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Abstract: This paper proposed an improved bat algorithm based on Lévy flights and adjustment
factors (LAFBA). Dynamically decreasing inertia weight is added to the velocity update, which
effectively balances the global and local search of the algorithm; the search strategy of Lévy flight
is added to the position update, so that the algorithm maintains a good population diversity and
the global search ability is improved; and the speed adjustment factor is added, which effectively
improves the speed and accuracy of the algorithm. The proposed algorithm was then tested using
10 benchmark functions and 2 classical engineering design optimizations. The simulation results
show that the LAFBA has stronger optimization performance and higher optimization efficiency than
basic bat algorithm and other bio-inspired algorithms. Furthermore, the results of the real-world
engineering problems demonstrate the superiority of LAFBA in solving challenging problems with
constrained and unknown search spaces.
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1. Introduction

Many problems in management can be treated as global optimization problems, and the need
to efficiently solve large-scale optimization problems has prompted the development of bio-inspired
intelligent optimization algorithms. For example, scholar Holland proposed a genetic algorithm (GA)
based on the idea of evolution [1]; Kennedy and Eberhart proposed particle swarm optimization
(PSO) [2,3] by referring to the swarm foraging behavior in nature; and Dorigo et al., inspired by ant
foraging behavior, proposed the algorithm of ant colony optimization (ACO) [4]. In recent years, a
variety of novel swarm intelligent optimization algorithms have been developed, such as bee colony
algorithm [5], krill herd algorithm [6], cuckoo search algorithm [7,8] and moth flame optimization
algorithm [9] etc. Although a meta-heuristic algorithm has the advantages of simple calculation steps
and being easy to understand and implement, it also has the disadvantages of easily falling into local
extreme value and low solution accuracy. Sergeyev et al. compared several widely used metaheuristic
global optimization methods with Lipschitz deterministic methods by using operational zones, and
simulation results show that, in some runs, the metaheuristic methods were getting stuck in the local
solutions [10]. Therefore, it is of great significance to research and put forward swarm intelligence
optimization algorithms with better performance to enrich the algorithm and expand the application
field of the algorithm.

The bat algorithm (BA) is a metaheuristic optimization algorithm proposed by Yang [11]. The
algorithm uses the bat’s echolocation capability to design an optimization strategy that iterates through
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frequency updates. The bat algorithm has the advantages of having less setting parameters, being
easy to understand and implement, and having fast convergence. However, it also has drawbacks in
balancing global and local search capabilities, it is easy to fall into a local optimum, and the solution
accuracy is not high. To overcome these shortcomings, many scholars have made improvements to the
bat algorithm. For instance, Ramli and other scholars, in order to improve the global search ability of
the bat algorithm, put forward an enhanced bat algorithm (MBA) based on dimensional and inertia
weight factor to enhance the convergence [12]. Banati and Chaudhary proposed a multimodal bat
algorithm (MMBAIS) with improved search mechanism, which effectively alleviates the problem of
early convergence and improves the convergence speed of the algorithm in later phase [13]. Al-Betar
studied the alternative selection mechanism in the bat algorithm for global optimization [14]. Li added
a mutation switch function to the standard bat algorithm and proposed a bat optimization algorithm
(UGBA) that combines uniform variation and Gaussian variation [15]. Asma proposed a directional
bat algorithm (dBA) to introduce directional echolocation in the standard bat algorithm to enhance the
exploration and exploitation capabilities of the algorithm [16]. Al-Betar and Awadallah proposed an
island bat algorithm (iBA) that uses the island model’s strategy for bat algorithms to enhance algorithm
population diversity to avoid premature convergence [17].

In addition, many scholars are committed to expanding the application fields of bat algorithms.
For example, Laudis and other scholars have proposed a multi objective bat algorithm (MOBA) to
solve the problem in Very Large-Scale Integration (VLSI) design [18]. Tawhid and Dsouza proposed a
hybrid binary bat enhanced particle swarm optimization algorithm (HBBEPSO) to solve the feature
selection problems [19]. Osaba proposed an improved discrete bat algorithm (IBA) for solving
symmetric and asymmetric traveling salesman problems [20]. Mohamed and Moftah proposed a novel
multiobjective binary bat algorithm for simultaneous ranking and selection of keystroke dynamics
features [21]. Hamidzadeh used the ergodicity of chaotic algorithm and the automatic conversion
of bat algorithm global search and local search to construct a weighted SVDD method based on
chaotic bat algorithm (WSVDD–CBA) for effective data description [22]. Qi and others proposed a
discretized bat algorithm for solving vehicle routing problems with time windows [23]. Bekdaş and
others used the bat algorithm to modify the tuning quality and proposed an effective method to solve
the damper optimization problem [24]. Ameur and Sakly proposed a new hardware implementation
of the bat algorithm’s field-programmable gate array (FPGA) [25]. Chaib and other scholars used
the bat algorithm to optimize the design and adjust the novel fractional-order PID power system
stabilizer [26]. Mohammad et al. used the bat algorithm to successfully solve the complex engineering
problem of dam–reservoir operation [27]. In order to better solve the problem of mobile robot path
planning, Liu et al. proposed a bat algorithm with reverse learning and tangent random exploration
mechanism [28].

In order to improve the performance of the bat algorithm, this paper proposes an improved
bat algorithm based on Lévy flights and adjustment factors (LAFBA). The search mechanism of
Lévy flight is introduced to update the position of the bat algorithm, which can effectively help the
algorithm maintain the diversity of the population and improve the global search ability. In addition,
the introduction of the dynamic decreasing inertia weight and speed adjustment factor enables the
algorithm to balance global exploration and local exploitation, improve the accuracy of the algorithm,
and accelerate the later convergence speed.

The efficiency of the LAFBA is tested by solving 10 classical optimization functions and 2 structural
optimization problems. The results obtained show that LAFBA is competitive in comparison with
other state-of-the-art optimization methods.
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2. Enhanced Bat Algorithm

2.1. Bat Algorithm

The bat algorithm is a swarm intelligent optimization algorithm that simulates the behavior of
bats using the echolocation ability to prey. It realizes velocity and position update through the change
of frequency f. The implementation of the algorithm is based on the following three idealized rules [11]:

Rule 1: Bats use echolocation to sense distance and can distinguish between prey and obstacles.
Rule 2: Bats fly randomly with the velocity vi at the position xi with a varying frequency fi (from a

minimum frequency fmin to a maximum frequency fmax) or a varying wavelength λ and sound loudness
A0 to search for prey. The wavelength (or frequency) of the emitted pulse can be automatically adjusted
according to the proximity of the target, and the rate r of pulse emission, r ∈ [0, 1], is also adjusted.

Rule 3: Assume that the loudness varies from the largest positive value A0 to the minimum
constant value Amin.

Based on the above rules, the position vector of the bat represents a solution in the search space.
Since the global optimal position vector in the search space is not known a priori, the algorithm
randomly initializes the bats. The initialize equation as follows:

xi, j = xlb + (xub − xlb)rand, (1)

for ith bat, where i = 1, 2, . . . , n; j = 1, 2, . . . , d; n represents the population size, d represents the
dimension of the search space. xlb and xub are lower and upper bounds for jth dimension, and rand is a
random number between [0,1]. Bat individuals, in the d-dimensional search space, update frequency,
velocity vector, and position vector according to the following equations:

fi = fmin + ( fmax − fmin)β, (2)

vt
i = vt−1

i +
(
xt

i − x∗
)

fi, (3)

xt
i = xt−1

i + vt
i , (4)

where β is a random number between [0, 1]. x∗ represents the current global best solution, and the bat
updates the velocity and position according to the change of frequency f.

When the bat performs a local search, the position update equation is as follows:

xnew = xold + εAt, (5)

where ε ∈ [−1, 1] which is set as 0.001 in this paper. At represents the average loudness in
current iteration.

As the bat approaches the prey, the loudness continues to decrease, while the rate of pulse emission
increases. Loudness Ai which is a vector of values for all bats, which assists in updating the bat location.
Rate ri of pulse emission which is a vector for all bats controlling the diversification of bat algorithm.
The update equation is as follows:

At
i = α·At−1

i , (6)

rt
i = r0

i

(
1− e−γt

)
. (7)

Here, α is the pulse emission loudness attenuation coefficient. When t→∞, for any value at α ∈ [0, 1]
and γ > 0, it has At

i → 0 and rt
i → r0

i .

2.2. Dynamically Decreasing Inertia Weight

In the bat algorithm velocity update equation, right before the previous generation velocity vt−1
i is

a constant term coefficient 1. The fixed coefficient is not conducive to the algorithm’s exploration of the
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global search space, and also reduces the flexibility of the bat individual in the algorithm, thus making
it easy to fall into local optimum. The particle swarm optimization algorithm balances the global and
local search by adjusting the inertia weight [29]. A larger inertia weight makes the individual’s change
range larger, which is conducive to global exploration and local exploitation. A smaller inertia weight
makes the individual change range smaller, which is advantageous for the algorithm to perform a local
search on the optimization function. Inspired by this, this paper introduces the dynamic decreasing
inertia weight, and changes the velocity update equation to

vt
i = wi(t)vt−1

i +
(
xt

i − x∗
)

fi, (8)

wi(t) = wmax − (wmax −wmin)arctan
(

4t
N_gen

)
(9)

where wmax and wmin respectively represent the maximum and minimum weight, t represents the
current number of iterations, and N_gen represents the maximum number of iterations. In this paper,
wmax takes a value of 0.9 and wmin takes a value of 0.42. The inverse tangent function arctan is a
monotonically increasing function [30], so wi(t) is a monotonically decreasing function. The inertia of
the early period is great, while the inertia of the late period is small, which can balance the global and
local search of the algorithm well. In this paper, the arctangent function domain is [0,4]. The change of
the arctangent function in the domain is gradually slowed down, making the decrease of wi(t) rapid in
the early stage but slow in the late stage. The algorithm is converted from a fast global search to a slow
local search, which can effectively improve the speed and accuracy of the algorithm.

2.3. Lévy Flights

In 1926, the French mathematician Paul Lévy proposed Lévy flights. Lévy flights phenomenon is
very common in nature. The foraging activities of creatures, such as wasps, jackals, monkeys, and
human hunting behaviors, are all consistent with the random motion model of Lévy’s flights [31]. For
example, some herbivores randomly move around in a given area to find a source of grass, but if they
cannot find it, they will quickly go to another area and then resume the previous way of walking. This
can effectively avoid wasting time in a place with insufficient resource. Along the iterative process, an
agglomeration phenomenon occurs in the individual bat algorithm, the population diversity is reduced,
the global search ability is undermined, and the algorithm easily falls into premature convergence
of local optimum. In order to solve this problem, this paper proposes to add the Lévy flight search
mechanism to the bat algorithm, and modify the bat position vector update equation as below:

xt
i = Lévy(d)xt−1

i + vt
i . (10)

Here, t is the current number of iterations, and d is the dimension of the search space. The Lévy
flight is calculated as follows [32]:

Lévy(x) = 0.01
r1δ

|r2|
1
ψ

, (11)

where r1, r2 are two random numbers in [0,1], ψ is a constant 1.5, and δ is calculated as follows:

δ =

Γ(1 +ψ) sin
(πψ

2

)
Γ
( 1+ψ

2

)
ψ2(

ψ−1
2 )


1
ψ

, (12)

where Γ(x + 1) = x !, 50 step sizes have been drawn to form a consecutive 50 steps of Lévy flights as
shown in Figure 1 [32].
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Figure 1. A series of 50 consecutive steps of Lévy flights.

Figure 1 intuitively shows Lévy’s ability to suddenly move a long distance after several short
distance movements. In this paper, the Lévy flight mechanism is introduced to the bat position update.
On the one hand, it can effectively avoid the overreliance of the bat position change on the previous
generation position information and ensure the diversity of the population. On the other hand, the
random walk mode of Lévy flight that changes large steps suddenly after a series of small steps gives
the bat individual the ability to jump suddenly, which helps the algorithm to jump out of the local
optimum, avoid the premature convergence of the algorithm, and improve the global search ability.

2.4. Speed Adjustment Factor

In order to ensure the efficiency of the algorithm, this paper designs a speed adjustment factor
ci(t) based on the dimension of the optimization function to be solved and the number of iterations of
the algorithm, which is applied to the bat position update. Along the iteration progress, the speed
adjustment factor changes from large to small, and the position movement step size changes from large
to small, which satisfies the requirement of the algorithm for global search in the early iteration stage
and local search in the later iteration stage, enabling the bat algorithm to search for the optimum when
solving each generation of the movement in space. The position vector update equation in this article
is as below:

xt
i = Lévy(d)xt−1

i + vt
ici(t) (13)

ci(t) = θd
·e−

t
N_gen . (14)

Here, θ can be any value between [0,1], which is set as 0.01 in this paper. d represents the dimension of
the search space. At the same dimensional level, ci(t) gradually decreases as the number of iterations
increases, making the position update of the algorithm change from large-scale movement in the
early stage to small-scale movement in the late stage, and accelerates the convergence speed of the
algorithm. When the algorithm solves the function, the search difficulty will increase with the increase
of dimension, and the problems of low solution accuracy and reduced solution speed may occur. With
the increase of the solution dimension, the speed adjustment factor proposed in this paper will be
maintained at a relatively low level, which can speed up the algorithm and improve the accuracy of
the solution when solving high-dimensional functions.

2.5. The Pseudocode of the LAFBA

The dynamic declining inertia weight added in the velocity update can effectively balance the
global and local search of the algorithm; the Lévy flight search mechanism introduced to the location
update can ensure the diversity of the population and improve the global search ability of the algorithm,
and the construction of the speed adjustment factor can effectively improve the solution accuracy and
speed of the algorithm. The pseudocode of the LAFBA is shown as follows:
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1. Define objective function f (x), x = (x1, . . . , xd)
T

2. Set the initial value of population size n, α, γ, and N_gen
3. Initialize pulse rates ri and loudness Ai
4. Initialize the bat population (Equation (1))
5. Evaluate and find x∗ where x∗ ∈ {1, 2, . . . , n}
6. while t ≤ N_gen
7. for i = 1 to n
8. Adjust frequency (Equation (2))
9. Update inertia weight (Equation (9)) and Lévy(d) (Equation (11))
10. Update the velocity (Equation (8)) and position vector (Equation (13)) of the bat
11. if (rand > ri)
12. Select a solution among the best solutions
13. Generate a local solution around selected best (Equation (5))
14. end if
15. Evaluate objective function
16. if (rand < Ai & f (xi) < f (x∗))
17. x∗ = xi
18. f (x∗) = f (xi)
19. Increase ri (Equation (7))
20. Reduce Ai (Equation (6))
21. end if
22. if ( f (xt+1

i ) < f (x∗))
23. Update the best solution x∗
24. end if
25. end for
26. Rank the bats and find the current best x∗
27. t = t + 1
28. end while
29. Return x∗, postprocess results and visualization

3. Numerical Simulation and Analysis

In order to test the performance of the improved algorithm proposed in this paper, ten standard
optimization functions are selected [33], and the algorithm is compared with the standard bat
algorithm (BA) [11], particle swarm optimization (PSO) algorithm [2], moth flame optimization (MFO)
algorithm [9], sine cosine algorithm (SCA) [34], and butterfly optimization algorithm (BOA) [35].

3.1. Parameters Setting

We have tried to use different population sizes from n = 10 to 100, and we found that for most
problems, n = 20 is sufficient. Therefore, we use a fixed population n = 20 for all simulations. In order
to guarantee the comparability and fairness of the simulation experiment, the same parameters are set
for the four algorithms: the population size n = 20, and the number of iterations N_gen = 500. For BA
and LAFBA, α = γ = 0.9, the sound loudness Ai = 0.25 and the rate of pulse emission ri = 0.5. For
PSO, we have used the standard version with learning parameters c1 = c2 = 2. For BOA, modular
modality c is 0.01, power exponent a is increased from 0.1 to 0.3 and the probability switch p = 0.8.

The simulation environment is MATLAB 2014a, the operating system is Windows10 Home Chinese
version, 4.00GB running memory, the processor is Intel(R) Core (TM) i5-6200U CPU @ 2.30 GHz 2.40 GHz.

3.2. Standard Optimization Functions

Optimization functions are as below:

(1) Griewank Function

f1(x) =
1

4000

d∑
i=1

x2
i −

d∏
i=1

cos
(

xi
√

i

)
+ 1 (15)
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The function definition field is [−600, 600] and the theoretical optimal value is 0. This function is a
continuous, differentiable, non-separable, scalable, multimodal multi-extreme function, with many
local optima. The higher the function dimension, the more the number of local optima. It is extremely
difficult to optimize and is thus often used to test the exploration and exploitation capabilities of
the algorithm.

(2) Quartic Function

f2(x) =
d∑

i=1

x4
i (16)

The function definition field is [−1.28, 1.28], and the theoretical optimal value is 0. This function is
a continuous, differentiable, separable, scalable, and high-dimensional unimodal function. Unimodal
functions are often used to test the convergence speed of an algorithm.

(3) Ackley Function

f3(x) = 20 + e− 20e−0.2
√

1
d
∑d

i=1 x2
i − e

1
d
∑d

i=1 cos (2πxi) (17)

The function definition field is [−30, 30] and the theoretical optimal value is 0. This function is a
continuous, differentiable, non-separable, scalable, and complex nonlinear multimodal function which
is formed by the superposition of a moderately amplified cosine wave to an exponential function. The
undulation of the function surface makes the search of this function more complicated, and there are a
large number of local optima.

(4) Rastrigin Function

f4(x) =
d∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

(18)

The function definition field is [−5.12, 5.12], and the function theory optimal value is 0. This
function is a high-dimensional multimodal function. There are about 10d local minimum values in
the solution space. The peak shape of the function fluctuates volatility, making the global search
rather difficult.

(5) Schaffer Function

f5(x) = 0.5 +
sin2

√∑d
i=1 x2

i − 0.5[
1 + 0.001

(∑d
i=1 x2

i

)]2 (19)

The function definition field is [−10, 10] and the theoretical optimal value is 0. The fluctuation is
fierce, and it is difficult to find the global optimal value. The function graph presents a “four-corner hat”
shape, which is a continuous, differentiable, non-separable, scalable, and typical multimodal function.
The global optimal position is in the center of the brim, and the relative search area is very small.

(6) Sphere Function

f6(x) =
d∑

i=1

x2
i (20)

The function definition field is [−5.12, 5.12], and the theoretical optimal value is 0. This function is
a continuous, differentiable, separable, scalable, and classic high-dimensional unimodal function.

(7) Axis Parallel Function

f7(x) =
d∑

i=1

ix2
i (21)

The function definition field is [−5.12, 5.12], and the theoretical optimal value is 0. This function is
a unimodal function.
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(8) Zakharov Function

f8(x) =
d∑

i=1

x2
i + (

1
2

d∑
i=1

ixi)

2

+ (
1
2

d∑
i=1

ixi)

4

(22)

The function definition field is [−10,10], and the theoretical optimal value is 0. This function is a
continuous, differentiable, non-separable, scalable, multimodal function.

(9) Schwefel 2.21 Function
f9(x) = maxi{|xi|, 1 ≤ i ≤ d} (23)

The function definition field is [−10, 10] and the theoretical optimal value is 0. This function is a
continuous, non-differentiable, separable, scalable and unimodal function.

(10) Schwefel 1.2 Function

f10(x) =
d∑

i=1

(
i∑

j=1

x j)

2

(24)

The function definition field is [−5.12, 5.12], and the theoretical optimal value is 0. This function is
a continuous, differentiable, non-separable, scalable, unimodal function.

3.3. Simulation Result Comparison and Analysis

The six algorithms are run on the above 10 optimization functions 30 times independently in
dimensions 10, 30, and 100, and the function value obtained each time was recorded. According to the
results of the algorithm in different dimensions, four criteria were collected and analyzed: best, worst,
average, and standard deviation (SD). The data are shown in Tables 1–3.

With the statistical test, we can make sure that the results are not generated by chance [36]. The
Wilcoxon rank-sum test [37,38] was conducted in this experiment and p_value < 0.05 and h = 1 indicate
that the difference between the two data is significant. The statistical comparison results between
LAFBA and other 5 algorithms are shown in Table 4.

With the increase of the solution dimension, the difficulty faced by the algorithm to achieve the
best result increases, and the problems of low solution accuracy, slowing down of the solving speed, or
even failure to achieve the best result may occur. Therefore, this paper sets the three dimensions of 10D,
30D, and 100D to observe the change in the performance of the six algorithms in different dimensions.

It should be noted that the best optimal solution obtained is highlighted in bold font. From the
results presented in Tables 1–3, under different dimensions, LAFBA is able to obtain the best values
among 10 test functions in comparison with the BA, PSO, MFO, and SCA. When d = 10, compared to
the BOA, the LAFBA obtained better results on 9 benchmark functions except for F3. When d = 30/100,
BOA obtained the better mean value of F9 was better than the LAFBA. As the dimension increases, the
difficulty in solving the function increases. The improved LAFBA proposed in this paper can still solve
each optimization function effectively with the smallest standard deviation, indicating a good stability
of the function. That is, the robustness is good.

As shown in Table 4, both the p-value and h = 1 indicate the rejection of the null hypothesis
of equal medians at the default 5% significance level. This means that the superiority of LAFBA is
statistically significant. p_value ≥ 0.05 and h = 0 have been underlined, and LAFBA is significantly
different from BOA with the exception of F3.

In summary, the comparison with the other algorithms shows the superiority of LAFBA in several
benchmarks. Among the six algorithms, LAFBA had the best performance.
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Table 1. Comparison results of Lévy flights and adjustment factors (LAFBA) and other five algorithms for benchmark functions with D = 10. BA, bat algorithm;
PSO, particle swarm optimization; MFO, moth flame optimization; SCA, sine cosine algorithm; BOA, butterfly optimization algorithm.

Algorithm Function Best Worst Average SD Function Best Worst Average SD

LAFBA

F1

0 0 0 0

F6

0 7.89 × 10−16 1.05 × 10−16 1.98 × 10−16

BA 1.27 × 101 1.46 × 102 7.99 × 101 3.52 × 101 7.48 × 10−2 8.76 × 101 3.03 × 101 2.63 × 101

PSO 2.17 × 10−1 2.45 9.51 × 10−1 4.52 × 10−1 5.19 × 10−6 6.80 × 10−3 8.89 × 10−4 1.54 × 10−3

MFO 7.92 × 10−11 7.58 × 10−1 1.51 × 10−1 1.44 × 10−1 9.89 × 10−17 1.48 × 10−13 1.10 × 10−14 2.82 × 10−14

SCA 1.34 × 10−14 8.98 × 10−1 1.56 × 10−1 2.16 × 10−1 4.64 × 10−18 1.69 × 10−10 7.33 × 10−12 3.16 × 10−11

BOA 3.11 × 10−14 1.45 × 10−12 2.95 × 10−13 3.26 × 10−13 5.84 × 10−12 1.03 × 10−11 8.24 × 10−12 1.16 × 10−12

LAFBA

F2

0 3.08 × 10−31 1.63 × 10−32 5.77 × 10−32

F7

0 1.53 × 10−15 1.67 × 10−16 3.98 × 10−16

BA 6.74 × 10−14 7.29 × 10−13 2.85 × 10−13 1.51 × 10−13 4.63 × 10−6 4.76 × 101 7.93 9.83
PSO 2.62 × 10−11 8.69 × 10−7 7.48 × 10−8 1.91 × 10−7 5.19 × 10−6 6.80 × 10−3 8.89 × 10−4 1.54 × 10−3

MFO 2.11 × 10−29 3.17 × 10−21 1.11 × 10−22 5.78 × 10−22 1.17 × 10−16 5.02 × 10−13 5.50 × 10−14 1.16 × 10−13

SCA 1.15 × 10−30 7.54 × 10−20 3.46 × 10−21 1.42 × 10−20 9.03 × 10−18 4.87 × 10−12 3.70 × 10−13 9.31 × 10−13

BOA 4.12 × 10−15 1.17 × 10−14 7.28 × 10−15 1.84 × 10−15 6.40 × 10−12 1.26 × 10−11 9.46 × 10−12 1.46 × 10−12

LAFBA

F3

0 2.74 × 10−8 7.01 × 10−9 8.65 × 10−9

F8

0 3.26 × 10−15 4.89 × 10−16 9.14 × 10−16

BA 1.21 × 101 1.94 × 101 1.74 × 101 1.51 1.31 8.01 × 101 2.58 × 101 1.92 × 101

PSO 2.94 × 10−3 1.17 3.73 × 10−1 5.25 × 10−1 1.05 × 10−3 2.96 × 10−1 5.96 × 10−2 7.38 × 10−2

MFO 2.99 × 10−8 5.09 4.07 × 10−1 1.05 2.45 × 10−6 2.51 × 102 2.57 × 101 5.80 × 101

SCA 7.17 × 10−10 1.69 × 10−4 7.00 × 10−6 3.07 × 10−5 1.81 × 10−9 9.82 × 10−3 9.40 × 10−4 2.48 × 10−3

BOA 1.65 × 10−9 6.14 × 10−9 3.49 × 10−9 1.20 × 10−9 7.47 × 10−12 1.14 × 10−11 9.61 × 10−12 1.09 × 10−12

LAFBA

F4

0 9.59 × 10−14 1.50 × 10−14 2.48 × 10−14

F9

0 1.23 × 10−8 2.51 × 10−9 4.09 × 10−9

BA 1.79 × 101 8.76 × 101 4.78 × 101 1.95 × 101 1.65 5.08 3.46 9.33
PSO 1.31 3.02 × 101 9.41 6.93 2.14 × 10−2 2.94 × 10−1 8.88 × 10−2 5.66 × 10−2

MFO 5.97 6.28 × 101 2.70 × 101 1.39 × 101 9.20 × 10−2 4.80 1.37 1.16
SCA 2.56 × 10−12 2.41 × 101 2.44 6.64 1.09 × 10−7 3.34 × 10−3 3.59 × 10−4 6.97 × 10−4

BOA 4.26 × 10−14 5.67 × 101 3.10 × 101 2.18 × 101 3.77 × 10−9 5.34 × 10−9 4.50 × 10−9 4.30 × 10−10

LAFBA

F5

0 6.11 × 10−16 8.23 × 10−17 1.52 × 10−16

F10

0 9.09 × 10−16 9.00 × 10−17 2.36 × 10−16

BA 9.72 × 10−3 2.28 × 10−1 1.31 × 10−1 5.67 × 10−2 6.91 1.58 × 102 6.14 × 101 3.83 × 101

PSO 9.72 × 10−3 7.82 × 10−2 2.67 × 10−2 1.68 × 10−2 7.82 × 10−4 9.71 × 10−2 2.89 × 10−2 3.03 × 10−2

MFO 3.72 × 10−2 2.28 × 10−1 1.28 × 10−1 4.60 × 10−2 1.59 × 10−5 1.75 × 101 3.35 6.25
SCA 9.72 × 10−3 3.72 × 10−2 1.06 × 10−2 5.02 × 10−3 8.55 × 10−10 0.02047 9.25 × 10−4 0.003736
BOA 3.72 × 10−2 8.08 × 10−2 7.18 × 10−2 1.47 × 10−2 5.97 × 10−12 1.11 × 10−11 9.02 × 10−12 1.38 × 10−12
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Table 2. comparison results of LAFBA and other five algorithms for benchmark functions with D = 30.

Algorithm Function Best Worst Average SD Function Best Worst Average SD

LAFBA

F1

0 1.33 × 10−15 1.42 × 10−16 3.01 × 10−16

F6

0 1.50 × 10−14 3.34 × 10−15 4.40 × 10−15

BA 9.85 × 101 5.36 × 102 3.23 × 102 1.08 × 102 1.85 3.35 × 102 1.86 × 102 8.73 × 101

PSO 5.80 × 10−2 3.46 × 10−1 1.66 × 10−1 7.21 × 10−2 1.49 × 10−1 9.03 × 10−1 3.74 × 10−1 1.56 × 10−1

MFO 9.48 × 10−1 2.71 × 102 2.22 × 101 6.11 × 101 6.42 × 10−3 2.62 × 101 3.55 9.05
SCA 5.39 × 10−1 7.04 1.49 1.21 8.99 × 10−5 1.55 9.02 × 10−2 2.81 × 10−1

BOA 7.17 × 10−13 1.73 × 10−11 6.82 × 10−12 4.58 × 10−12 9.88 × 10−12 1.20 × 10−11 1.10 × 10−11 5.75 × 10−13

LAFBA

F2

0 1.14 × 10−28 6.72 × 10−30 2.13 × 10−29

F7

0 1.75 × 10−13 3.06 × 10−14 5.03 × 10−14

BA 2.18 × 10−11 6.16 × 10−8 2.18 × 10−9 1.14 × 10−8 4.00 × 101 1.31 × 103 5.37 × 102 2.94 × 102

PSO 4.78 × 10−4 2.69 1.16 × 10−1 4.96 × 10−1 2.22 3.37 × 101 8.28 8.07
MFO 3.59 × 10−6 2.86 × 10−3 2.43 × 10−4 5.34 × 10−4 3.87 × 10−2 7.87 × 102 2.01 × 102 2.24 × 102

SCA 5.29 × 10−7 2.01 × 10−1 1.03 × 10−2 3.66 × 10−2 1.44 × 10−3 6.09 4.90 × 10−1 1.12
BOA 8.92 × 10−15 1.56 × 10−14 1.15 × 10−14 1.35 × 10−15 1.10 × 10−11 1.37 × 10−11 1.23 × 10−11 7.91 × 10−13

LAFBA

F3

0 1.04 × 10−7 2.42 × 10−8 3.32 × 10−8

F8

0 3.70 × 10−14 7.39 × 10−15 1.15 × 10−14

BA 1.36 × 101 1.90 × 101 1.75 × 101 1.15 1.21 × 101 2.27 × 103 2.42 × 102 4.05 × 102

PSO 1.52 4.28 2.90 5.77 × 10−1 5.01 × 101 4.20 × 102 1.65 × 102 8.14 × 101

MFO 1.25 1.98 × 101 1.51 × 101 5.34 2.06 × 102 9.81 × 102 5.09 × 102 1.97 × 102

SCA 3.78 × 10−2 2.03 × 101 7.69 8.97 4.31 × 101 2.05 × 102 1.26 × 102 4.20 × 101

BOA 5.53 × 10−9 7.04 × 10−9 6.24 × 10−9 3.84 × 10−10 8.71 × 10−12 1.18 × 10−11 1.05 × 10−11 7.86 × 10−13

LAFBA

F4

0 2.49 × 10−12 2.57 × 10−13 6.51 × 10−13

F9

0 6.42 × 10−8 1.62 × 10−8 2.38 × 10−8

BA 5.97 × 101 2.77 × 102 1.43 × 102 5.73 × 101 3.80 8.41 6.17 1.05
PSO 6.26E × 101 1.39 × 102 9.11 × 101 2.09 × 101 4.02 × 10−1 1.49 7.33 × 10−1 2.34 × 10−1

MFO 1.24 × 102 2.84 × 102 1.75 × 102 3.39 × 101 5.80 8.48 7.31 6.34 × 10−1

SCA 1.476745263 1.48 × 102 4.68 × 101 3.24 × 101 1.11 6.68 3.98 1.26
BOA 0 2.19 × 102 3.93 × 101 8.01 × 101 4.30 × 10−9 5.59 × 10−9 5.13 × 10−9 2.75 × 10−10

LAFBA

F5

0 1.64 × 10−14 2.62 × 10−15 4.82 × 10−15

F10

0 6.76 × 10−14 1.10 × 10−14 1.82 × 10−14

BA 1.78 × 10−1 3.73 × 10−1 3.06 × 10−1 6.35 × 10−2 1.57 × 102 2.68 × 103 7.54 × 102 4.79 × 102

PSO 3.72 × 10−2 2.28 × 10−1 9.21 × 10−2 3.74 × 10−2 3.53 3.39 × 101 1.32 × 101 7.06
MFO 3.12 × 10−1 3.73 × 10−1 3.42 × 10−1 1.72 × 10−2 7.39 1.65 × 102 6.46 × 101 3.86 × 101

SCA 3.72 × 10−2 1.27 × 10−1 4.87 × 10−2 2.21 × 10−2 3.02 7.53 × 101 3.54 × 101 1.91 × 101

BOA 7.85 × 10−2 1.27 × 10−1 1.17 × 10−1 1.87 × 10−2 9.36 × 10−12 1.23 × 10−11 1.11 × 10−11 6.22 × 10−14
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Table 3. Comparison results of LAFBA and other five algorithms for benchmark functions with D = 100.

Algorithm Function Best Worst Average SD Function Best Worst Average SD

LAFBA

F1

0 1.67 × 10−15 2.87 × 10−16 5.31 × 10−16

F6

0 1.81 × 10−13 5.31 × 10−14 6.00 × 10−14

BA 5.33 × 102 2.05 × 103 1.31 × 103 3.86 × 102 4.33 × 102 2.06 × 103 1.15 × 103 4.26 × 102

PSO 1.11 1.03 × 101 4.16 2.19 1.56 6.14 × 101 1.35 × 101 1.38 × 101

MFO 4.57 × 102 1.03 × 103 6.68 × 102 1.29 × 102 1.27 × 102 2.41 × 102 1.90 × 102 3.25 × 101

SCA 1.40 × 101 2.31 × 102 1.01 × 102 6.37 × 101 3.02 9.46 × 101 3.31 × 101 2.13 × 101

BOA 4.79 × 10−12 1.99 × 10−11 1.29 × 10−11 4.35 × 10−12 1.09 × 10−11 1.34 × 10−11 1.19 × 10−11 5.62 × 10−13

LAFBA

F2

0 5.18 × 10−27 5.64 × 10−28 1.11 × 10−27

F7

0 5.14 × 10−12 1.14 × 10−12 1.90 × 10−12

BA 1.58 × 10−7 1.51 2.02 × 10−1 4.22 × 10−1 2.37 × 103 2.11 × 104 9.63 × 103 4.51 × 103

PSO 1.28 1.31 × 101 4.69 2.88 2.12 × 102 4.43 × 103 6.72 × 102 9.23 × 102

MFO 2.76 1.33 × 101 7.31 2.53 5.75 × 103 1.40 × 104 9.27 × 103 2.35 × 103

SCA 1.61 9.52 4.29 1.89 2.39 × 102 3.80 × 103 1.17 × 103 7.31 × 102

BOA 1.10 × 10−14 1.58 × 10−14 1.29 × 10−14 1.02 × 10−15 1.19 × 10−11 1.53 × 10−11 1.35 × 10−11 8.61 × 10−13

LAFBA

F3

0 1.53 × 10−7 3.86 × 10−8 5.92 × 10−8

F8

0 1.57 × 10−12 1.68 × 10−13 3.74 × 10−13

BA 1.51 × 101 1.92 × 101 1.78 × 101 8.52 × 10−1 3.44 × 102 1.74 × 103 8.28 × 102 2.86 × 102

PSO 4.56 8.12 6.12 9.17 × 10−1 7.99 × 102 3.06 × 103 1.52 × 103 5.23 × 102

MFO 1.93 × 101 1.99 × 101 1.97 × 101 1.62 × 10−1 2.39 × 103 5.00 × 103 3.99 × 103 6.68 × 102

SCA 8.28 2.06 × 101 1.68 × 101 4.74 9.96 × 102 2.00 × 103 1.44 × 103 2.26 × 102

BOA 5.14 × 10−9 6.81 × 10−9 5.85 × 10−9 3.48 × 10−10 8.18 × 10−12 1.19 × 10−11 1.04 × 10−11 8.34 × 10−13

LAFBA

F4

0 3.41 × 10−11 1.03 × 10−11 1.11 × 10−11

F9

0 1.80 × 10−7 4.13 × 10−8 6.89 × 10−8

BA 2.02 × 102 8.14 × 102 4.60 × 102 1.49 × 102 5.36 9.19 7.04 1.06
PSO 4.28 × 102 7.24 × 102 5.65 × 102 6.46 × 101 1.19 2.84 1.77 4.13 × 10−1

MFO 8.15E × 102 1.10 × 103 9.19 × 102 7.34 × 10−3 8.95 9.69 9.37 2.02 × 10−1

SCA 3.24 × 101 6.68 × 102 2.59 × 102 1.43 × 102 8.50 9.47 9.15 2.18 × 10−1

BOA 0 3.51 × 10−1 1.17 × 10−2 6.40 × 10−2 4.66 × 10−9 5.89 × 10−9 5.28 × 10−9 2.71 × 10−10

LAFBA

F5

0 2.66 × 10−13 5.69 × 10−14 7.18 × 10−14

F10

0 1.96 × 10−12 5.81 × 10−13 7.43 × 10−13

BA 3.73 × 10−1 4.72 × 10−1 4.44 × 10−1 2.52 × 10−2 2.47 × 103 1.37 × 104 6.31 × 103 2.72 × 103

PSO 7.82 × 10−2 3.12 × 10−1 1.92 × 10−1 5.56 × 10−2 1.29 × 102 4.26 × 102 2.55 × 102 7.16 × 101

MFO 4.60 × 10−1 4.76 × 10−1 4.70 × 10−1 3.45 × 10−3 4.13 × 102 9.28 × 102 6.59 × 102 1.39 × 102

SCA 1.78 × 10−1 3.47 × 10−1 2.83 × 10−1 4.28 × 10−2 4.48 × 102 1.38 × 103 7.26 × 102 1.94 × 102

BOA 1.27 × 10−1 1.54 × 10−1 1.30 × 10−1 5.35 × 10−3 9.76 × 10−12 1.43 × 10−11 1.21 × 10−11 1.06 × 10−12
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Table 4. Results of Wilcoxon rank-sum test for LAFBA and other algorithms on 10 test functions with
D = 30.

F
LAFBA vs. BA LAFBA vs. PSO LAFBA vs. MFO LAFBA vs. SCA LAFBA vs. BOA

p_Value h p_Value h p_Value h p_Value h p_Value h

F1 9.78 × 10−12 1 9.78 × 10−12 1 9.78 × 10−12 1 9.78 × 10−12 1 9.78 × 10−12 1
F2 6.51 × 10−11 1 6.50 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.48 × 10−11 1
F3 3.71 × 10−11 1 3.71 × 10−11 1 3.71 × 10−11 1 3.71 × 10−11 1 0.111655 0
F4 1.24 × 10−11 1 1.24 × 10−11 1 1.24 × 10−11 1 1.24 × 10−11 1 1.14 × 10−06 1
F5 2.23 × 10−11 1 1.68 × 10−11 1 9.12 × 10−12 1 2.52 × 10−11 1 2.55 × 10−11 1
F6 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.45 × 10−11 1
F7 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.46 × 10−11 1
F8 6.50 × 10−11 1 6.50 × 10−11 1 6.50 × 10−11 1 6.50 × 10−11 1 6.46 × 10−11 1
F9 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 0.043201 1
F10 6.50 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.51 × 10−11 1 6.46 × 10−11 1

3.4. Convergence Curve Analysis

The convergence curve is an important indicator for the performance of the algorithm, through
which we can see the convergence speed and the ability of the algorithm to jump out of the local
optimum. For further illustration, the convergence curves of the LAFBA and other 5 algorithms with
D = 30 on 10 benchmark functions are plotted in Figure 2.

The different trends of the six curves in Figure 2 show the difference in the performance of the
six algorithms. Functions 2, 6, 7, 9, and 10 are unimodal functions, and are often used to compare
the convergence speed and execution ability of the algorithm. Observing the contrast curve of the
corresponding function convergence curve, the LAFBA proposed in this paper is effective in obtaining
the optimal solutions with a faster convergence rate. The quality of the solution is much higher than
BA, PSO, MFO, SCA, and BOA. Functions 1, 3, 4, 5, and 8 are multimodal functions, with a large
number of local optima, which are extremely difficult to optimize. They are commonly used to test the
global optimization ability of the algorithm. Observing the convergence curves of the corresponding
functions, the inflection point in the curve shows that the LAFBA algorithm successfully jumps out
of the local optimum and continues to optimize, while the other algorithms converge to the local
optimum too early, resulting in a higher curve than the LAFBA. In summary, the LAFBA shows
stronger optimization performance and higher optimization efficiency.
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4. LAFBA for Classical Engineering Problems

This section further verifies the performance and efficiency of the LAFBA by solving two
constrained real engineering design problems: tension/compression spring design, and welded beam
design. These problems were widely discussed in the literature and have been solved to better clarify
the effectiveness of the algorithms. In the LAFBA, the population size n = 20, and the number of
iterations N_gen = 500.
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4.1. Tension/Compression Spring Design

The objective of this test problem is to minimize the weight of the tension/compression spring.
Figure 3 shows the spring and its parameters [39,40]. The optimum design must satisfy constraints on
shear stress, surge frequency, and deflection. This problem contains three constraint variables: the
mean coil diameter (D), number of active coils (N), and wire diameter (d). The mathematical expression
of tension/compression spring design problem is as follows:

Symmetry 2018, 10, x FOR PEER REVIEW  14 of 19 

 

converge to the local optimum too early, resulting in a higher curve than the LAFBA. In summary, 
the LAFBA shows stronger optimization performance and higher optimization efficiency. 

4. LAFBA for Classical Engineering Problems 

This section further verifies the performance and efficiency of the LAFBA by solving two 
constrained real engineering design problems: tension/compression spring design, and welded beam 
design. These problems were widely discussed in the literature and have been solved to better clarify 
the effectiveness of the algorithms. In the LAFBA, the population size n = 20, and the number of 
iterations N_gen = 500.  

    

Figure 3. Tension/compression spring design problem. 

       
 Figure 4. Schematic view of welded beam design problem. 

4.1. Tension/Compression Spring Design  

The objective of this test problem is to minimize the weight of the tension/compression spring. 
Figure 3 shows the spring and its parameters [39,40]. The optimum design must satisfy constraints 
on shear stress, surge frequency, and deflection. This problem contains three constraint variables: the 
mean coil diameter (D), number of active coils (N), and wire diameter (d). The mathematical 
expression of tension/compression spring design problem is as follows: 

Consider  𝑥⃗ = [𝑥ଵ 𝑥ଶ 𝑥ଷ] = [𝑑 𝐷 𝑁], 
Minimize  f(𝑥⃗) = (𝑥ଷ + 2)𝑥ଶ𝑥ଵଶ, 
Subject to  𝑔ଵ(𝑥⃗) = 1 − ௫మయ௫య଻ଵ଻଼ହ௫భర ≤ 0, 

 𝑔ଶ(𝑥⃗) = ସ௫మమି௫భ௫మଵଶହ଺଺(௫మ௫భయି௫భర) + ଵହଵ଴଼௫భమ − 1 ≤ 0, 
 𝑔ଷ(𝑥⃗) = 1 − ଵସ଴.ସହ௫భ௫మమ௫య ≤ 0, 
 𝑔ସ(𝑥⃗) = ௫భା௫మଵ.ହ − 1 ≤ 0, 

Figure 3. Tension/compression spring design problem.

Consider
→
x = [x1 x2 x3] = [d D N],

Minimize f
(
→
x
)
= (x3 + 2)x2x2

1,

Subject to g1
(
→
x
)
= 1−

x3
2x3

71785x4
1
≤ 0,

g2
(
→
x
)
=

4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0,

g3
(
→
x
)
= 1− 140.45x1

x2
2x3

≤ 0,

g4
(
→
x
)
= x1+x2

1.5 − 1 ≤ 0,

Variable range 0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.0.

There are several solutions for this problem found in the literature. This test case was solved using
either mathematical techniques (constraints correction at constant cost [41] and penalty functions [40])
or meta-heuristics, such as GSA [42], PSO [43], evolution strategy (ES) [44], GA [45], and improved
harmony search (HS) [46]. The best results of LAFBA are compared with 10 other optimization
algorithms that were previously reported, as shown in Table 5.

From Table 5, compared with the GSA, PSO, ES, GA, and WOA, the LAFBA yielded better results
for the tension/compression spring design problem. It can be seen that LAFBA outperforms all other
algorithms except MFO, and the LAFBA algorithm is also the third-lowest-costing design.

Table 5. Comparison results for tension/compression spring design problem.

Algorithms Optimal Values for Variables Optimal Cost
d D N

GSA [42] 0.050276 0.323680 13.525410 0.0127022
PSO (Ha and Wang) [43] 0.051728 0.357644 11.244543 0.0126747
ES (Coello and Montes) [44] 0.051989 0.363965 10.890522 0.0126810
GA(Coello) [45] 0.051480 0.351661 11.632201 0.0127048
Improved HS (Mmahdavi et al.) [46] 0.051154 0.349871 12.076432 0.0126706
MFO [9] 0.051994 0.364109 10.868422 0.0126669
WOA [47] 0.051207 0.345215 12.004032 0.0126763
Montes and Coello [48] 0.051643 0.355360 11.397926 0.0126980
Constraint correction (Arora) [41] 0.050000 0.315900 14.250000 0.0128334
Mathematical optimization (Belegundu) [40] 0.053396 0.399180 9.1854000 0.0127303

LAFBA 0.051663 0.356074 11.333400 0.0126720
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4.2. Welded Beam Design

The objective of this test problem is to minimize the fabrication costs of the welded beam design,
and Figure 4 shows the welded beam and parameters involved in the design [45]. The optimum design
must satisfy constraints on shear stress (τ) and bending stress in the beam (θ), buckling load (PC), and
end deflection of the beam (δ). This problem contains four constraint variables: thickness of weld
(h), length of the clamped bar (l), height of the bar (t), and thickness of the bar (b). The mathematical
expression of welded beam design problem is as follows:
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→
x
)
= x1 − x4 ≤ 0,

g5
(
→
x
)
= p− pc

(
→
x
)
≤ 0,

g6
(
→
x
)
= 0.125− x1 ≤ 0,

g7
(
→
x
)
= 0.10471x2

1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0,

Variable range 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2,

where τ
(
→
x
)
=

√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′ )2, τ′ =
p

√
2x1x2

, τ′′ = MR
J ,

M = p
(
L + x2

2

)
, R =

√
x2

2
4 +

(
x1+x3

2

)2
,

J = 2
{√

2x1x2

[
x2

2
12 +

(
x1+x3

2

)2
]}

, σ
(
→
x
)
= 6PL

x4x2
3
, δ

(
→
x
)
= 4PL3

Ex3
3x4

PC
(
→
x
)
=

4.013E

√
x2
3x6

4
36

L2

(
1− x3

2L

√
E

4G

)
,

p = 6000 lb, L = 14 in., δmax = 0.25 in.,

E = 30 × 106 psi, G = 12 × 106 psi,

τmax = 13, 600 psi, σmax = 30, 000 psi.

This problem was solved by GWO [49], GSA [42], Richardson’s random method, simplex method,
Davidon–Fletcher–Powell, and Griffith and Stewart’s successive linear approximation [45]. The
optimization results obtained by the proposed LAFBA for this problem were evaluated by comparing
it with 15 other optimization algorithms that were previously reported, as shown in Table 6. Table 6
shows the best obtained results.
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Table 6 shows that the LAFBA algorithm is able to find a similar optimal design compared to those
of GWO, MVO, and CPSO. This shows that this algorithm is also able to provide very competitive
results in solving this problem.

Table 6. Comparison results for welded beam design problem.

Algorithms Optimal Values for Variables Optimal Cost
h l t b

GWO [49] 0.205676 3.478377 9.03681 0.205778 1.72624
GSA [42] 0.182129 3.856979 10.0000 0.202376 1.87995
CPSO [50] 0.202369 3.544214 9.048210 0.205723 1.72802
GA(Coello) [51] N/A N/A N/A N/A 1.8245
GA(Deb) [52] N/A N/A N/A N/A 2.3800
GA(Deb) [53] 0.2489 6.1730 8.1789 0.2533 2.4331
HS (Lee and Geem) [54] 0.2442 6.2331 8.2915 0.2443 2.3807
MVO [55] 0.2054 3.47319 9.044502 0.20569 1.72645
GSA [56] 0.2057 3.4704 9.0366 0.2057 1.7248
MFO [9] 0.2057 3.4703 9.0364 0.2057 1.72452
WOA [47] 0.205396 3.484293 9.037426 0.206276 1.730499
Random [57] 0.4575 4.7313 5.0853 0.6600 4.1185
Simplex [57] 0.2792 5.6256 7.7512 0.2796 2.5307
David [57] 0.2434 6.2552 8.2915 0.2444 2.3841
Approx [57] 0.2444 6.2189 8.2915 0.2444 2.3815

LAFBA 0.184706185 3.642655691 9.134897358 0.205254053 1.7287

5. Conclusions

In this study, an improved bat algorithm based on Lévy flights and adjustment factors (LAFBA) is
proposed. Three modifications have been embedded into the BA to increase its global and local search
abilities and, consequently, have significantly enhanced the BA performance. In order to evaluate
the effectiveness of the LAFBA, 10 benchmark functions and 2 real-world engineering problems are
used. The results of the simulation experiment of 10 benchmark functions and Wilcoxon rank-sum test
show that the proposed LAFBA was a great improvement in terms of exploration and exploitation
abilities, solution accuracy, and convergence speed compared with the bat algorithm, and four other
bio-inspired algorithms. In addition, the results of the LAFBA in solving classical engineering design
problems were compared with several state-of-the-art algorithms and produced comparable results.
As the LAFBA algorithm shows a stable performance, it can also be applied to other more challenging
real-world optimization problems.
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