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Abstract: The weak parts of shield tunnels are not obvious, so it is urgently necessary to implement
distributed monitoring based on an advanced sensing method. As the horizontal loads at both
sides of the shield tunnel present a type of symmetric distribution, the deformation parameters
under the vertical loads are often selected as the key monitored parameters, such as convergence,
settlement, and seam opening. In this paper, the monitoring of the proposed deformation parameters
is innovatively implemented with only one sensing technology, namely distributed optical-fiber
strain sensing technology. First, the improved distributed optical-fiber sensors are introduced with
the sensing performance. Second, a structural health monitoring (SHM) system for operational
shield tunnels is proposed, including optical-fiber sensor installation, data logging and saving, key
parameter analysis, and structural health assessment. The key monitoring theory and technology
are also proposed. The proposed system has been verified by experiments at the Nanjing Yangtze
River tunnel. In the experiments, the proposed optical-fiber sensors were installed on the surface of a
selected tunnel ring, with a longitudinal span of approximately 90 m long. The experiments were
conducted over 55 days to measure the distributed strain and temperature. Then the key parameters
were obtained from the measurements, with which the structural health was assessed. The possibility
that the shield tunnel SHM system can be constructed with the improved distributed optical-fiber
sensors, monitoring theory, and technology is proven.

Keywords: shield tunnel; structural health monitoring; distributed optical-fiber sensor;
convergence; settlement

1. Introduction

Recently, large-scale infrastructure is being constructed in many cities, such as subways and
pathways that cross rivers or seas. Due to their small effect on the environment, shield tunnels have
been widely applied. However, there are obvious characteristics, such as being a large investment,
being underground, a complicated service environment, and so on, that cause the safety of these
tunnels to greatly affect people’s lives and social economy. Therefore, a key issue is to intelligently
monitor the structural safety state of shield tunnels during the operation period.

In the field of civil engineering, researchers have already proposed the concept of structural health
monitoring (SHM) of bridges and buildings, and have made significant actual progress in theory and
application [1–5]. However, it is not easy to apply the methods from bridge or building SHM to shield
tunnels, since there are obvious differences between the two types of structures. Therefore, researchers
have conducted studies on tunnels [6–9], but most studies on tunnel SHM only focused on key cross
sections of those tunnels. In fact, the weak segments of a shield tunnel structure are not significant;
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every section may be weak segment. Therefore, it is difficult to construct a tunnel SHM system based
on the traditional sensing technology, as used for the bridge.

Distributed sensing techniques [10–12], such as the Brillouin optical time-domain reflectometer
(BOTDR) and Brillouin optical time-domain analysis (BOTDA), have great potential for tunnel SHM.
The sensors can cover the whole structure length with low cost and good sensitivity. For example,
Zhishen Wu et al. bonded fiber optic sensors with BOTDR on the surface of a poly-p-phenylene
benzobisoxazole (PBO) fiber reinforced polymer (FRP) sheet to retrofit a concrete beam [13]. During
the static load tests, these authors successfully obtained a continuous strain distribution along the
whole beam. Filippo Bastianini et al. also obtained the strain distribution of a concrete bridge under
static load with BOTDR [14]. Due to its great sensing advantages, some researchers have also applied
BOTDR to tunnel monitoring. Yong Ding et al. discussed the feasibility of constructing a tunnel SHM
system based on distributed optical-fiber sensors [15]. Most studies were implemented with sensors
embedded in the structure, but for the existing shield tunnels, the sensors cannot be embedded inside
them to monitor the internal structural forces.

In this paper, the research was implemented based on distributed optical-fiber sensing technology.
A new sensor was proposed to monitor the shield tunnel displacement; then, the displacement was
applied to identify the level of tunnel health status. The SHM system was proposed for shield tunnels
during the operation period, and verified by field tests of the Nanjing Yangtze river tunnel.

2. Distributed Optical-Fiber Sensor

2.1. New Packaged Optical-Fiber Sensors

The common optical-fiber (OF) sensor cannot be used to monitor structures because it breaks too
easily, so a special package must be applied. In this paper, a new type of sensor package is introduced,
as shown in Figure 1. In Figure 1, an additional plastic tube is added in the middle part of the sensor,
which prevents the middle part of the optical-fiber sensor from bonding with the Basalt fiber, while the
optical-fiber sensor is bonded at the two ends. This setup is designed to monitor the seam or a large
crack especially, since the deformation will not easily break the sensor.
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Figure 1. Distributed long-gauge optical-fiber sensor.

2.2. Sensing Performance of the Proposed Sensor

The Brillouin frequency shift νB of the optical-fiber sensor changes in proportion to the change in
strain or temperature along the optical fiber. The linear relationships between the Brillouin frequency
shift and the strain or temperature are given as follows:

νB(T0, ε) = Cε(ε− ε0) + νB0(T0, ε0), (1)

νB(T, ε0) = CT(T − T0) + νB0(T0, ε0). (2)

In the formula, ε is the strain, with the unit of µε; T is the temperature, with the unit of ◦C; νB is
the Brillouin frequency, with the unit of MHz; T0 and ε0 are the temperature and strain, respectively,
which correspond to a reference Brillouin frequency νB0; Cε is the strain coefficient, with the unit of
MHz/µε; and CT is the temperature coefficient, with the unit of MHz/◦C.

The strain and temperature sensing performance were verified by static extension and temperature
tests, where the long-gauge-type sensor was applied. The results are shown in Figure 2, which confirm
the linear relationships between Brillouin shift and strain, as well as between Brillouin shift and
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temperature. The sensing repeatability is also found in different specimens. The strain coefficient is
50.5 MHz/0.1%, and the temperature coefficient is 1.13 MHz/◦C, which are very close to the theoretical
values (49.7 MHz/0.1% and 1.07 MHz/◦C), and also verify the good sensing performance of the
proposed sensor.
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3. Structural Monitoring and Performance Assessment System of Shield Tunnels

3.1. Framework of the Structural Health Monitoring System of Shield Tunnels

Based on the proposed distributed optical-fiber sensing technology, the tunnel SHM system can
be constructed as shown in Figure 3. The system includes four main parts: parameter selection and OF
sensor installation, data collection/storage, key parameter analysis, and performance assessment.
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(1) Parameters selection and OF sensor installation:
The deformations of shield tunnels during the operation period include circumferential

convergence, vertical settlement, seam opening, horizontal torsion, and horizontal displacement.
Because the horizontal loads at both sides of a shield tunnel present a type of symmetric distribution in
most cases, the horizontal torsion and horizontal displacement are often small, so they in fact can be
ignored. However, the deformations under the vertical loads are often selected as the key monitored
parameters, such as seam opening, convergence, and settlement.

To implement the monitoring of the proposed deformation parameters, first, the location where
the sensors are installed must be selected. Considering the long-range coverage ability, the tunnel
can be covered by sensors along the entire length. However, some optimized line should be selected,
because it is not necessary to install sensors all over the tunnel. For the cross section, key lines should
also be found based on the tunnel environment, existing structure damage, etc. In addition, sensor
parameters, such as the gauge length and sensor length for temperature sensing, should be selected.
In addition to the necessary sensors, additional sensors should be installed, in order to guarantee
the normal operation of the sensing system if some sensors are broken. The sensors should also
be repairable.

(2) Data collection/storage:
The data collected by the optical fiber should be related to the detailed structure location. The

strain data can be processed with the temperature compensation.
(3) Key parameter analysis:
Based on the measured strain distribution, the changes in seam width, convergence, settlement,

and other key displacement parameters can be analyzed. Simultaneously, the inner force of the key
structure parts can be analyzed, based on the displacement.

(4) Performance assessment:
There are two levels for performance assessment: Level I and Level II. In Level I, some parameter

thresholds are set, in order to decide whether the monitored tunnel is normal or abnormal. If some
obvious abnormal cases occur, further assessment should be implemented, i.e., Level II assessment.
In Level II, the monitored structural parameters are input into the finite element (FE) model of
the monitored tunnel to calculate the structural inner force, which can be used to implement the
comprehensive performance assessment.

3.2. Key Theory and Technology for Structural Monitoring and Performance Assessment

3.2.1. Seam Width Monitoring

The number of shield tunnel seams is too large, and it is not easy to monitor the change in seam
width. As shown in Figure 4, the sensing method of a long gauge is applied to monitor the seam width,
which can be expressed as follows:

W = ε ∗ L. (3)
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In the formula, W is the change in seam width, ε is the average strain along the sensing gauge
length, and L is the sensing gauge length.

3.2.2. Convergence and Settlement Monitoring

Based on mechanic knowledge, there is a good relationship between strain and displacement, as
shown in Equation (4):

D =

∫
εM

y
Mdx +

∫
εNNdx +

∫
εQQdx (4)

In the formula, D is the total convergence of the shield tunnel; εM, εN, and εQ are the bending
strain, axial strain, and shear strain, respectively; M, N, and Q are the virtual bending moment, virtual
axial force, and virtual shear force, respectively.

In addition to the displacement calculated from Equation (4), the displacement caused by the
rotation at the seam should also be considered. The tunnel cross section model is shown in Figure 5,
where the spring hinge stands for the seam. In Equation (4), the displacements caused by the axial
strain and shear strain are small, so they can be ignored in this paper.Symmetry 2018, 10, x FOR PEER REVIEW  6 of 13 
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Therefore, the first part of the convergence is expressed as follows:

D1 =

∫
εM

y
Mdx. (5)

To calculate another part, the change in seam width should first be calculated as shown in
Equation (3), the model of which is shown in Figure 6. Then, the change in rotation α′ can be calculated
as follows:

α′ =
W/2

yL
=

ε ∗ L
2 ∗ yL

. (6)
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In the formula, yL is the distance from the sensor to the neutral axis. Finally, the second part of the
convergence is expressed as follows:

D2 = l ∗ (cosα− cos(α+ α′)) ≈ l ∗ α′ ∗ sin(α+
α′

2
). (7)

In the formula, α is the initial angle and l is the chord length of a segment, as shown in Figure 6.
The chord length l remains unchanged in the calculation.

Then, the convergence of the shield tunnel can be calculated as follows:

D = D1 + D2 =

∫
ξM

y
Mdx + l ∗ α′ ∗ sin(α+

α′

2
). (8)

For the longitudinal direction, the shield tunnel is often simplified as a continuous beam, as shown
in Figure 7. Therefore, the settlement can be calculated by Equation (4). However, the axial strain
and shear strain slightly affect the settlement, so Equation (5) is also applied, in order to calculate the
settlement in this paper.
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3.2.3. Structural Performance Assessment Method

The process of the structural performance assessment method in this paper is as follows: first, the
FE model of the tunnel is modified based on the inspection results; second, the monitored displacement
is input into the model to calculate the inner force; and finally, the assessment is implemented based
on the code or criterion.

4. Field Experiments at the Nanjing Yangtze River Tunnel

4.1. Experiment Description

The Nanjing Yangtze River tunnel is an important pathway along the Yangtze River in China.
There are obvious characteristics of the shield tunnel, such as a large diameter of 14.93 m, a high
water pressure of 650 kPa, a thin coverage soil of approximately 10 m under the groove area, and
a complicated geology. Therefore, it is important to apply tunnel SHM to maintain the structure’s
safety. The middle part of the tunnel, which is buried in deep soil with the highest water pressure, was
selected as the experimental area. One cross section and a 90 m-long longitudinal section were selected
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to install sensors. The experiments aimed to verify the feasibility of using the proposed OF sensor to
build an operational shield tunnel SHM system.

4.2. Sensor Installation

In the experiments, the OF sensors were packaged with basalt fiber, as shown in Figure 8, which
increases the sensor durability and strength to survive the installation process. In Figure 9, the sensors
covered 78% of the cross section of the tunnel, whereas the remaining 21% of the tunnel cross section
had no space to install sensors. In the calculation, the strain for the 21% is generated by interpolation.
OF sensors with a 30 cm gauge length were installed at the seam of the cross section. Meanwhile,
all bonded sensors were applied to monitor the concrete strain. The sensors along the longitudinal
direction were installed similar to those for the cross section, but additional sensors were placed for
temperature sensing with a space of 20 m.
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After the sensor installation, the OF sensor should be located so that the measured data relates to
the actual structure’s location. A typical initial strain distribution is presented in Figure 10, which shows
that there are several sharp strain peaks. These sharp strain peaks are located at the segment seams, and
the sensors are extended to present some initial strain for implementing the measurement if the seam
width decreases. The figure also shows that the initial strain is smaller for the temperature-monitoring
sensors, which can be used to locate the sensors.
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4.3. Monitoring Results of Some Key Parameters

The system ran for 55 days, and one measurement was implemented each hour. Thus, key
structure parameters can be assessed according to the strain and temperature test data.

4.3.1. Strain

The typical strain test results of the cross section and longitudinal direction are shown in Figure 11,
and they have been compensated by the temperature effect. The strain data obtained at the first
measurement are taken as a basis. The strain test results for other measurements represent the change
based on the first strain measurement. From the typical results in Figure 11, the strain fluctuates with
a range of −50 to +50 µε, most of which is due to the strain measurement error of the measurement
machine, as the Brillouin sensing accuracy is approximately 10 µε. Therefore, during the monitoring
time, the shield tunnel structure showed a very small deformation.
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Figure 11. Typical strain monitoring results.

4.3.2. Seam Width

The seam width change can be calculated with Equation (3). The typical results are shown in
Figure 12. The seam width changes more in the longitudinal direction than in the cross section. The
maximum variations of the longitudinal and circular seam widths are 0.21 and 0.15 mm, respectively.
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4.3.3. Convergence

The convergence can be calculated with Equation (8). The typical results are shown in Figure 13.
From the results, the convergence deformation at the arch foot of the shield tunnel is maximal. The
largest monitored convergence is only 0.3 mm, which is also not larger than the limit.
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4.3.4. Settlement

The settlement for the longitudinal direction is calculated as shown in Figure 14. At the two ends
of the monitored zone, the vertical displacement is set as zero. In the figure, the positive value indicates
that the displacement occurs downward, and the negative value indicates that the displacement occurs
upward. The results show that the largest settlement is approximately 0.12 mm, which does not reach
the value to trigger an alarm. The settlement is very small, which indicates that the tunnel is very
stable. The settlement results in Figure 14 show that the settlement on the 30th day was the highest,
because the water level of the Yangtze River had risen by 2~2.5 m during this period.
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4.4. Structural Performance Assessment

The thresholds of the key parameters were calculated according to the design scheme. Through
these thresholds, the level of structural health of the Nanjing Yangtze River shield tunnel can be divided
into four levels, as shown in Table 1. In level 1, the upper limit is that the structural health affects the
normal operation of the tunnel, where water leakage occurs; in level 2, the upper limit is the limit state
of normal service of the structures, where concrete cracking occurs; in level 3, the upper limit is 80% of
the designed bearing capacity; and in level 4, the upper limit is the designed bearing capacity.
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Table 1. Level of structural health assessment of the Nanjing Yangtze River shield tunnel.

Health Level 1 2 3 4

Settlement (mm/10 m) s < 4 4 < s ≤ 10 10 < s ≤ 50 s > 50
Seam width (mm) W < 6 6 < W ≤ 10 10 < W ≤ 30 W > 30

Convergence (mm) D ≤ 50 50 < D ≤ 80 80 < D ≤ 200 D > 200

According to Table 1, the test section of the Nanjing Yangtze River shield tunnel was assessed as
level 1, meaning that there is no obvious damage, and no need to implement the assessment of level 2.

The above table can only be used to evaluate the safety status of the Nanjing Yangtze River shield
tunnel. To more accurately determine the safety of the tunnel, the finite element (FE) model should
be established, with the monitored displacement input into the model to calculate the inner force of
the tunnel. The geometric shape of the shield tunnel is symmetrical, so the shield segment structure
can be simplified to a homogeneous ring model. The load-structure method is used in finite element
calculation with the FEM software MIDAS/GTS, in which the soil around the tunnel is equivalent to
the load and pressure-only spring, and the structure of the shield tunnel is equivalent to the beam
element. The test section was under the Yangtze River, with a water depth of up to 30 m and a covered
soil thickness of 19.17 m. The computational section sketch is shown in Figure 15. The convergence
obtained from the test is input into the FE model as a type of load, as shown in Figure 16. The FE
simulation results are shown in Figure 17. According to the results, the largest axial force was 4023.2 kN,
and the largest bending moment was 267.2 kN·m. According to the design parameters and mechanical
calculation, the structure of the test section is still in the elastic status.
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5. Conclusions

In this paper, distributed optical-fiber sensing technology is applied to solve the problem of tunnel
SHM. From our research, the following conclusions are drawn:

(1) The distributed optical-fiber sensing technology is a key technology to build a tunnel SHM
system, due to its sensing advantages in strain and temperature sensing.

(2) The tunnel SHM system can be constructed with distributed optical-fiber sensing technology,
which mainly includes four parts: parameter selection and OF sensor installation, data collection/storage,
key parameter analysis, and performance assessment.

(3) With the distributed optical-fiber sensing technology, key parameters, such as the seam width,
convergence, and settlement, can be monitored for a shield tunnel.

(4) Based on the field experiments at the Nanjing Yangtze River shield tunnel, the proposed tunnel
SHM system is verified.

From the research in this paper, the proposed method has good potential. However, much work
must be performed for implementation, especially considering the long-term monitoring requirements,
such as durability and stability.
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