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2 Mechanical Engineering, Imperial College, Exhibition Rd., London SW7 2AZ, UK
3 Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK
* Correspondence: lscutaru@unitbv.ro

Received: 5 June 2019; Accepted: 27 June 2019; Published: 1 July 2019
����������
�������

Abstract: A description of the motion equation of a single two-dimensional finite element used
to model a multi-body system with elastic elements is made in the article. To establish them, the
Lagrange’s equations are used. Obtaining the dynamic response of a system with deformable
components has become important for technical applications in recent decades. These engineering
applications are characterized by high applied loads and high acceleration and velocities. A study of
such mechanical systems leads to the identification of different mechanical phenomena (due to high
deformations, resonance phenomena, and stability). Coriolis effects and relative motions significantly
modify the motion equations and, implicitly, the dynamic response. These effects are highlighted in
this paper for plane motion.

Keywords: multi-body system; finite element method (FEM); linear elastic elements; Lagrange’s
equations; two-dimensional finite element; plane motion

1. Introduction

Finite Element Analysis (FEA) of elastic bodies with overall rigid motion began in the 1970s.
A number of papers analyzed different cases and types of finite elements used in this type of
analysis [1–3]. One-dimensional and three-dimensional finite elements have been developed with
plane motion or three-dimensional motion [4,5]. The field has remained interesting for researchers so
far, with many papers on different aspects of the issue being published. The new field of multi-body
systems (MBS), which has developed in recent decades, has reached the study of mechanical systems
with (some) linear/nonlinear elastic elements. Why is this type of analysis necessary? If the velocities,
accelerations, or loads that a constitutive element of a multi-body system supports are high, the
elasticity of the elements may cause instability phenomena. The classical hypothesis of the rigid
elements, commonly used in the dynamic analysis and synthesis of multi-body systems, no longer
corresponds to the reality. The phenomena of resonance and loss of stability represent classic forms
of manifestation of the elasticity properties. The classical approach involves the use of continuous
mechanical models. Unfortunately, this type of analysis leads to a nonlinear system of differential
equations that cannot be solved analytically in common engineering applications. The most convenient
approach is FEA, a time-validated and frequently used method for analyzing mechanical systems
with elastic elements. However, classical models of static or quasi-static systems do not correspond to
the analysis of multi-body systems, which have rigid motion. The relatively large amount of motion
between elements and Coriolis effects lead to the existence of additional terms in motion equations that
cannot be neglected. These terms are usually strongly nonlinear. As a consequence, proper modeling
of the problem is required [6,7]. The many aspects of a one-dimensional problem are described in [8].
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In the following research, we develop a method for a two-dimensional finite element with plane motion.
The motion equations for this type of element are established.

2. Two-Dimensional Finite Element

2.1. Two-Dimensional Model

Let us consider a two-dimensional finite element with a body with the general rigid plane motion
of an MBS. To determine the governing equations for this element, the Lagrange’s equations are used.
The main phase in this type of approach is to obtain the Lagrangian for the one two-dimensional finite
element. The terms necessary to build the Lagrangian are the kinetic energy of the two-dimensional
finite element, the internal energy, and the work done by the concentrated and distributed loads.
The shape function (determined in every case by the type of finite element chosen and the hypothesis
made) will finally determine the form of the matrix coefficients and, as a consequence, the differential
system of the governing motion equations. A basic hypothesis in this study is that the deformations of
the elements of MBS are small enough not to influence the plane rigid motion of the system. Both the
problem of the plane multi-body rigid motion of the system and velocities and the acceleration field
distribution for each element can be solved using the classical method (see [9–11]).

The finite element chosen is related to the local reference frame Ox1x2 (participating with the finite
element in the general plane rigid motion) and to the global reference frame O’X1X2. It is considered
that the vector velocity and acceleration of the origin O related to the global reference system are
known from a previous dynamical analysis. All the bodies are considered to be rigid as is the angular
velocity and angular acceleration of the local reference system. In this way, the fields of velocity and
acceleration are known for each point of each constitutive element of the MBS [12–18].

For one single two-dimensional finite element, the generalized independent coordinates can
be the nodal displacements, depending on the shape function and hypothesis used to express the
displacement of a point in the finite element. The final number of independent coordinates will depend
on this hypothesis and shape function.

Consider the displacement {δ(u, v)} of an arbitrary point M of the domain of the finite element.
If we use the shape function Nij and the vector of the nodal displacements δe,j, the displacements in the
local coordinate system are

u = δ1 = N1 jδe, j; v = δ2 = N2 jδe, j; j = 1, p, (1)

or
δi = Ni jδe, j i = 1, 2; j = 1, p, (2)

where the nodal displacement vector of the finite element is labeled e, and δe,j depends on the
independent coordinate chosen to define the element. The number of independent coordinates is p.
For a triangular finite element we have

δT
e = [u1 v1 u2 v2 u3 v3]. (3)

The two lines of the shape function matrix N correspond to the displacements u and v and are
named N(u) = N(1) and N(v) = N(2):

N=

[
N(u)
N(v)

]
=

[
N(1)
N(2)

]
=

[
Ni j

]
, i = 1, 2; j = 1, p. (4)

The displacement of the point M(x1,x2), which is arbitrarily chosen, becomes, after deformation,
M’(x’1,x’2) and can be expressed through its components:

x′1 = x1 + u = x1 + δ1; x′2 = x2 + v = x2 + δ2, (5)
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or with respect to the global reference system:

X′1 = X10 + r1ix′i = X1o + r1ixi + r1iδi = X1o + r1ixi + r1iNi jδe, j,
X′2 = X20 + r2ix′i = X2o + r2ixi + r2iδi = X2o + r2ixi + r2iNi jδe, j,i = 1, 2; j = 1, p,

(6)

or
X′k = Xko + rkixi + rkiNi jδe, j, k, i = 1, 2, j = 1, p. (7)

2.2. Lagrangian of an Element

Using (6), the velocity of point M’ can be obtained after differentiation with respect to the time:

.
X
′

k =
.

Xko +
.
rkixi +

.
rkiNi jδe, j + rkiNi j

.
δe, j, k, i = 1, 2, j = 1, p. (8)

The kinetic energy for one single element due to this velocity is

Ect =
1
2

L∫
0
ρA

.
X
′

k
.

X
′

kdA

= 1
2

L∫
0
ρt

( .
Xko +

.
rkixi +

.
rkiNi jδe, j + rkiNi j

.
δe, j

)( .
Xko +

.
rklxl +

.
rklNlmδe,m + rklNlm

.
δe,m

)
dA

(9)

where t is the thickness of the element, and ρ is the mass density.
In plane motion, the rotation of the local system of coordinates is expressed by the plane rotation

tensor ri j. The columns of this tensor define the positions of the unit vectors of the local reference frame
Oxyz. For plane rotation, these coefficients can be expressed as

r11 = r22 = cosθ; r12 = r21 = − sinθ. (10)

The ortho-normality condition of these unit vectors leads to

ri jrkj = r jkr ji = δi j, i jk = 1, 2 (11)

where δij is the Kronecker delta (derived from the general three-dimensional transformation).
By differentiation, the following equation will result:

.
ri jrkj + ri j

.
rkj = 0, i, k = 1, 2. (12)

Denote
ωik =

.
ri jrkj, . (13)

the skew-symmetric tensor angular velocity. The relation (12) becomes

ωik +ωki = 0, i, k = 1, 2. (14)

To this corresponds the angular velocity vector components defined by

ω3 = ω21 = −ω12 = ω, ω1 = ω32 = −ω23 = 0, ω2 = ω13 = −ω31 = 0. (15)

The angular velocity vector and the angular acceleration vector have, in plane motion, the same
components in both the local reference system and the global reference system.

The angular acceleration skew symmetric operator it is defined as

εik =
.
ωik =

..
ri jrkj +

.
ri j

.
rkj, i jk = 1, 2. (16)
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The angular acceleration vector is defined by

ε3 = ε21 = −ε12 =
.
ω = ε. (17)

The other components are null. We shall have

εik = ωik =
..
ri jrkj +

.
ri j

.
rkj =

..
ri jrkj +

.
ri jr jlrml

.
rkm =

..
ri jrkj −ωilωlk (18)

from where
..
ri jrkj = εik +ωilωlk, i jkl = 1, 2. (19)

The internal energy stored is obtained via the relation

Ep =
1
2

L∫
0

σi jεi jdV i, j = 1, 2. (20)

From (20), it is possible to obtain the stiffness matrix depending on the hypothesis and type of
finite element (and consequently, the shape functions) chosen. Here, we present a case as an example;
any other case can be treated in the same manner. The relationship between stress and strain is

σi j = Dikεkj. (21)

If we choose, for example, a rectangular finite element with sides a and b, a displacement field of
the form

u = α1 + α2x + α3xy + α4yv = β1 + β2x + β3xy + β4y (22)

can be used to obtain the stiffness tensor.
The boundary conditions (x = 0, y = 0 = > u = u1, v = v1; x = a, y = 0 = > u = u2, v = v2; x = a, y = b

= > u = u3, v = v3; x = 0, y = b = > u = u4, v = v4;) lead to the following fields for the displacements:

u = (1− ξ)(1− η)u1 + ξ(1− η)u2 + ξηu3 + η(1− ξ)u4

v = (1− ξ)(1− η)v1 + ξ(1− η)v2 + ξηv3 + η(1− ξ)v4.
(23)

Applying the classical laws of linear elasticity [2], the relation between the strain and nodal
displacement are, in this case,

ε11 = −
1−η

a u1 +
1−η

a u2 +
η
a u3 −

η
a u4,

ε22 = − 1−ξ
b v1 + −

ξ
b v2 +

ξ
b v3 +

1−ξ
b v4,

ε12 = ε21 = − 1−ξ
b u1 −

1−η
a v1 −

ξ
b u2 +

1−η
a v2 +

ξ
b u3 +

η
a v3 +

1−ξ
b u4 −

η
a v4 .

(24)

Using (20), (21), and (24), after some elementary calculus, it is possible to obtain the internal
energy of the form (see [2])

Ep =
1
2
δike,i jδ j i, j = 1, p (25)

The external work of the concentrated load is

W = qe, jδe, j, i = 1, 2, j = 1, p. (26)

Here, qej is the vector of the concentrated loads acting in nodes.
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The external work of the distributed loads is

W =

L∫
0

(piδi)dA =


L∫

0

piNi jdA

δe, j = q∗e, jδe, j, i = 1, 2, j = 1, p, (27)

where the notation

q∗e, j =


L∫

0

piNi jdx

δe, j, i = 1, 2, j = 1, p (28)

is used. We have all the data to build the Lagrangian [8,19]

L = Ec − Ep + Wd + Wc, (29)

or, taking into account the relations (9), (24), (25), and (26),

L = 1
2

L∫
0
ρt

( .
Xko +

.
rkixi +

.
rkiNi jδe, j + rkiNi j

.
δe, j

)( .
Xko +

.
rklxl +

.
rklNlmδe,m + rklNlm

.
δe,m

)
dA

−
1
2δe,ike,i jδe, j + q∗eL, jδe, j + qe,iδe,i.

(30)

3. Motion Equations

Theorem: The motion equations written in the local coordinate system for two-dimensional finite element take
the form

me,i j
..
δe, j + 2cωe,i j

.
δe, j +

(
ke,i j + kεe,i j + kω

2

e,i j

)
δe, j = qe,i + q∗e.i − qεe,i − qω

2

e,i −mo
e,i j

..
x jo (31)

where

me,i j =

∫ L

0
ρtNkiNkjdA, i, j = 1, p, k = 1, 2cωe,i j = 2

L∫
0

NkiωkmNmjρtdA; (32)

kεe,i j =
L∫

0
NkiεkmNmjρtdA; kω

2

e,i j =
L∫

0
NkiωkmωmlNl jρtdA; mo

e,i j =
∫ L

0 ρAN jidx,i, j = 1, p, k, m, l = 1, 2. (33)

Proof: We apply the Lagrange’s equations in the form

d
dt

∂L

∂
.
δe,i

−
∂L
∂δe,i

= 0. (34)

We obtain the motion equations (an extended presentation can be found in Appendix A):

[∫ L
0 ρtNikN jkdA

] ..
δe, j + 2

 L∫
0

NkiωkmNmjρtdA

 .
δe, j +


ke,i j +

L∫
0

NkiεkmNmjρtdA+

+
L∫

0
NkiωkmωmlNl jρtdA

δe, j

= qe,i + q∗e.i − qεe,i − qω
2

e,i −

(∫ L
0 ρAN jidx

)
..
x jo.

(35)

Using the notation mentioned above, it is possible to obtain (30).
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4. Conclusions

In engineering practice, there are frequent cases in which the elements of a device or a machine are
required to operate with high forces or have high accelerations and speeds. In these cases, the elasticity
of the elements can be manifested in such a way as to negatively influence the working process of the
assembly. An analysis of the MBS motion in such conditions is required. In this work, we determined
the motion equations for a two-dimensional finite element with plane motion. This case often occurs
in practice. Most of the technical systems have elements operating in planar motion. In this case, a
system of differential equations with matrix coefficients that can be strongly nonlinear is obtained.
The mass tensor and the classical rigidity tensor are symmetrical matrices, while the Coriolis effects
tensor is skew-symmetric. There are also terms that change the classical stiffness of the element and
additional inertial terms. If we use FEA to obtain the motion equations for one single element in plane
motion, we obtain a system of second-order differential equations, as presented in (30). Generally, this
system is strongly nonlinear, with the matrix coefficients of the system depending on time and on the
position of the system. For a usual engineering application, some aspects of these equations can cause
difficulties. We highlight some properties of this system:

• The classical inertia tensor me,i j is a symmetrical tensor;
• The damping tensor cωe,i j is a skew symmetric tensor; this represents the effect of the accelerations

due to the Coriolis effects (relative motions with respect to the mobile reference co-ordinate system;
• The stiffness tensor ke,i j is a symmetric tensor; this tensor is modify by additional terms depending

on the general plane rotation of the element, becoming ke,i j + kεe,i j + kω
2

e,i j;

• The vector of the generalized loads contains some supplementary terms due to inertia of finite

elements being in rigid motion; these are −qεe,i − qω
2

e,i −mo
e,i j

..
x jo.

The common method used to solve this system is to linearize this system, considering the tensor
coefficients as being constant for very short time intervals (rigid motion freezing). In this way, it is
possible to obtain a system of differential equations with constant coefficients. To solve this, usual
and well-known methods can be used. There can be singularities due to the inertia term affecting the
stiffness matrix [20].
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Appendix A

The derivatives of the Lagrangian:

∂L
∂

.
δe,i

=
L∫

0
ρ

.
XkorklNlmtdA +

L∫
0
ρA

.
rkixirklNlmtdA +

L∫
0
ρ

.
rkiNi jδe, jrklNlmtdA

+
L∫

0
ρrkiNi j

.
δe, jrklNlmtdA

−
∂L
∂δe,i

= −
.

Xko
.
rkl

 L∫
0

NlmρtdA

− .
rki

.
rkl

 L∫
0

xiNlmρtdA

− .
rki

.
rkl

 L∫
0

Ni jNlmρtdA

δe, j

−
.
rkirkl

 L∫
0

Ni jNlmρtdA

 .
δe,m.

(A1)
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Applying d
dt

(
∂L
∂

.
δe,i

)
−

∂L
∂δe,i

= 0 obtains

 L∫
0

NlmρtdA

rkl
..
Xko+

..
rkirkl

 L∫
0

xiNlmρtdA

+..
rkirkl

 L∫
0

Ni jNlmρtdA

δe, j+2
.
rkirki

 L∫
0

Ni jNi jρtdA

 .
δe, j

+rkirkl

 L∫
0

Ni jNlmρtdA

 ..
δe, j − (qe,i + q∗e.i) + ke,i jδe, j = 0;(∫ L

0 ρtNikN jkdA
) ..
δe, j + 2ω

(∫ L
0 ρtN2iN1 jdA−

∫ L
0 ρtN1iN2 jdA

) .
δe, j+[

ke,i j + ε
(∫ L

0 ρtN2iN1 jdA−
∫ L

0 ρtN1iN2 jdA
)
−ω2

(∫ L
0 ρtN1iN1 jdA +

∫ L
0 ρtN2iN2 jdA

)]
δe, j

= qe,i + q∗e.i − qεe,i − qω
2

e,i −mo
e,i j

..
x jo,

(A2)

or
me,i j

..
δe, j + 2ω

(
m(21)

i j −m(12)
i j

) .
δe, j +

[
ke,i j + ε

(
m(21)

i j −m(12)
i j

)
−ω2

(
m(11)

i j + m(22)
i j

)]
δe, j = (A3)
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