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Abstract: I fused observed spectra from the white-dwarf star G191-B2B to constrain the spatial
and temporal variation of the fine-structure constant, α = e2

4πε0}c . The analysis was combined with
laboratory-measured and astronomically observed lines in [Ni V] to find ∆α/α = (−0.003± 0.072) × 10−6.
The obtained result allows a symmetry of the related comparison with previous studies looking for
cosmological variations of α using spectra from Quasi Stellar Objects (QSOs). In this way, we can
expect higher sensitivity from white-dwarf spectra than QSO spectra. Therefore, this study should
have orders-of-magnitude higher sensitivity per system than previous quasar studies, and we should
reduce statistical and systematic errors. The results of this study place a more stringent limit on
∆α/α than previous studies using the same data.

Keywords: varying constants; varying fine-structure constant; hot white dwarf stars; absorption
spectra analysis

1. Introduction

One of the most interesting problems in modern physics, first questioned by Dirac and Milne [1,2],
is the possibility of space-time variation in the fundamental constants. One example of such variation,
which was determined based on the latest measurements of the absorption spectra of Quasi Stellar
Objects (QSOs), proposes that the fine-structure constant α may have had different values throughout
the evolution of the Universe [3]. In recent years, the most frequent methods of analysis of these
spectra have been the wavelength separations of alkaline-like ion doublets (the AD method) and the
many-multiplet (MM) technique [4]. The best result using the AD method is ∆α/α = (0.7± 1.4)× 10−4,
which was obtained from an analysis of robust nebular emission lines of [O III] (5007 Å and 4959 Å)
in the Sloan Digital Sky Survey (SDSS) QSO system with redshifts 0.16 < z < 0.80 [4]. Murphy et al.
applied the MM approach to analyze 21 [Si IV] doublets and obtained ∆α/α = (−0.5± 1.3) × 10−5

at zabs = 2.8 [5]. Additionally, Dzuba et al. and Webb et al. used the MM approach and obtained
∆α/α = (−1.9± 0.4) × 10−5 for z > 1 and ∆α/α = (−0.2± 0.4) × 10−5 for z < 1 [5–7]. Furthermore,
Webb et al. used the MM technique on 128 systems with a redshift of 0.2 < z < 3.7, and obtained
∆α/α = (−0.57± 0.10) × 10−5 [8]. Using large sets of quasar echelle spectra with a high resolving
power, Quast et al. found ∆α/α = (−0.4± 1.9) × 10−6 [9,10] and Chand et al. reported ∆α/α =

(−0.5± 2.4) × 10−6 [11]. However, the drawback of the MM method is the estimation errors in ∆α/α,
as the errors in the calibration wavelengths are typically not taken into account. The best estimates of
∆α/α, giving cosmological variations at the level of 10−6, comes from the work of Levshakov et al., who
analyzed [Fe II] absorption lines at zabs = 1.15 and obtained ∆α/α = (−0.07± 0.84) × 10−6 [12–14], and
from the work of Porsev et al., who found ∆α/α = (−0.12± 1.79)×10−6 and ∆α/α = (−5.4± 2.5)×10−6
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at z = 1.84 by analyzing absorption lines of [Fe II] [15]. The differences between these results may
stem from the fact that some poorly understood systematic effects and/or correlations between spectral
doublets were not properly included in the final analysis. In particular, difficulties with the wavelength
calibration of the complex [Fe II] absorption spectra and the different sensitivity of various transitions
included in the analysis, coming from different atoms and molecules, affect the resulting error [16–23].
Another problem may arise from possible variety in the asymmetric isotopic abundance of the sources
of the emitted radiation, which is hard to quantify.

In recent years, this topic has been of great interest, since the possibilities of spatial or temporal
variation of α and G have been studied using multidimensional models. Aguilar et al. and Berro et al.
suggested that spatial or temporal variation in the fine-structure constant may have occurred at different
places and times in the Universe. By using multidimensional models, Aguilar et al. and Berro et al.
inferred a relationship between α/G and

.
α/α2

∼

.
G/G. From the analysis of the spectra of white-dwarf

stars, they also found that the value of G changed over cosmological time from the galactic cluster
NGC6791 as

.
G/G ∼ −1.8×10−12 yr−1 and

.
G/G ∼ −1.3×10−10 yr−1 from the pulsating white-dwarf stars

G117-B15A and R548 [24–27]. Moreover, Damour et al. obtained
.

G/G = −(1.0 ± 2.3)× 10−11 yr−1 using
timing data from the binary pulsar PSR1913+16 in the frameworks of Brans–Dicke theory. By re-analyzing
the same data, Damour and Taylor obtained

.
G/G = −(1.10 1.07) × 10−11 yr−1. Additionally, by

combining this data and data from PSR B1855+09, Kaspi et al. found
.

G/G = (4± 5) × 10−12 yr−1

and
.

G/G = (−9± 18) × 10−12 yr−1 [28–30]. By using different theories with varying G and using six

telescopes, Guenther et al. compared the p-mode spectra to find
∣∣∣∣ .
G/G

∣∣∣∣ < 1.6× 10−12 yr−1. Additionally,

Thorsett [31,32] obtained a result of
.

G/G = (−0.6± 4.2) × 10−12 yr−1 by estimating at 2σ. The most
stringent limit of this value was obtained using multidimensional models, namely

.
G/G ∼ +10−15 yr−1.

Additionally, analysis of the Lunar Laser Ranging experiments found
.

G/G = (0.2± 0.7) × 10−12 yr−1,
white-dwarf asteroseismology was used to find

.
G/G = 1.3× 10−10 yr−1, and Big Bang nucleosynthesis

was used to find −0.3× 10−12 yr−1 .
.

G/G .= 0.4× 10−12 yr−1 [33–37].
A new method has been proposed for the analysis of the optical spectra of quasars and white-dwarf

stars, and has been applied to search for spatial and temporal variability of the fine-structure
constant. Using this technique, recent studies [38,39] determined a change over cosmological time of
∆α/α = (0.007± 0.087) × 10−6 from a comparison of laboratory spectra of [Fe V] with the spectra of
the white-dwarf star G191-B2B with a gravitational redshift z = ∆φ ≈ 5× 10−5. This new approach
allows the estimation of values of ∆α/α in the early stages of the Universe’s evolution from the spectra
of white-dwarf stars, and has the advantage of being much more transparent and less subject to
systematics than previous methods.

In this paper, I propose the use of observed absorption line spectra of [Ni V] from the white-dwarf
star G191-B2B [39] to test the variations of the fine-structure constant with strong gravitational fields.
With a better determination of laboratory-measured wavelengths and the inclusion of their errors in
the error budget, this method has been shown to be a step toward obtaining a stronger limit on ∆α/α
compared to previous methods [40].

2. Data Analysis

Hot white-dwarf stars represent a powerful tool to test the relationship between the fine-structure
constant and strong gravitational fields. Such stars contain almost quadruply ionized iron [Fe V]
and quadruply ionized nickel [Ni V], and the variation of the fine-structure constant will manifest
as shifts in the observed wavelengths of the absorption lines. In previous studies, we predicted that
the existence of scalar fields may influence the value of the fine-structure constant. The best way to
detect such an influence is to make a measurement in a stronger gravitational field, where the scalar
field should be more concentrated and the fine-structure constant may take a different value such as

∆α/α ≡ α(r)−α0
α0

≡ kα∆φ = kα∆(GM
rc2 ), where φ = GM

rc2 , M is the mass of the white dwarf/Earth, r is the
radius of the white dwarf/Earth, α0 is the laboratory-derived value of the fine-structure constant, and
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kα is a sensitivity parameter. Therefore, hot white-dwarf stars may be ideal probes to investigate the
relationship between ∆α/α and strong gravitational fields (e.g., [38,39]):

∆α
α
≈

1
2
(

1
2

(
λ2(t)
λ1(t)

)
− 1

1
2

(
λ2(0)
λ1(0)

)
− 1
− 1). (1)

Accordingly, by evaluating the difference between measured wavelengths λ1(t) and λ2(t) from
hot white-dwarf stars with the gravitational redshift z with the corresponding laboratory, it is possible
to directly infer the possible variation of α in different epochs, different area-time points, and different
regions of the Universe, as well as the present value. The spectra used in this work are the same that
were utilized in part of the work of Berengut et al., and the details of the experimental methods used
in the present study can be found in their references [38–40]. However, the results obtained from the
analysis of quadruply ionized nickel [Ni V] and quadruply ionized iron [Fe V] are inconsistent, and
are based on a systematic effect in the laboratory wavelengths used. Therefore, we have improved the
work of Berengut et al. by using new wavelengths [40–43]. These new wavelengths make it possible to
investigate the suspected systematic gain calibration error that was suggested by Berengut et al. [40].
Moreover, we can identify the dependence of this effect on the transition wavelength, which can be used
to directly infer a wavelength shift due to ∆α/α and the relationship between ∆α/α and gravitational
potential. The examined spectra are of excellent quality, and the errors in the laboratory-measured
values of [Ni V] were able to be determined with an uncertainty of about several mÅ and to be used
to estimate systematic errors of ∆α/α. This approach was primarily based on the evaluation of [Ni
V] and the level of ionization. Many multiplet lines originating within multiplet upper energy levels
were analyzed, thus making the analysis independent of the physical conditions of the gas. Detailed
discussions of possible sources of systematic and statical errors in this method are given in [11–46].
To create the simulated spectra and the real data, a nonlinear least-squares fitting program was used,
which involved reducing the variation of χ as a function of ∆α/α for every absorber fitting. The fitting
procedure depends on a set of free parameters describing the properties of the absorbing system, and a
set of fixed values describing the atomic and molecular properties of the absorbing system. Additionally,
the column density N, the absorption redshift zabs, and the Doppler line width b were included in the fit.
For all lines, I varied ∆α/α from −1.2× 10−6 to 1.2× 10−6 with a step of −0.1× 10−6. Only (χ2) minimum
(χ2

min) was accepted as the measured value of ∆α/α from the system. The minima of χ2 obtained from
each of the fits were then plotted as a function of ∆α/α, as shown in Figure 1. The averaging of values
results in ∆α/α = (−0.003± 0.072) × 10−6, wherein the error is the standard deviation of the mean.
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Figure 1. Plot for the components of [Ni V].

Figure 1 illustrates ∆α/α vs. gravitational redshift. This figure shows an example of our result
from the analysis of 32 quadruply ionized nickel [Ni V] to constrain ∆α/α seen in the spectra of the hot
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white-dwarf star G191-B2B [40]. Error bars are 1σ. Figure 1 also shows that the statistical uncertainties
grow as the absorption features increase. My result is consistent with various components in the
analyses of Berengut et al. [40], which used spectral data of similar quality. A good fit was obtained
for each value, which was achieved by using an individual transition line using χ2 minimization.
On average, a slightly more negative ∆α/α was found for the low-z data.

3. Results and Discussions

In the previous study of Berengut et al., the authors used a spectroscopic [Ni V] ion in the local
environment of the photosphere of the hot white-dwarf G191-B2B to search for the dependence of α in
a strong gravitational field [40]. However, their results indicate that the maximum variation of ∆α/α is
only 10−5. Berengut et al. demonstrated that this limitation is caused by the systematic effect in the
laboratory-measured wavelengths used rather than by a gravitational dependence of ∆α/α. Therefore,
I have improved the study of Berengut et al. by refining their analytical methodology by incorporating
robust techniques from previous asymmetric studies using the wavelength shifts of 32 quadruply
ionized iron [Ni V] in the work of Berengut et al. [40]. The precision in the relative change in α achieved
in my analyses is three orders of magnitude greater than that achieved by Berengut et al. The results
are given as ∆α/α = (−0.003± 0.072) × 10−6, and the statistical and systematic errors are estimated
with high accuracy compared with those of previous studies [10–14,17–19,21–43]. Recently, significant
effort has been invested into improving the laboratory-measured wavelengths of transitions in [Ni V]
multiplet lines, which can be utilized in my analyses. This will offer the most robust and constraining
test of whether the fine-structure constant varies in gravitational fields, and will also allow further
investigation of a large number of systems to reduce the final uncertainties [21,25,29–43]. This will
improve the selection process of the satisfactory spectra of white-dwarf stars. Additionally, the high
relative precision of this work reduces the potential for systematic effects, improves the dedication of
∆α/α, and reduces the number of spectra of white-dwarf stars in a sensitive way.

The works of Quast et al. [10], Chand et al. [11], Levshakov et al. [12–14], Murphy et al. [21,44], and
Berengut et al. [40], all of which examined the optical spectra of quasars, are, at least in part, conflicting.
The maximum values of ∆α/α estimated in the literature are approximately 10−6. However, these
estimations of ∆α/α are not explicitly utilized as fitting parameters. The most effective studies used the
χ2 versus ∆α/α curve to obtain the best-fitting estimate of ∆α/α. The reasons for these disparities are
not yet completely understood. However, similar to difficulties in wavelength calibration, problems
with the technique used are probably the main reason for these disparities. In order to improve
these disadvantages, my analysis was based completely on the main effect on the error budget range
consisting of α-independent line ratios, which allow us to perceive the real size of statistical and
systematic errors and to determine the actual wavelength splitting of the line pairs. This method is
most suitable for lines with small separations.

The key challenge in the method used in the present study relates to the fact that the potential
cause of systematic errors may be the wavelength calibration based on laboratory estimations or
observations. However, the errors could manifest merely as a general change in the measurements of
the Doppler shift, which will not affect my results. Additionally, the gain calibration errors are based
on the linear mapping related to the real wavelength separations as well as the measured wavelength
separations, which permits us to identify the dependence of α on gravitational fields. Moreover, other
possible sources of error are observations and laboratory measurements [22,39,40,47]. In previous
studies, the observations made did not include the identification of high-precision calibration to test
for the variation of α. Therefore, the present study used new observational data from HST/STIS
echelle spectroscopy, which provided the best spectra and the wavelength accuracy of about 1 km s−1

that was required for the analysis. Utilizing these spectra allows us to increase the precision in the
measurement of α with uncertainties on the order of 10−6 for the observed wavelengths and 10−7 for
laboratory-measured wavelengths.
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In a previous study, we determined that the main source of error was the width separation
ratio between observed and laboratory-measured ∆λ/λ. The determination of suitable centroid
wavelengths depended on this profile so that the fitted line supports wavelength uncertainties of σλ1 .
and σλ2 . Therefore, the observed lines from white-dwarf stars, such as [Ni V], are important, since
the change in potential is five orders of magnitude larger than what would be found in laboratory
experiments. I identified and examined the spectral data of each object before fitting. I determined
which [Ni V] transitions are useful and which [Ni V] lines contribute to the estimate of ∆α/α for our
analysis [22,39,40,47]. Thus, we can determine the best way to estimate and minimize distortions. This
is a major cause of the decreasing spectral sensitivity at the edges of echelle orders. As a result, we
can determine the influence of hidden blends on the measurements of line position, which in turn
allows us to determine factors such as the identical velocity structure of these transitions with high
accuracy. I have applied the previous method which involves α-independent line ratios. This method
has the advantage that it can be used to more exactly estimate the statistical and systematic errors.
Before modeling the absorption lines, I checked the spectral data of each object, which allowed one
to determine the useful transitions of [Ni V] for the analysis. A physically realistic and statistically
acceptable model of the observed absorption features was produced in the model. Almost all absorption
features reflect sources that are expected for a single fitted profile, thus necessitating the use of multiple
fitted profiles, such as velocity components, to achieve a statistically acceptable fit. Unfortunately, we
have no way of knowing a priori how many components are required to obtain a statistically acceptable
fit. The process of modeling the observed structure involves adding components until a physically
realistic and statistically acceptable fit is achieved. I used our previous method of profile-fitting to
estimate ∆α/α from observed absorption spectra [39–42]. Therefore, we apply for each object and
then construct an initial fitting profile model to all relevant transitions of [Ni V] lines. We apply to
a single velocity component and then apply our fitting model in the same way as for the relevant
sections of our previous publications. By making use of the previous analysis method, the nonlinear
least-squares optimization of the present profile can be applied to the selected spectral data. It explicitly
includes ∆α/α as a free parameter. Our program includes the fitting parameters column density N,
absorption redshift, the Doppler and line width b, and ∆χ2 = χ2

− χ2
min = 1 was computed to find the

changes in ∆α/α with an assignment error of 1σ. The maximum change in ∆α/α was determined by
∆χ2 = 1, which was used to estimate the error in ∆α/α. The minimum obtained result using χ2 for
each line was plotted as a general function of the changes in ∆α/α. For all the lines in my analysis
with an average deviation of error approximately equal to the weighted mean (σ2

tot = σ2
∆α/α + σ2

sys), I
set a range from −1.2 × 10−6 to 1.2 × 10−6 with a step of 0.1 × 10−6. Then, I obtained the final result
∆α/α = (−0.003± 0.072) × 10−6 with the lowest statistical and systematic errors. As the statistical
uncertainties were determined from the diagonal terms of the covariance matrix, the best-fitting
solution and the uncertainties produced by my fitting method were verified using M arkov chain
Monte Carlo simulations used in previous works [39–47].

4. Conclusions

In this paper, I used observed absorption line spectra of [Ni V] from the white-dwarf star G191-B2B
to constrain the relationship between ∆α/α and the gravitational potential. The obtained result places
tighter bounds on the variation of α from the spectra of this white-dwarf star than those provided by
Berengut et al. [40]. My method to determine the sensitivity of ∆α/α to gravitational fields, which is
based on α-independent line ratios, allows us to determine the size of statistical and systematic errors
and the exact wavelength splitting of the line pairs, which is most suggested around the lines with
small separations. Moreover, the method can be simply and effectively applied over a wide range of
redshifts. By averaging over several values of ∆α/α, an accurate value of ∆α/α is reached. Using the
method presented here, future studies of [Ni V]/[Fe V] in the photospheres of white-dwarf stars should
provide further information on the possible variation of ∆α/α under strong gravitational fields.
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The increasing improvement of the observation and analysis of both distant astronomical quasars
and laboratory spectra, together with the technique utilized in this study, should ultimately offer a test
of the equivalence principle of General Relativity, and could serve as an important tool for proving the
validity of theoretical models of Grand Unification theory.
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