

d = a0w0 = w0 + w1a1 = w1 + w2a2 = w2 + w3a3 = w3 + w4a4. (3)

The ten examples were found by hand, checking many different weights against the given
conditions. Once they were found, the computer program developed by Evan Thomas was
implemented to determine the Betti number and the torsion data. We now give the table of ten
examples. We list the weights, the quasihomogenous polynomial generating the link, the degree and
finally the third homology group. It is not claimed that this list is exhaustive. There may very well be
more examples using these methods.

(75,10,163,331,247) z11
0 +z0z75

1 +z1z5
2+z2z2

3+z3z2
4 825 Z10⊕ Z55⊕ (Z5)4

(62,124,155,9,85) z7
0+z0z3

1+z1z2
2+z2z31

3 +z3z5
4 434 Z12 ⊕Z14⊕ (Z2)2

(9,174,467,277,649) z175
0 +z0z9

1+z1z3
2+z2z4

3+z3z2
4 1575 Z12 ⊕Z525⊕(Z3)

2

(87,348,145,11,193) z9
0+z0z2

1+z1z3
2+z2z58

3 +z3z4
4 783 Z12 ⊕Z27 ⊕Z3

(100,350,9,113,229) z8
0+z0z2

1+z1z50
2 +z2z7

3+z3z3
4 800 Z14 ⊕Z400

(9,291,488,181,787) z195
0 +z0z6

1+z1z3
2+z2z7

3+z3z2
4 1755 Z14 ⊕Z585 ⊕Z3

(10,164,333,71,253) z83
0 +z0z5

1+z1z2
2+z2z7

3+z3z3
4 830 Z14 ⊕Z166

(10,540,275,163,103) z109
0 +z0z2

1+z1z2
2+z2z5

3+z3z9
4 1090 Z16 ⊕Z218 ⊕Z2

(32,144,11,103,31) z10
0 +z0z2

1+z1z16
2 +z2z3

3+z3z7
4 320 Z18 ⊕Z160

(45,36,27,11,107) z5
0+z0z5

1+z1z7
2+z2z18

3 +z3z2
4 225 Z20 ⊕Z5

4. Conclusions

Because Sasaki-Einstein manifolds of positive Ricci curvature play such an important role in the
AdS/CFT conjecture in string theory, it is of utmost importance to have as many examples as possible
of Sasaki-Einstein manifolds especially in dimensions five and seven. In this paper, ten new examples
of seven dimensional 2-connected Sasaki-Einstein manifolds were constructed by constructing links
using Orlik polynomials over particular Kähler-Einstein Fano orbifolds. The third homology group
was explicitly calculated using a conjectural formula which is known to be true for Orlik polynomials.
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It is likely there are more examples using this approach but is difficult to detect them without a more
systematic approach.

Funding: Part of this article was prepared with the support of the James Michener Fellowship of
Swarthmore College.
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gratitude to Evan Thomas for allowing me to use the program he developed and for giving me permission to
share the code.
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Appendix A

(a) The Johnson-Kollár list of hypersurfaces in weighted projective 4-space P(w) admitting
Kähler-Einstein orbifold metrics is available at https://web.math.princeton.edu/~jmjohnso/delpezzo/
KEandTiger.txt. It lists the weights followed by data on wether or not it is known if the hypersurface
admits a Kähler-Einstein orbifold metric.
(b) The code developed by Evan Thomas to compute the homology of links is available at https:
//blogs.swarthmore.edu/gomez/wp-content/uploads/2016/07/evans.c.
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