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Abstract: Recently, there has been an increased interest in exploring periodic structures having higher
symmetry properties, primarily based on metallic realization. The design of dielectric glide-symmetric
structures has many challenges, and this paper presents a systematic analysis approach based on
Floquet mode decomposition and mode matching technique. The presented procedure connects the
analysis of standard periodic structures and glide-symmetric realizations, thus giving insight into the
wave propagation and interaction characteristics. The obtained results were verified in comparison
with results from known references and using a commercial solver, proving that the proposed analysis
technique is inherently accurate, and the degree of accuracy depends only on the number of modes
used. The proposed analysis approach represents the first step in the design process of dielectric
periodic structures with glide symmetry.
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1. Introduction

Interest in different artificial electromagnetic structures has led to investigation of various
structures, applications and ideas in general. A very promising direction in these developments is
structures with higher symmetries. For a periodic structure we can say that it possesses a higher
symmetry when the unit cell coincides with itself after more than one geometrical operation of
a different kind—translation, rotation, mirroring, etc. [1–3]. The glide operator, for example, is a
geometrical transformation composed by a translation and a mirroring with respect to the so-called
glide plane. The idea to combine different types of symmetry in a periodic structure will have a strong
influence on the propagation properties. One of the most interesting is the possibility to tune the
dispersion of lower propagating modes depending on the application, i.e., dispersion can be reduced
or increased. In addition, as a direct consequence of this, the electromagnetic bandgap can be extended
or reduced, or even completely removed.

Periodic structures with higher symmetry were first studied in the 1960s and 1970s in relation to
one-dimensional periodic waveguides [1–3]. Recent work on structures with higher symmetries (in
both one and two dimensions) has demonstrated various effects and devices, such as ultra-wideband
Luneburg lenses [4,5], leaky-wave antennas with low frequency dependency [6], cost-efficient gap
waveguide technology [7,8], contactless flanges with low leakage [9], low-dispersive propagation in
periodic structure-based transmission lines [10,11], and fully metallic reconfigurable filters and phase
shifters [12]. These results were obtained using metallic structures, however, in many applications
only dielectric types of materials are allowed. Therefore, our interest lies in the investigation of the
fully dielectric structures with higher symmetry.
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Dielectric waveguides containing periodic variation along the propagation direction have been
used in many applications ranging from microwave to optical frequencies. They are designed to
either support a bounded propagating wave (in microwave or optical filters and distributed feedback
reflectors for high-quality lasers) or an unbounded leaky wave (in leaky-wave antennas and optical
couplers) [13]. Recently, some new applications were investigated, like plasmonic optical modulators
for nanophotonic architectures in which the modulator transmittance is changed with bias voltage [14].

The reported analysis methods were often based on the assumption that periodic variation acts
only as a small perturbation of a planar multilayer waveguide [15–17], which may produce erroneous
results in many cases, e.g., if the corrugated grating is thick. The proposed rigorous solution is based on
the Floquet mode decomposition and a mode matching (MM) technique [18,19] in which the corrugated
layer is modeled as a periodic array of infinite dielectric slabs [20]. All previously considered structures
contained one layer of corrugations, except in Reference [21] where two layers of corrugations with
different periodicities were investigated. The Floquet mode expansion approach can also be combined
with the boundary integral formulation in which the boundary conditions at each interface inside
the structure follow Floquet’s theorem [22]. Similarly, the finite element method can be adapted for
computation of modal decomposition and scattering matrices [23,24].

In this paper we have extended the MM analysis method to glide-symmetric dielectric periodic
structures. The presented analysis description is focused on one-dimensional glide-symmetric
structures [25]. The first part of the paper describes the analysis procedure and it is followed by initial
results obtained for a test case found in literature, while the properties of the glide-symmetric dielectric
structures are discussed in the second part of the paper.

2. Analysis of Waveguides Containing Periodic Dielectric Structures

A periodic structure possesses a higher symmetry when the unit cell coincides with itself after
more than one geometrical operation. Glide symmetry is the invariance of a periodic structure under a
translation of half its period and a mirroring with respect to a plane parallel to the periodicity directions.
Written as a formula, if the periodicity is present along the x-direction with the period Px, a glide
operator can be written as: {

(x, y)→ (x + Px
2 , y)

z→ −z
. (1)

Other kinds of higher symmetries are defined by combination of rotation and translation (twist or
polar glide symmetries) or by time operations (parity-time symmetries).

The analysis of guiding dielectric structures having higher symmetries is based on Floquet mode
decomposition and MM approach [26–29]. The electric and magnetic fields in each section of the
structure are represented as a sum of suitable modes with unknown complex amplitude, i.e., we used
the preknowledge about the electromagnetic (EM) field configuration and symmetry properties to
reduce the number of unknowns, to precisely describe the EM field present in the structure, and to
give a physical insight about the presence of higher symmetry properties.

The dielectric waveguide structure of interest is shown in Figure 1. It is a parallel-plate waveguide
(PPW) with top and bottom walls realized using dielectric corrugations. The period of corrugations is
denoted by Px, the height of corrugations by hcorr, the width and permittivity of periodic dielectric
inclusions by Wx1, Wx2 and ε1, ε2, and the height and permittivity of parallel-plate waveguide by
hppw and εppw. Note that the plane z = 0 is located in the middle of the parallel-plate region. We will
first analyze the simple periodic structure (i.e., the one with classical translation/mirroring symmetry,
see Figure 1a) and then we will modify the analysis procedure for structures with higher symmetry
in which the corrugations are shifted with respect to each other by Px/2, i.e., the structure will be
glide-symmetric, as in Figure 1b.
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Figure 1. Sketch of the parallel-plate dielectric waveguide with periodic structure; (a) simple periodic 
structure with translation and mirroring symmetry, and (b) periodic structure with glide symmetry. 
Direction of wave propagation is sketched using a red arrow. 
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Figure 1. Sketch of the parallel-plate dielectric waveguide with periodic structure; (a) simple periodic
structure with translation and mirroring symmetry, and (b) periodic structure with glide symmetry.
Direction of wave propagation is sketched using a red arrow.

The waveguide mode of interest is propagating in the direction perpendicular to corrugations
(i.e., in the x-direction). Therefore, we can distinguish transverse electric (TE) and transverse magnetic
(TM) propagating modes (i.e., they do not mix due to presence of the periodic structure corrugations).
Here we will give the formulation for TE modes because it is straightforward to repeat the formulation
for TM modes.

The analysis is based on representation of the EM field in all regions of interest: Parallel-plate
region, layer with corrugations, and outer space. The analysis procedure can be simplified if the
modes are orthogonal. This is enforced in the parallel-plate waveguide region by representing the EM
field as a series of Floquet harmonics by virtue of periodicity. For each Floquet mode present in the
parallel-plate waveguide the y-component of the E-field can be expressed as

Ey(x, z) =
NPPW∑

m=−NPPW

[
A1

m cos(kzz) + A2
m sin(kzz)

]
e− jkxx (2)

kx = kx,0 +
2mπ
Px

, ky = 0, kz =
√

k2
0εPPW − k2

x − k2
y. (3)

The tangential x-component of H-field can be calculated using the following expression

Hx =
− j
η0k0

∂Ey

∂z
=
− j
η0k0

NPPW∑
m=−NPPW

kz
[
−A1

m sin(kzz) + A2
m cos(kzz)

]
e− jkxx. (4)

Here, m is the index of the Floquet mode, NPPW is the highest-order considered Floquet mode
(in total 2NPPW + 1 modes are taken into account), and k0 and η0 are the wave number and the wave
impedance of free space.

In order to determine the Floquet coefficients Am and the propagation constant kx,0 of the
propagating wave inside the parallel-plate waveguide we need to match the tangential EM components
with the ones in the corrugated walls. The wave propagating in the corrugated region can be modeled
as a wave propagating along a periodic array of dielectric slabs [18,20] with the following EM field
distribution (Ncorr denotes the highest-order considered mode).

Ecorr
y (x, z) =

Ncorr∑
i=1

Ecorr
0,i (x)

(
C+

i e− jγiz + C−i e+ jγiz
)

(5)

Ecorr
0,i (x) =


B1

i cos kx,2(x + Px/2) + B2
i sin kx,2(x + Px/2) −Px/2 ≤ x ≤ −Px/2 + W2/2

B3
i cos kx,1x + B4

i sin kx,1x −W1/2 ≤ x ≤W1/2
B5

i cos kx,2(x− Px/2) + B6
i sin kx,2(x− Px/2) Px/2−W2/2 ≤ x ≤ Px/2

(6)

Hcorr
x =

− j
η0k0

∂Ecorr
y

∂z
, kx,1 =

√
k2

0ε1 − γ2
i , kx,2 =

√
k2

0ε2 − γ2
i . (7)
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The coefficients B1
i − B6

i and the propagation constant in the z-direction γi are determined by
considering the wave propagation along the periodic array with an assumed progressive phase delay
per unit cell. In more detail, for each possible propagation constant kx,0, i.e., for each considered
progressive phase delay we need to solve the secondary (local) mode-matching problem. The problem
is described with a linear system of four equations representing the continuity of the Ey and Hz field
components at two boundaries x = ±W1/2. Since for each considered case we have six unknown
coefficients as seen in Equations (5)–(7), the Floquet theorem is used to express B5

i and B6
i using B1

i ,
B2

i and assuming progressive phase delay. The determinantal equation resulting from the linear
system gives the value of the propagation constant along the interfaces γi and then it is possible to
determine the field distribution of the considered ith mode. The details of the formulation are given in
Reference [18].

By matching these two expressions (e.g., for the E-field at the boundary z = hppw/2) and testing
it with (1/Px) exp(+ jkxx), one equation per each Floquet harmonic is obtained (as a consequence of
orthogonality of Floquet harmonics):

A1
m cos(kzhppw/2) + A2

m sin(kzhppw/2) =
Ncorr∑
i=1

Ẽcorr
0,i (m)

(
C+

i e− jγihppw/2 + C−i e+ jγihppw/2
)
, (8)

Ẽcorr
0,i (m) =

1
Px

Px/2∫
−Px/2

Ecorr
0,i (x)e+ j(kx,0+(2mπ/Px))xdx. (9)

We can further simplify Equation (8) by considering only even or odd modes (with respect to the
symmetry plane z = 0). By doing so, only one coefficient A1

m or A2
m is left and we have consequently

expressed each Floquet coefficient Am with the Fourier transformation of the E-field distribution at the
corrugation boundary. Thereby, only the coefficients C±i (among all coefficients Am, Bi, Ci and Dm that
describe the field distribution) are the unknowns.

The goal is to derive one characteristic equation for the propagation constant kx,0 of the propagating
wave inside the parallel-plate waveguide. Therefore, we should also match the tangential magnetic
field Hx at the boundary between parallel-plate waveguide and corrugated region.

− j
η0k0

NPPW∑
m=−NPPW

kz
[
−A1

m sin(kzz) + A2
m cos(kzz)

]
e− jkxx

= −1
η0k0

Ncorr∑
i=1

Ecorr
0,i (x) γi

(
C+

i e− jγihppw/2
−C−i e+ jγihppw/2

) (10)

Equation (10) can be simplified using the connection between the coefficients Am and C±i (given
by Equations (8) and (9)). By multiplying Equation (10) with (Ecorr

0,l (x))∗, where * refers to the complex
conjugate, and integrating over the period we obtain the following linear system of equations whose
determinant is the characteristic equation for the propagation constant kx,0[

Yl,i
][

C±i
]
= [0]. (11)

The coefficients of the linear system of equations related to the unknowns C+
i and C−i are

respectively equal (e.g., for the even symmetry case)

Yl,2i−1 =
NPPW∑

m=−NPPW

jkz
[
− tan(kzhppw/2)

]
e− jγihppw/2Ẽcorr

0,i (m)
(
Ẽcorr

0,l (m)
)∗

− γie− jγihppw/2 1
Px

Px/2∫
−Px/2

Ecorr
0,i (x)

(
Ecorr

0,l (x)
)∗

dx
(12)
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Yl,2i =
NPPW∑

m=−NPPW

jkz
[
− tan(kzhppw/2)

]
e+ jγihppw/2Ẽcorr

0,i (m)
(
Ẽcorr

0,l (m)
)∗

+ γie+ jγihppw/2 1
Px

Px/2∫
−Px/2

Ecorr
0,i (x)

(
Ecorr

0,l (x)
)∗

dx
(13)

Note that the field distributions of the propagating modes along the periodic array of dielectric
slabs Ecorr

0,i (x) (i.e., along the corrugations) are not orthogonal.
Since we have two times more unknowns than equations, we have to repeat the procedure for the

half-space above the corrugations. The EM field in the upper half-space (i.e., in the space outside the
structure) can be represented as:

Ey(x, z) =
NPPW∑

m=−NPPW

D1
me− jkxxe− jkair

z (z−hcorr−hPPW/2) (14)

Hx =
− j

k0η0

∂Ey

∂z
, kx = kx,0 +

2mπ
Px

, ky = 0, kair
z =

√
k2

0 − k2
x − k2

y. (15)

Here, we have assumed that the space outside the structure is air (or vacuum) with the relative
permittivity equal to one. The corresponding coefficients of the linear system of equations related to
the unknown C±i are equal

YNcorr+l,2i−1 =
∞∑

m=−∞
kair

z e− jγi(hcorr+hppw/2)Ẽcorr
0,i (m)

(
Ẽcorr

0,l (m)
)∗

−γie− jγi(hcorr+hppw/2) 1
Px

Px/2∫
−Px/2

Ecorr
0,i (x)

(
Ecorr

0,l (x)
)∗

dx
(16)

YNcorr+l,2i =
∞∑

m=−∞
kair

z e+ jγi(hcorr+hppw/2)Ẽcorr
0,i (m)

(
Ẽcorr

0,l (m)
)∗

+γie+ jγi(hcorr+hppw/2) 1
Px

Px/2∫
−Px/2

Ecorr
0,i (x)

(
Ecorr

0,l (x)
)∗

dx
(17)

It is enough to consider only the upper half of the structure shown in Figure 1a; the lower part is
taken into account using even or odd mirroring symmetry of the considered modes.

For the structures with glide symmetry, i.e., if the upper corrugated plate is shifted by half a
period in the x-direction, the E-field distributions at the top and bottom corrugation interfaces can be
related as:

E
(
x, y, z = −

hPPW

2

)
= e− jkx,0 Px/2 E

(
x−

Px

2
, y, z = +

hPPW

2

)
. (18)

This expression should have the double sign ± in front of the exponential term. However,
the double sign ± does not define two different sets of modes or introduce any ambiguity because the
solutions of the two problems actually coincide: the Floquet harmonic 0 becomes the harmonic −1
when switching the sign from plus to minus (see Reference [28] for details).

We will use the following translation property of the Fourier transformation:

1
Px

∫
ϕ(x− Px/2) e− jkx,0Px/2e jkxxdx =

1
Px

∫
ϕ(x′) e+ jmπe jkxx′dx′ = ϕ̃(kx)e+ jmπ = ϕ̃(kx)·(−1)m. (19)

Term (−1)m actually means that depending on the index of Floquet mode we have even or odd
symmetry across the z = 0 plane (see Equation (2)). For even Floquet modes (m = 0, ±2, ±4, . . .) the
E-field in the parallel-plate region is described with A1

m cos(kzz) terms, while for odd Floquet modes
(m = ±1, ±3, . . .) the E-field is described with A2

m sin(kzz) terms. In other words, the presence of glide



Symmetry 2019, 11, 805 6 of 12

symmetry causes the odd and even symmetries to be mixed inside the PPW resulting in extraordinary
properties of the glide-symmetric guiding structure.

3. Results

In order to test the developed code, we compared the results of a calculated field distribution
inside the corrugated layer with the results from [18]. We plotted the normalized value of the Hy field
component of the TM wave for different values of assumed progressive phase delay per unit cell.
The parameters of the corrugated structure are the following: εr1 = 2.56, εr2 = 1.0, Px = 0.6 λ0, Wx1

= 0.26 λ0 and Wx2 = 0.34 λ0. Excellent matching of the obtained results can be noticed in Figure 2.
We also tested the accuracy of the calculated propagation constant of the first two modes travelling
along the periodic array of dielectric slabs (Figure 3). Again we got excellent agreement with results
given in [18]. It is interesting to notice that for values kx,0 less than 0.5·π/Px the first high-order mode
is evanescent, i.e., the values of γ2 are imaginary (kx,0 is the transverse propagation constant in the
corrugated region). For values kx,0 larger than 0.5·π/Px the wave propagates along the dielectric slabs
and consequently γ2 is a real number. The dominant mode is of a propagating type for all values of kx,0.
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Figure 2. Normalized value of the H field component of TM wave for different values of assumed
progressive phase delay per unit cell; solid line—results calculated using the developed program,
diamonds—calculated results from [18]; (a) first mode, (b) second mode.
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Figure 3. Normalized value of the propagation constant of the first two modes travelling along
the periodic array of dielectric slabs; solid line—results calculated using the developed program,
diamonds—calculated results from Reference [18]. γ2 = 0 is the cut-off condition of the 2nd mode,
thus for the values kx,0 smaller than the cut-off value (0.5·π/Px) γ2 is imaginary (the mode is evanescent).
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In order to investigate the properties of glide-symmetric dielectric structures we considered
the following periodic structure: εPPW = 2.56, hPPW = 10 mm, Px = 35 mm, Wx1 = 15 mm, Wx2 =

20 mm, εr1 = 10.0, εr2 = 1.0, and hcorr = 10 mm. First, we analyzed the simple periodic structure
(Figure 1a). In Figure 4 the dispersion diagram of the first three propagating modes are given. Note that
only the values of the propagation constant larger than the free-space propagation constant k0 are
given, otherwise the excited mode is a fast wave and the structure is radiating part of the EM energy
(i.e., we have a leaky-wave antenna). The obtained results were compared with the ones obtained
using a general electromagnetic solver, CST Microwave Studio in our case, and the agreement is very
good. Specifically, the Eigenmode Solver in the CST Microwave Studio package was used to find the
dispersion characteristics of the considered structures, thus it was necessary to analyze only a unit cell.
In x- and y- directions the periodic boundary conditions were applied, while at the top and bottom of
the periodic cell the PMC boundary conditions were used to simulate infinitely long symmetric and
glide-symmetric structures. Note that the unit cell was quite long in the z-direction since it was needed
to ensure that the amplitude of the evanescent fields was negligible at the top and bottom boundaries.Symmetry 2019, 11, x FOR PEER REVIEW 8 of 13 
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Figure 4. Propagation constant of the first three modes travelling along the dielectric waveguide with
corrugations from Figure 1a; solid line—results calculated using the developed program (blue line: 1st
even mode, red line: 1st odd mode, green line: 2nd even mode), diamonds—results calculated using
CST Microwave Studio (dashed black line represents the light-line). The E-field distribution in the unit
cell of the first three modes for kx,0 = π/Px is also shown (the structure is infinite in the y-direction).

In Figure 4 the field distributions of the first three propagating modes are also given. Note that
the dominant mode is even (relative to the symmetry line z = 0), the first higher order-mode is odd,
and the second higher-order mode is even again. Note also that the evanescent field is present also in
the air close to the structure. This is probably the most important difference compared to the metallic
waveguides. The higher the mode (or for frequencies closer to the cut-off frequency), the larger the
percentage of the power actually propagating out of the parallel-plate waveguide and consequently
in the half-spaces around the guiding structure. In Figure 4, the third mode has more than half of
the power propagating outside the waveguiding structure. Theoretically, for frequencies just above
cut-off almost all power is actually propagating outside the parallel-plate layer [30]. This is one of the
limits in the design of dielectric glide-symmetric structures since the designed metallic components
mostly have a very thin parallel-plate region (in order to obtain the desired electromagnetic properties).
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In the dielectric case probably there is no point to make equivalent structures with a thin gap between
corrugations since almost all power will propagate outside the guiding structure.

The dispersion diagram of the glide-symmetric dielectric waveguide (having the same dimensions
as considered simple periodic structure) is given in Figure 5. The shape of the obtained dispersion
diagram is similar to the ones obtained with metallic glide-symmetric waveguides. The obtained
bandgap is between 2.52 and 3.65 GHz. The field distribution of the first two modes is also shown for
kx,0 = π/Px. Like in the case of the simple periodic structure (Figure 4) a much larger percentage of EM
power is propagating outside the dielectric structure for the second mode. The selected time moment
gives the best illustration of the E-field distribution for the depicted modes. Other time moments could
be selected, as illustrated in Figure 6 where the E-field distribution of the dominant mode is given for
relative phase shifts 45◦, 90◦, 135◦ and 180◦, respectively.
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Figure 5. Propagation constant of the first two modes travelling along the glide-symmetric dielectric
waveguide with corrugations (Figure 1b); solid line—results calculated using the developed program,
diamonds—results calculated using CST Microwave Studio (dashed black line represents the light-line);
(a) glide-symmetric structure only, (b) comparison of glide-symmetric and simple-symmetric structures
(blue dashed line). The E-field distribution in the unit cell of the first two modes for kx,0 = π/Px is also
shown (the structure is infinite in the y-direction).
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Figure 6. The E-field distribution in the unit cell of the first mode for kx,0 = π/Px at different time
moments where T denotes the period of oscillations (T = 1/f ).

In order to be able to tune the dispersion diagram according to the designer’s needs one should
understand the background of such a shape. The key point is Equation (19), i.e., the fact that glide
symmetry actually means mixing of odd and even modes. This is visible in Figure 5b where we have
displayed on the same diagram dispersion curves of simple and glide-symmetric dielectric waveguides.
It can be seen that the lower part of the dispersion curve is nearly indistinguishable from the even
mode profile of the non-glide structure (up to the vicinity of the propagation constant kx,0 = π/Px),
while the upper part is mostly affected by the odd mode.

This property actually enabled us to tune the dispersion diagram (see Figure 7). For example,
if we reduced the thickness of the parallel-plate region from 10 mm to 2 mm, then the odd mode
had a higher cut-off frequency and therefore the dispersion diagram of a glide-symmetric case was
less dispersive and the bandgap started at higher frequencies. This was even more prominent if we
reduced the thickness of the corrugated region from 10 mm to 2 mm (Figure 7b) because the overall
thickness of the dielectric structure was then much smaller.
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Figure 7. Propagation constant of the first mode travelling along the glide-symmetric dielectric
waveguide with corrugations (case of thinner parallel-plate dielectric slab); solid line—results calculated
using the developed program, diamonds—results calculated using CST Microwave Studio (dashed
black line represents the light-line); (a) case of thinner parallel-plate dielectric slab (hppw = 2 mm),
(b) case of thinner corrugated region (hcorr = 2 mm).

We tested various combinations of refractive indexes for PPW and corrugated regions. One natural
choice is to have only one material, i.e., that corrugations are made from the same material as the
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PPW (εr1 = εPPW = 2.56 and εr2 = 1.0; other parameters are the same as for the structure in Figure 5).
In other words, such structures are made from a homogeneous media but the boundaries have a
periodic variation. Results of the same type were obtained (see Figure 8), however the glide-symmetric
properties were not so pronounced. It can be concluded that contrast between the permittivity of PPW
and corrugated regions can also be used for tuning the dispersion properties.
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Needless to say, it is possible to analyze guiding structures in which the lower corrugated layer is
arbitrarily shifted compared to the upper layer (i.e., when the shift is between 0 and Px/2). The obtained
dispersion diagrams are located between ones for the symmetric and glide-symmetric cases, which was
demonstrated in Reference [11] for metallic structures. Therefore, we have focused our investigation
on the two most interesting cases, symmetric and glide-symmetric.

Finally, numerical properties of the proposed analysis method should be mentioned. The number
of modes in the PPW and corrugated regions were NPPW = 5 (in total 11 modes) and Ncorr = 2. We tested
the numerical convergence of the solution, and enlarging the number of modes only slightly improved
the accuracy of the solution. The needed computer time was less than a second per point in the
dispersion diagram, while the CST typically needed around 1 hour for calculating the whole dispersion
diagram (depending on the accuracy of the meshing). All the calculations were made on a standard PC.

4. Conclusions

This paper discussed the Floquet mode decomposition applied together with a mode-matching
approach in the analysis and design of dielectric waveguides with glide-symmetric periodicity.
The analysis method is based on representing the EM field in each region with suitable modes and
connecting the field distributions in different regions using symmetry properties, resulting in an
efficient program for determining propagation properties and obtaining a physical picture of modes
in such waveguides. The developed approach provides a basis for better understanding of wave
propagation characteristics and of various types of wave interactions in glide-symmetric structures.

Until now most realized waveguide prototypes possessing higher symmetry were made from metal.
Although at first glance there are a lot of similarities between metallic and dielectric glide-symmetric
structures, the main difference comes from the fact that in the dielectric case, part of the propagating
wave (and thus part of the electromagnetic power) travels outside the dielectric parallel-plate waveguide.
Therefore, the dispersion diagram (and consequently the bandgap) is dominantly conditioned by the
odd mode of the equivalent non-glide structure whose cut-off frequency mostly depends on the total
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thickness and permittivity of the waveguide structure. This also limits us in selecting the thickness of
the parallel-plate waveguide since the percentage of power propagating outside the guiding structure
is larger for thinner structures. The other limit represents the free-space wavenumber—for propagation
constants smaller than the free-space wavenumber a fast wave is excited which leads to leakage of
electromagnetic energy. Our presented discussion shows that by adjusting the structure parameters
various waveguiding properties can be obtained, and our formulation is able to aid in the design
process and provide fast and accurate results.
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together to develop the present manuscript.

Funding: This work was funded by Croatian Science Foundation under the project IP-2018-01-9753.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Crepeau, P.J.; McIsaac, P.R. Consequences of symmetry in periodic structures. Proc. IEEE 1964, 52, 33–43.
[CrossRef]

2. Mittra, R.; Laxpati, S. Propagation in a waveguide with glide refection symmetry. Can. J. Phys. 1965, 43,
353–372. [CrossRef]

3. Hessel, A.; Chen, M.H.R.; Li, C.M.; Oliner, A.A. Propagation in periodically loaded waveguides with higher
symmetries. Proc. IEEE 1973, 61, 183–195. [CrossRef]

4. Quevedo-Teruel, O.; Ebrahimpouri, M.; Ng Mou Kehn, M. Ultrawideband Metasurface Lenses Based on
Off-Shifted Opposite Layers. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 484–487. [CrossRef]

5. Quevedo-Teruel, O.; Miao, J.; Mattsson, M.; Algaba-Brazalez, A.; Johansson, M.; Manholm, L. Glide-Symmetric
Fully Metallic Luneburg Lens for 5G Communications at Ka-Band. IEEE Antennas Wirel. Propag. Lett. 2018,
17, 1588–1592. [CrossRef]

6. Dahlberg, O.; Pucci, E.; Wang, L.; Quevedo-Teruel, O. Low-Dispersive Glide-Symmetric Leaky-Wave Antenna
at 60 GHz. In Proceedings of the 13th European Conference on Antennas and Propagation, Krakow, Poland,
31 March–5 April 2019.

7. Ebrahimpouri, M.; Quevedo-Teruel, O.; Rajo-Iglesias, E. Design guidelines for gap waveguide technology
based on glide-symmetric holey structures. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 542–544. [CrossRef]

8. Ebrahimpouri, M.; Rajo-Iglesias, E.; Sipus, Z.; Quevedo-Teruel, O. Cost-effective gap waveguide technology
based on glide-symmetric holey EBG structures. IEEE Trans. Microw. Theory Tech. 2018, 66, 927–934.
[CrossRef]

9. Ebrahimpouri, M.; Algaba-Brazalez, A.; Manholm, L.; Quevedo-Teruel, O. Using glide-symmetric holes to
reduce leakage between waveguide flanges. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 473–475. [CrossRef]

10. Padilla, P.; Herran, L.F.; Tamayo-Dominguez, A.; Valenzuela-Valdes, J.F.; Quevedo-Teruel, O. Glide symmetry
to prevent the lowest stopband of printed corrugated transmission lines. IEEE Microw. Wirel. Compon. Lett.
2018, 28, 750–752. [CrossRef]

11. Quesada, R.; Martín-Cano, D.; García-Vidal, F.J.; Bravo-Abad, J. Deep subwavelength negative-index
waveguiding enabled by coupled conformal surface plasmons. Opt. Lett. 2014, 39, 2990–2993. [CrossRef]
[PubMed]

12. Rajo-Iglesias, E.; Ebrahimpouri, M.; Quevedo-Teruel, O. Wideband phase shifter in groove gap waveguide
technology implemented with glide-symmetric holey EBG. IEEE Microw. Wirel. Compon. Lett. 2018, 28,
476–478. [CrossRef]

13. Elachi, C. Waves in active and passive periodic structures: A review. Proc. IEEE 1976, 64, 1666–1698.
[CrossRef]

14. Babicheva, V.E.; Lavrinenko, A.V. Plasmonic modulator optimized by pattering of active layer and tuning
permittivity. Opt. Commun. 2012, 285, 5500–5507. [CrossRef]

15. Hope, L.L. Theory of optical grating couplers. Opt. Commun. 1972, 11, 2234–2241. [CrossRef]
16. Harris, J.A.; Winn, R.K.; Dalgoutte, D.G. Theory and design of periodic couplers. Appt. Opt. 1972, 11,

2234–2241. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/PROC.1964.2740
http://dx.doi.org/10.1139/p65-032
http://dx.doi.org/10.1109/PROC.1973.9003
http://dx.doi.org/10.1109/LAWP.2015.2492678
http://dx.doi.org/10.1109/LAWP.2018.2856371
http://dx.doi.org/10.1109/LMWC.2017.2701308
http://dx.doi.org/10.1109/TMTT.2017.2764091
http://dx.doi.org/10.1109/LMWC.2018.2824563
http://dx.doi.org/10.1109/LMWC.2018.2858228
http://dx.doi.org/10.1364/OL.39.002990
http://www.ncbi.nlm.nih.gov/pubmed/24978255
http://dx.doi.org/10.1109/LMWC.2018.2832013
http://dx.doi.org/10.1109/PROC.1976.10409
http://dx.doi.org/10.1016/j.optcom.2012.07.117
http://dx.doi.org/10.1016/0030-4018(72)91000-0
http://dx.doi.org/10.1364/AO.11.002234
http://www.ncbi.nlm.nih.gov/pubmed/20119317


Symmetry 2019, 11, 805 12 of 12

17. Stolland, H.; Yariv, A. Coupled-mode analysis of periodic dielectric waveguides. Opt. Commun. 1973, 8, 5–8.
[CrossRef]

18. Peng, S.T.; Tamir, T.; Bertoni, H.L. Theory of periodic dielectric waveguides. IEEE Trans. Microw. Theory Tech.
1975, 23, 123–133. [CrossRef]

19. Peng, S.T. Rigorous formulation of scattering and guidance by dielectric grating waveguides: General case
of oblique incidence. J. Opt. Soc. Am. A 1989, 6, 1869–1883. [CrossRef]

20. Lewis, L.R.; Hessel, A. Propagation characteristics of periodic arrays of dielectric slabs. IEEE Trans. Microw.
Theory Tech. 1971, 19, 276–286. [CrossRef]

21. Peng, S.T. Rigorous analysis of guided waves in doubly periodic structures. J. Opt. Soc. Am. A 1990, 7,
1448–1456. [CrossRef]

22. Hadjicostas, G.; Butler, J.K.; Evans, G.A.; Carlson, N.W.; Amantea, R. A numerical investigation of wave
interaction in dielectric waveguides with periodic surface corrugations. IEEE J. Quantum Electron. 1990, 26,
893–902. [CrossRef]

23. Bao, G. Finite element approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal.
1995, 32, 1155–1169. [CrossRef]

24. Dossou, K.; Byrne, M.A.; Botten, L.C. Finite Element Computation of Grating Scattering Matrices and
Application to Photonic Crystal Band Calculations. J. Comput. Phys. 2006, 219, 120–143. [CrossRef]

25. Valerio, G.; Sipus, Z.; Grbic, A.; Quevedo-Teruel, O. Accurate equivalent-circuit descriptions of thin
glide-symmetric corrugated metasurfaces. IEEE Trans. Antennas Propag. 2017, 65, 2695–2700. [CrossRef]

26. Wexler, A. Solution of waveguide discontinuities by modal analysis. IEEE Trans. Microw. Theory Tech. 1967,
15, 508–517. [CrossRef]

27. Clarricoats, P.J.B.; Slinn, K.R. Numerical method for the solution of waveguide-discontinuity problems.
Electron. Lett. 1966, 2, 226–228. [CrossRef]

28. Valerio, G.; Ghasemifard, F.; Sipus, Z.; Quevedo-Teruel, O. Glide-Symmetric All-Metal Holey Metasurfaces
for Low-Dispersive Artificial Materials: Modeling and Properties. IEEE Trans. Microw. Theory Tech. 2018, 66,
3210–3223. [CrossRef]

29. Ghasemifard, F.; Norgren, M.; Quevedo-Teruel, O.; Valerio, G. Analyzing Glide-Symmetric Holey
Metasurfaces Using a Generalized Floquet Theorem. IEEE Access 2018, 6, 71743–71750. [CrossRef]

30. Okamoto, K. Fundamentals of Optical Waveguides, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0030-4018(73)90168-5
http://dx.doi.org/10.1109/TMTT.1975.1128513
http://dx.doi.org/10.1364/JOSAA.6.001869
http://dx.doi.org/10.1109/TMTT.1971.1127501
http://dx.doi.org/10.1364/JOSAA.7.001448
http://dx.doi.org/10.1109/3.55531
http://dx.doi.org/10.1137/0732053
http://dx.doi.org/10.1016/j.jcp.2006.03.029
http://dx.doi.org/10.1109/TAP.2017.2677923
http://dx.doi.org/10.1109/TMTT.1967.1126521
http://dx.doi.org/10.1049/el:19660193
http://dx.doi.org/10.1109/TMTT.2018.2829885
http://dx.doi.org/10.1109/ACCESS.2018.2882056
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Analysis of Waveguides Containing Periodic Dielectric Structures 
	Results 
	Conclusions 
	References

