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Abstract: Two existence theorems of maximal elements in H-spaces are obtained without compactness.
More accurately, we deal with the correspondence to be of L-majorized mappings in the setting of
noncompact strategy sets but merely requiring a milder coercive condition. As applications, we
obtain an equilibrium existence theorem for general abstract economies, a new fixed point theorem,
and give a sufficient condition for the existence of solutions of the eigenvector problem (EIVP).
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1. Introduction

In the last fifty years, the classical Arrow–Debreu result [1] on the existence of Walrasian equilibria
has been generalized in many directions. The existence of equilibrium in abstract economies with
compact strategy sets in Rn was proved in a seminar paper of Debreu [2], which extended the earlier
work of Nash in game theory. Since then, the equilibrium existence theory for various models have
been extensively studied by many authors. For example, there have been many generalizations of
Debreu’s theorem by Shafer and Sonnenschein [3], Borglin and Keiding [4], Gale and Mas-Colell [5],
Yannelis and Prabhakar [6], Ding and Tan [7], Tarafdar [8], Yuan and Tarafdar [9], Park [10], He and
Yannelis [11], and the references therein. In fact, Shafer and Sonnenschein [3] proved the equilibrium
existence of abstract economies for the case where preferences may not be total or transitive. Gale
et al. [5] gave in the same direction for competitive equilibria without ordered preferences. Borglin
and Keiding [4] proved a new existence theorem for a compact abstract economy with KF-majorized
preference correspondences. It is known that maximal element existence theorems are frequently used
as the main tool for proving the existence of equilibria, e.g., see [10–21]. Furthermore, in 1983, Yannelis
and Prabhakar [6] proved the existence of maximal elements with L-majorized correspondences over
compact subsets of topological linear spaces generalizing previous results.

In most of the known existence results of maximal elements and equilibria of abstract economies
or general games, the convexity assumption plays a crucial role. In fact, the strategy sets of agents,
the values of preference correspondences and constrained correspondences of agents may not have
convexity structure. Hence, it is quite reasonable and valuable to study existence theorems in general
nonconvex H-spaces. In addition, as in [12,16–18,22–24], most results on the existence theorems of
maximal elements require the underlying spaces to be compact. However, as in many applications,
maximal element existence theorems shall not need any compactness or paracompactness, such as
the recent work by Ding, Kim and Tan [25], who proved some existence theorems of equilibria
for noncompact abstract economies with L∗-majorized preferences. The objective of this paper
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is to relax the compactness by some coercive conditions, and then use them to derive existence
theorems of maximal elements, and establish several applications, containing general equilibria,
fixed points, and eigenvectors. The rest of the paper is structured as follows: Section 2 contains
some notation and definitions. In Section 3, we introduce some coercive conditions and prove two
maximal element existence theorems to the mapping of class L, and general L-majorized mappings,
respectively. Section 4 presents an equilibrium existence theorem for general abstract economies,
and, as an application, we obtain a new fixed point theorem via our coercive condition. In Section 5,
we give a sufficient condition for the existence of solutions of the eigenvector problem (EIVP). Finally,
Section 6 contains some discussion and technical remarks.

2. Materials and Methods

The continuity property of set-valued mappings and the compactness of underlying spaces are
crucial in solving many problems arising in mathematical analysis, and in particular the field of
optimization theory. A new method to avoid the continuity can be found in He and Yannelis [11],
who introduced the notion of “continuous inclusion property”. Indeed, they proved new equilibrium
existence results for games and economies with discontinuous and non-ordered preferences, together
with some new fixed point theorems on compact convex and metrizable subsets in locally convex
topological linear spaces. Their results shall be really different from our approach via coercive
conditions on noncompact strategy sets. It should be noted that many underlying spaces are not
compact in various economic situations, so it is important for us to encounter different types of
preferences and obtain some existence results for such correspondences in noncompact settings. The
mapping of class L and L-majorized set-valued mappings were first introduced by Yannelis and
Prabhakar [6] in 1983, which are useful for many applications in mathematical economics and usually
need not be continuous in many situations. In this paper, we shall not require regular continuity of
preferences and any compactness condition by involving various coercive conditions. Our motivation
is to present a novel regularization of coercive conditions for a given L-majorized set-valued mapping
acting on general H-spaces. Indeed, we shall introduce some coercive conditions and present two
mathematical existence theorems of maximal elements, which constitute the main technical tools used
to prove the existence results related to equilibria, fixed points, and eigenvectors. Those technical
theorems are quite general and may be useful to a wide field of problems in economics. The following
diagram shows the implications of the work:

H-space with covering polytopes + KKM theory + Coercive condition

⇓

Existence of maximal elements

⇓

Applications to equilibria, fixed points, and eigenvectors

We digest and list some definitions and notations as follows: for a nonempty set X, we denote the
set of all subsets of X by 2X, and the set of all nonempty finite subsets of X by 〈X〉. For a set-valued
mapping T : X −→ 2Y, we say that a point x ∈ X is a maximal element of T, if T(x) = ∅.

An H-space is a topological space X, together with a family {ΓD} of some nonempty contractible
subsets of X indexed by D ∈ 〈X〉 such that ΓD ⊂ ΓD′ whenever D ⊂ D′. The notion of H-space
was introduced in 1988 by Bardaro and Ceppitelli [22]. Since then, there have appeared numerous
applications and generalizations in the literature [8,16,18,19,23,25,26]. Given an H-space (X, {ΓD}),
a nonempty subset C of X is said to be H-convex if ΓD ⊂ C for all D ∈ 〈C〉. For a nonempty subset C of
X, we define the H-convex hull of C as H-coC :=

⋂{W|W is H-convex in X and C ⊂ W}. Moreover,
for any D ∈ 〈X〉, H-coD is called a polytope. We say that X is an H-space with covering polytopes,
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if for any subset C of X, and y ∈ H-coC, there is a D ∈ 〈C〉 such that the polytope H-coD contains
y. For example, a locally convex topological vector space X is an H-space with covering polytopes,
by setting ΓD =coD for all D ∈ 〈X〉.

We will encounter different kinds of preferences in various economic situations as follows: Let X
and Y be H-spaces, T : X −→ 2Y a set-valued mapping, and ϕ : X −→ Y be a single-valued mapping.

(1) T is said to be of class Lϕ, if

(a) for each x ∈ X, ϕ(x) /∈ H-coT(x),
(b) for each y ∈ Y, T−1(y) is open in X.

(2) A set-valued mapping Tx : X −→ 2Y is an Lϕ-majorant of T at x, if there exists an open
neighborhood Nx of x in X such that

(a) for each z ∈ X, T(z) ⊂ Tx(z),
(b) for each z ∈ Nx, ϕ(z) /∈ H-coTx(z),
(c) for each y ∈ Y, T−1

x (y) is open in X.

(3) T is said to be Lϕ-majorized if, for each x ∈ X with T(x) 6= ∅, there exists an Lϕ-majorant of T
at x.

Remark 1. It is worth mentioning that case ϕ : X −→ X is the identity mapping on X, with Y = X;
all notations above shall be simplified to be of class L, L-majorant, and L-majorized, respectively. It should be
noted that every set-valued mapping of class L is L-majorized. However, L-majorized mappings need not be of
class L, such as the set-valued mapping T : X −→ 2X , where X = [0, 1), defined by

T(z) :=

{
{y ∈ X | 0 ≤ y ≤ z2}, if z ∈ (0, 1),
∅, if z = 0.

In fact, for any x ∈ (0, 1), let Nx = X and define Tx : X −→ 2X by

Tx(z) :=

{
{y ∈ X | 0 ≤ y < z}, if z ∈ (0, 1).
∅, if z = 0.

Then, Tx is an L-majorant of T at x, and hence T is L-majorized. However, T is not of class L, since
T−1(y) is not open for each y ∈ (0, 1).

3. Results on Maximal Elements

In this section, we shall develop two general existence theorems of maximal elements, so that we
can apply them to abstract economies, together with a fixed point theorem, and eigenvector problems,
respectively. In order to establish our main results, we need two fundamental lemmas. The following
Lemma 1 is an extension of [6] (Lemma 5.1) in H-spaces.

Lemma 1. Let X be a topological space and Y be an H-space with covering polytopes. If T : X −→ 2Y is
a set-valued mapping with open lower sections, then the set-valued mapping H-coT : X −→ 2Y, defined by
H-coT(x) = H-co(T(x)), has open lower sections.

Proof. For any y0 ∈ Y, either (H-coT)−1(y0) = ∅ or (H-coT)−1(y0) 6= ∅. In case (H-coT)−1(y0) 6= ∅,
we take any x0 ∈ (H-coT)−1(y0). Thus,

y0 ∈ H-coT(x0) = H-co(T(x0)).
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Since Y is an H-space with covering polytopes, there is a finite subset D of T(x0) such that
the polytope H-coD contains y0. Say, D = {y1, y2, · · · , yn}. Then, for each i = 1, 2, · · · , n, we have
yi ∈ D ⊂ T(x0). It follows that x0 ∈ T−1(yi) for all i = 1, 2, · · · , n. Define U =

⋂n
i=1 T−1(yi).

By assumption, each lower section T−1(yi) is open, so that U is an open set containing x0. Now, for any
x ∈ U, we have x ∈ T−1(yi) for all i = 1, 2, · · · , n, and hence yi ∈ T(x). It follows that

y0 ∈ H-coD ⊂ H-coT(x).

Accordingly, x ∈ (H-coT)−1(y0). This yields that U ⊂ (H-coT)−1(y0), and therefore
(H-coT)−1(y0) must be open. Thus, the proof is complete.

The following version on the KKM theorem is an extension of Ding and Tan [7], and some
generalizations of [10,13,27,28], due to Chang and Ma [13] (Theorem 1):

Lemma 2. Let (X, {ΓD}) be an H-space. If F(x) is a compactly closed (or open) subset of X for all x ∈ X such
that ΓA ⊂ F(A) for each A ∈ 〈X〉, then the family {F(x) | x ∈ X} has the finite intersection property.

We now establish our first existence theorem of maximal elements, which is a generalization of
the earlier Fan version [29] (Theorem 4).

Theorem 1. Let (X, {ΓD}) be an H-space with covering polytopes, C be a nonempty H-convex subset of X,
and T : C −→ 2X be a set-valued mapping of class L. If there exists a nonempty compact subset K of C such
that K ∩ H-coT(x) 6= ∅ for all x ∈ C \ K, then T has a maximal element in C.

Proof. Assume that T(x) 6= ∅ for all x ∈ C so that H-coT(x) 6= ∅. Since T is of class L, it has
open lower sections. By Lemma 1, (H-coT)−1(x) is open for all x ∈ X. Define a set-valued mapping
F : C −→ 2C by F(x) := C \ (H-coT)−1(x) for all x ∈ C. Then, each F(x) is closed in C. Now, we claim
that

⋂
x∈K F(x) ⊂ K. In fact, if there is some y ∈ ⋂x∈K F(x) but y /∈ K, then

y ∈
⋂

x∈K
F(x) =

⋂
x∈K

(
C \ (H-coT)−1(x)

)
= C \

⋃
x∈K

(H-coT)−1(x).

It follows that K ∩ H-coT(y) = ∅, which contradicts with our assumption. Thus,
⋂

x∈K F(x) is a
closed subset of the compact set K, so that

⋂
x∈K F(x) is also compact. Since H-coT(x) 6= ∅ for all x ∈ C,

we can take a yx ∈ H-coT(x), so that x ∈ (H-coT)−1(yx). This shows that C =
⋃

x∈C(H-coT)−1(yx).
Therefore, ⋂

x∈C
F(x) =

⋂
x∈C

(
C \ (H-coT)−1(x)

)
= C \

⋃
x∈C

(H-coT)−1(x) = ∅.

This implies that F cannot be a KKM-mapping by Lemma 2; that is, there exists a finite subset
A = {x1, x2, · · · , xn} of C such that ΓA 6⊂ F(A). Let z ∈ ΓA \ F(A). Since C is H-convex and contains
A, we have

z ∈ ΓA \ F(A) ⊂ C \
n⋃

i=1

F(xi) =
n⋂

i=1

(H-coT)−1(xi).

Consequently, z ∈ (H-coT)−1(xi) for each i = 1, 2, · · · , n. Equivalently, xi ∈ H-coT(z) for each
i = 1, 2, · · · , n. It follows that z ∈ ΓA ⊂ H-coA ⊂ H-coT(z), which contradicts the assumption that T
is of class L. Thus, the proof is complete.
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Remark 2. Whenever C is compact and H-convex, the coercive condition in Theorem 1 obviously holds by
taking K = C. Therefore, Theorem 1 improves the result of [18] (Theorem 2). In particular, when the coercive
condition becomes that “there exists a nonempty compact subset K of C and y0 ∈ K such that y0 ∈ H-coT(x)
for all x ∈ C \ K,” the mapping of class L can be relaxed as L-majorized mappings. Next, the existence theorem
deals with the case of L-majorized mappings.

Theorem 2. Let (X, {ΓD}) be an H-space with covering polytopes, C be a nonempty H-convex subset of X,
and T : C −→ 2C be an L-majorized set-valued mapping. If there exists a nonempty compact subset K of C and
y0 ∈ K such that y0 ∈ H-coT(x) for all x ∈ C \ K, then T has a maximal element in C.

Proof. Assume that T(x) 6= ∅ for all x ∈ C. Since T is L-majorized, for each x ∈ C, there exists an
L-majorant Tx : C −→ 2C and an open neighborhood Nx of x in C such that

(a) T(z) ⊂ Tx(z) for all z ∈ X;
(b) z /∈ H-coTx(z) for all z ∈ Nx;
(c) T−1

x (y) is open in C for each y ∈ C.

Note that the family {Nx | x ∈ K} forms an open covering of K. By the compactness of K, there is
a finite subcover {Nxi | i = 1, 2, · · · , n}. Let U =

⋃n
i=1 Nxi . Then, U is open in C and K ⊂ U ⊂ C. Note

that, by condition (c) and Lemma 1, the set (H-coTxi )
−1(y) is open for each y ∈ C. Now, we define

S : C −→ 2C by

S(z) :=

{ ⋂n
i=1 Si(z), if z ∈ U,
{y0}, if z ∈ C \U,

where Si : U −→ 2C is the restriction of H-coTxi on U for each i = 1, 2, · · · , n. We claim that S is a
set-valued mapping of class L. Indeed, for each y ∈ C, in case y 6= y0, we have

S−1
i (y) = {z ∈ U | y ∈ Si(z)} = {z ∈ U | y ∈ H-coTxi (z)} = U ∩ (H-coTxi )

−1(y),

which is open in C. Therefore, the set

S−1(y) = {z ∈ C | y ∈ S(z)}
= {z ∈ U | y ∈ S(z)} ∪ {z ∈ C \U | y ∈ S(z)}
= {z ∈ U | y ∈ S(z)}

=

{
z ∈ U | y ∈

n⋂
i=1

Si(z)

}

= U ∩
(

n⋂
i=1

S−1
i (y)

)

is also open in C. In case y = y0, by assumption and (a), for all z ∈ C \ K, we have

y0 ∈ H-coT(z) ⊂ H-coTxi (z) for each i = 1, 2, · · · , n.



Symmetry 2019, 11, 789 6 of 14

Thus, C \ K ⊂ (H-coTxi )
−1(y0) so that C \ U ⊂ (H-coTxi )

−1(y0) for each i = 1, 2, · · · , n.
Therefore,

S−1(y0) = {z ∈ C | y0 ∈ S(z)}
= {z ∈ U | y0 ∈ S(z)} ∪ {z ∈ C \U | y0 ∈ S(z)}

=

(
U ∩ (

n⋂
i=1

S−1
i (y0))

)
∪ (C \U)

=

(
U ∩ (

n⋂
i=1

(H-coTxi )
−1(y0))

)
∪ (C \U)

=

(
n⋂

i=1

(H-coTxi )
−1(y0)

)
∪ (C \U)

=
n⋂

i=1

(H-coTxi )
−1(y0),

which is also open in C. Furthermore, for any z ∈ C = U ∪ (C \U), in case z ∈ U, then z ∈ Nxi

for some i, so that z /∈ H-coTxi (z) = Si(z). Since H-coS(z) ⊂ H-coTxi (z) = Si(z), it follows that
z /∈ H-coS(z). On the other hand, if z ∈ C \ U, then z ∈ C \ K, and hence z 6= y0. Therefore,
z /∈ {y0} = S(z) = H-coS(z). From the above illustration, S is a set-valued mapping of class L.

Next, we want to show that y0 ∈ H-coS(z) for all z ∈ C \ K. In fact, we notice that C \ K =

(C \U) ∪ (U \ K). If z ∈ C \U, then S(z) = {y0}, and hence y0 ∈ {y0} = H-coS(z). On the other
hand, if z ∈ U \ K, we note that for each i = 1, 2, · · · , n,

T(z) ⊂ Txi (z) ⊂ Si(z) for all z ∈ U.

This yields that T(z) ⊂ S(z) for all z ∈ U. According to our assumption, we have y0 ∈ H-coT(z) ⊂
H-coS(z). The above information implies that the coercive hypothesis in Theorem 1 is satisfied by
taking C0 = {y0}. Thus, S has a maximal element x̂ ∈ C; that is, S(x̂) = ∅. This implies that x̂ ∈ U
and T(x̂) = ∅, since T(x̂) ⊂ S(x̂), which is a contradiction. Therefore, we complete the proof.

4. Results on Abstract Economies

Let I be any (finite or infinite) set of agents. For each α ∈ I, let Cα be a strategy set in a topological
space Xα, and C := ∏α∈I Cα. An abstract economy is defined as a family of order quadrauples
Ω := (Cα, Aα, Bα, Pα)α∈I such that, for each α ∈ I, Aα, Bα : C −→ 2Cα are constraint correspondences,
and Pα : C −→ 2Cα is a preference correspondence. An equilibrium of Ω is a point x̂ ∈ C such that,
for each α ∈ I, x̂α = πα(x̂) ∈ clBα(x̂) and Aα(x̂) ∩ Pα(x̂) = ∅, where πα : C −→ Cα denotes the
projection mapping from C onto Cα. For more details on this, see Gale and Mas-Colell [5], and Shafer
and Sonnenschein [3]. It is known that, if (Xα,Γα

Dα )α∈I is a family of H-spaces, Tarafder [8,26] has
shown that the product space X = ∏α∈I Xα with product topology is also an H-space, together with
the family {ΓD | D ∈ 〈X〉}, where ΓD is defined by ΓD = ∏α∈I Γα

πα(D)
. In addition, the product of

H-convex subsets is also H-convex. For two correspondences S, T : C −→ 2Cα , the correspondence
S ∩ T : C −→ 2Cα is defined by (S ∩ T)(x) = S(x) ∩ T(x) for each x ∈ C.

In this sequel, we shall prove an existence theorem of equilibria for the abstract economy
Ω := (Cα, Aα, Bα, Pα)α∈I . We first establish a fundamental lemma as follows.

Lemma 3. Let Xα be an H-space with covering polytopes for each α ∈ I, and X = ∏α∈I Xα. Suppose that, for
each α ∈ I, the following assumptions are satisfied:

(1) Cα is an H-convex subset of Xα, and Kα is a nonempty compact subset of Cα;
(2) Pα : C −→ 2Cα is Lπα -majorized, where C := ∏α∈I Cα;
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(3) the set Dα := {x ∈ C| Pα(x) 6= ∅} is open in C;
(4) there exists yα ∈ Kα such that yα ∈ H-coPα(x) for all x ∈ C \ K, where K := ∏α∈I Kα.

Then, there exists an x̂ such that Pα(x̂) = ∅ for all α ∈ I.

Proof. For each x ∈ C, we let I(x) := {α ∈ I | Pα(x) 6= ∅}. Note that, if I(x) = ∅, then Pα(x) = ∅ for
all α ∈ I. Therefore, this leads us to define a set-valued mapping T : C −→ 2C by

T(x) :=

{ ⋂
α∈I(x) Sα(x), if I(x) 6= ∅,

∅, , if I(x) = ∅,

where Sα(x) := ∏j∈I,j 6=α Cj
⊗

Pα(x) = {(xj)ı∈I | xj ∈ Cj for j 6= α and xα ∈ Pα(x)} for each x ∈ C.
We claim that T satisfies all hypotheses and the coercive condition in Theorem 2. First, we note that
K := ∏α∈I Kα is a compact subset of C, since each Kα is compact. Next, for each x ∈ C with I(x) 6= ∅,
we have Sα(x) 6= ∅ for all α ∈ I(x). By assumption (2), for each fixed α ∈ I(x), there exists an
Lπα -majorant Tα of Pα at x and an open neighborhood Nα of x in C such that

(a) Pα(z) ⊂ Tα(z) for each z ∈ C;
(b) πα(z) /∈ H-coTα(z) for each z ∈ Nα;
(c) T−1

α (y) is open in C for all y ∈ Cα.

By assumption (3), we may assume that Nα ⊂ Dα, so that Pα(z) 6= ∅ for all z ∈ Nα. Now, we
define Tx : C −→ 2C by Tx(z) = π−1

α (Tα(z)) for z ∈ C. Then, we can show that Tx is an L-majorant
of T at x. Indeed, for each z ∈ C, if y ∈ T(z), then y ∈ ⋂α∈I(z) Sα(z) =

⋂
α∈I(z) ∏j∈I,j 6=α Cj

⊗
Pα(z). It

follows that πα(y) ∈ Pα(z) ⊂ Tα(z) by (a). Thus, y ∈ π−1
α (Tα(z)) = Tx(z), and so T(z) ⊂ Tx(z) for

all z ∈ C. Next, for each z ∈ Nα, by (b), πα(z) /∈ H-coTα(z), and hence z /∈ π−1
α (H-coTα(z)). Since

H-coTx(z) ⊂ π−1
α (H-coTα(z)), it follows that z /∈ H-coTx(z). Furthermore, for each y ∈ C, we have

T−1
x (y) = T−1

α (πα(y)), which is open in C by (c). Thus, Tx is an L-majorant of T at x, and hence T
is L-majorized. In addition, by assumption (4), we can take y := (yα) ∈ K, so that y ∈ H-coT(x)
for all x ∈ C \ K. It follows from Theorem 2 that there is a maximal point x̂ of T; that is, T(x̂) = ∅,
which implies Pα(x̂) = ∅ for all α ∈ I.

Next, we use the above Lemma to establish our main existence theorem, which improves previous
results of Yuan and Tarafdar [9] (Theorem 4.1) and Kim [24] (Theorem 3), and answers a question
posed by Yannelis and Prabhakar [6].

Theorem 3. Let Ω := (Cα, Aα, Bα, Pα)α∈I be an abstract economy, where Cα is an H-convex subset of an
H-space Xα with covering polytopes for each α ∈ I. Suppose that, for each α ∈ I, there is a nonempty compact
subset Kα of Cα such that

(1) Aα(x) 6= ∅ and H-coAα(x) ⊂ Bα(x) for each x ∈ C, where C := ∏α∈I Cα;
(2) the mapping Aα : C −→ 2Cα has open lower sections;
(3) the mapping clBα : C −→ 2Cα is upper semicontinuous;
(4) the mapping Aα ∩ Pα : C −→ 2Cα is Lπα -majorized;
(5) the set Dα := {x ∈ C | Aα(x) ∩ Pα(x) 6= ∅} is open in C;
(6) there exists yα ∈ Kα such that yα ∈ H-co(Aα ∩ Pα)(x) for all x ∈ C \ K, where K := ∏α∈I Kα.

Then, there exists an equilibrium of Ω.

Proof. For each α ∈ I, the set Eα := {x ∈ C | xα ∈ clBα(x)} is closed in C, since clBα is upper
semicontinuous by (3). Define a set-valued mapping Qα : C −→ 2Cα by

Qα(x) :=

{
(Aα ∩ Pα)(x), if x ∈ Eα,
H-coAα(x), , if x /∈ Eα.
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We shall show that all the hypotheses of Lemma 3 hold to the family {Qα | α ∈ I}. First, for each
α ∈ I, the set

{x ∈ C | Qα(x)} = {x ∈ Eα | Qα(x) 6= ∅} ∪ {x ∈ C \ Eα | Qα(x) 6= ∅}
= {x ∈ Eα | (Aα ∩ Pα)(x) 6= ∅} ∪ (C \ Eα)

= (Eα ∩ Dα) ∪ (C \ Eα)

= Dα ∪ (C \ Eα)

is open in C by (5).
Furthermore, for x ∈ C with Qα(x) 6= ∅, we consider the following two cases. In case x /∈ Eα,

we take Tα = H-coAα. Then, Qα(z) ⊂ Tα(z) for all z ∈ C; and T−1
α (y) is open in C for each y ∈ Cα,

by using (2) and Lemma 1. Notice that the set Nα := C \ Eα is an open neighborhood of x in C.
Furthermore, for all z ∈ Nα, z /∈ Eα, and hence zα /∈ clBα(z). This implies that πα(z) = zα /∈ H-coTα(z),
by (1). Therefore, Tα is an Lπα -majorant of Qα at x.

On the other hand, if x ∈ Eα, then Qα(x) = (Aα ∩ Pα)(x). By (4), there exists an Lπα -majorant Sα

of Aα ∩ Pα at x; that is, there is an open neighborhood Nα of x in C such that

(a) (Aα ∩ Pα)(z) ⊂ Sα(z) for each z ∈ C;
(b) πα(z) /∈ H-coSα(z) for each z ∈ Nα;
(c) S−1

α (y) is open in C for all y ∈ Cα.

By (5), we may assume that Nα ⊂ Dα, so that Aα(z) ∩ Pα(z) 6= ∅ for all z ∈ Nα. Now, we define
Tα : C −→ 2Cα by

Tα(z) :=

{
H-coAα(z) ∩ Sα(z), if z ∈ Eα,
H-coAα(z), if z /∈ Eα.

By (a), we see Qα(z) ⊂ Tα(z) for each z ∈ C. In addition, πα(z) /∈ H-coTα(z) for each z ∈ Nα, by
(1) and (b). Moreover, for each y ∈ Cα, the set

T−1
α (y) = {z ∈ C | y ∈ Tα(z)}

= {z ∈ Eα | y ∈ Tα(z)} ∪ {z ∈ C \ Eα | y ∈ Tα(z)}
= {z ∈ Eα | y ∈ H-coAα(z) ∩ Sα(z)} ∪ {z ∈ C \ Eα | y ∈ H-coAα(z)}

=
(

Eα ∩ (H-coAα)
−1(y) ∩ S−1

α (y)
)
∪
(
(C \ Eα) ∩ (H-coAα)

−1(y)
)

=
(

S−1
α (y) ∪ (C \ Eα)

)
∩ (H-coAα)

−1(y)

is open in C, by (c) and Lemma 1. This shows that Tα is an Lπα -majorant of Qα at x. Accordingly,
we conclude that Qα is Lπα -majorized. In addition, for each α ∈ I, by assumption (6), there is yα ∈ Kα

such that yα ∈ H-co(Aα ∩ Pα)(x) ⊂ H-coQα(x) for all x ∈ C \ K. It follows from Lemma 3 that there
exists x̂ ∈ K such that Qα(x̂) = ∅. Since Aα(x̂) 6= ∅ by (1), we have x̂ ∈ Eα, and hence x̂α ∈ clBα(x̂)
and Aα(x̂) ∩ Pα(x̂) = Qα(x̂) = ∅; that is, x̂ is an equilibrium of Ω.

Remark 3. Theorem 3 generalizes Yannelis and Prabhakar [6], Kim [24], and Yuan and Tarafdar [9] in
several ways:

(1) We focus on the setting of general H-spaces without any linear or convex structure;
(2) The set I of agents can be any infinite set;
(3) The strategy set Cα need not be compact or metrizable;
(4) The preference correspondence Pα need not be of class L, and does not require the usual lower

semicontinuous assumptions, such as the earlier works [20] (Theorem 3 and its Corollary) and [9]
(Theorem 6.1).
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Here, we can construct an applicable example, so that the abstract economy Ω still has an
equilibrium point, even though the correspondences are not lower semicontinuous and the strategy
sets are not compact.

Example 1. Let the strategy set Cα = [0, ∞), with α ∈ I = {1, 2}, Q denote the set of rational numbers,
and the correspondences Aα, Bα, Pα : C1 × C2 −→ 2Cα be defined as follows:

A1(x1, x2) :=


(0, 1), if 0 ≤ x1 < x2 < 1 and x1 /∈ Q or x2 /∈ Q

( x1+x2
2 , 1), if 0 ≤ x1 < x2 < 1 and x1, x2 ∈ Q
{0}, if 0 ≤ x2 ≤ x1 < 1
(0, 2), if x1 ≥ 1 or x2 ≥ 1

,

A2(x1, x2) :=


(0, 1), if 0 ≤ x2 < x1 < 1 and x1 /∈ Q or x2 /∈ Q

( x1+x2
2 , 1), if 0 ≤ x2 < x1 < 1 and x1, x2 ∈ Q
{0}, if 0 ≤ x1 ≤ x2 < 1
(0, 2), if x1 ≥ 1 or x2 ≥ 1

,

whereas B1(x1, x2) = B2(x1, x2) = [0, ∞) for each (x1, x2) ∈ C1 × C2, and

P1(x1, x2) :=



( x1+x2
2 , 1), if 0 ≤ x1 < x2 < 1 and x1 /∈ Q or x2 /∈ Q
(0, 1), if 0 ≤ x1 < x2 < 1 and x1, x2 ∈ Q

∅, if (x1, x2) ∈ S
{0}, if 0 ≤ x2 < x1 < 1
{1}, if x1 > 1 or x2 > 1

,

P2(x1, x2) :=



( x1+x2
2 , 1), if 0 ≤ x2 < x1 < 1 and x1 /∈ Q or x2 /∈ Q
(0, 1), if 0 ≤ x2 < x1 < 1 and x1, x2 ∈ Q

∅, if (x1, x2) ∈ S
{0}, if 0 ≤ x1 < x2 < 1
{1}, if x1 > 1 or x2 > 1

.

Here, the set S := {(x1, x2)| x1 = x2 or x1 = 1 or x2 = 1} ∩ ([0, 1]× [0, 1]) . Then, A1 is not
lower semicontinuous at ( 1

2 , 1√
3
) and A2 is not lower semicontinuous at ( 1√

3
, 1

2 ). Similarly, both P1 and P2

are not lower semicontinuous. It is easy to check that each set Dα in Theorem 3 is open in C := C1 × C2,
since it is the complement of the closed set S. In addition, Aα ∩ Pα is an Lπα -majorant of itself by the fact
πα(x1, x2) = xα /∈ H-co(Aα(x1, x2) ∩ Pα(x1, x2)) for each α = 1, 2. Furthermore, the coercive condition
holds clearly by taking K := [0, 1]× [0, 1] and y = (1, 1).

An H-space X is called an l.c.-space, if X is an uniform space with uniformity U having a base B of
symmetric entourages such that, for each V ∈ B, the set V(E) := {y ∈ X | (x, y) ∈ V for some x ∈ E}
is H-convex whenever E is H-convex. In the setting of l.c.-spaces, we now establish a new fixed point
theorem as follows:

Theorem 4. Let C be an H-convex subset of an l.c.-space X, and K be a nonempty compact subset of C. Suppose
that T : C −→ 2C is a continuous set-valued mapping with nonempty values and P : C −→ 2C is a set-valued
mapping such that

(1) the mapping T ∩ P : C −→ 2C is L-majorized;
(2) the set D := {x ∈ C | T(x) ∩ P(x) 6= ∅} is open in C;
(3) there exists y ∈ K such that C \ K ⊂ (H-co(T ∩ P))−1(y).

Then, the mapping x 7→ cl(H-coT(x)) has a fixed point x̂ ∈ C such that T(x̂) ∩ P(x̂) = ∅. Moreover, if
each image T(x) is closed and H-convex, then x̂ is a fixed point of T.
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Proof. Define two mappings A = T and B = H-coT. Notice that A has open lower sections,
since T is lower semicontinuous. In addition, since T is upper semicontinuous, clB is also upper
semicontinuous, due to Tarafdar and Watson [30]. In addition, by (3), we have y ∈ H-co(T ∩ P)(x)
for all x ∈ C \ K. Thus, applying Theorem 3, we have an equilibrium x̂ of the abstract economy
Ω := (C, A, B, P). That is, x̂ ∈ clB(x̂), and A(x̂) ∩ P(x̂) = ∅. Thus, x̂ is a fixed point of the mapping
x 7→ cl(H-coT(x)), and T(x̂) ∩ P(x̂) = ∅. Moreover, when T has closed and H-convex values,
x̂ ∈ clB(x̂) = cl(H-coT(x̂)) = T(x̂), and hence x̂ becomes a fixed point of T.

As a consequence of Theorem 4, we have a version of Tarafdar fixed point theorem [31]
(Theorem 2.1) as follows.

Corollary 1. Let C be an H-convex subset of an l.c.-space X, and K be a nonempty compact subset of C.
If T : C −→ 2C is a continuous set-valued mapping with nonempty and closed H-convex values such that
C \ K ⊂ T−1(y) for some y ∈ K, then T has a fixed point in C.

Proof. Assume that T has no fixed point. Then, x /∈ T(x) = H-coT(x) for each x ∈ C. In addition,
since T is lower semicontinuous, T−1(x) is open for each x ∈ C. Thus, T is of class L, and hence
T is L-majorized. Define the set-valued mapping P : C −→ 2C by P(x) = C for all x ∈ C, so
that the set D := {x ∈ C | T(x) ∩ P(x) 6= ∅} = C is open in C. Furthermore, it follows that
C \ K ⊂ T−1(y) = (H-co(T ∩ P))−1(y). Applying Theorem 4, we conclude that T has a fixed point in
C. This contradicts with our assumption, and therefore the proof is complete.

It is known that most fixed point theorems often require the strategy set to be compact; however,
Corollary 1 involves a kind of coercive condition to avoid such a constraint qualification. We can give
a simple example here.

Example 2. Let the set-valued mapping T : C −→ 2C, where C = (0, ∞), be defined by

T(x) :=

{
{y ∈ C | 0 < y ≤ x2}, if x ∈ (0, 1],
(0, 1], if x ∈ (1, ∞).

Then, T is continuous on C and satisfies the coercive condition in Corollary 1 by taking the compact set
K := (0, 1] and y = 1. Thus, T admits a fixed point.

5. Results on Eigenvector Problems

In what follows, K will denote the field of real numbers R or the field of complex numbers
C. Let (E, ‖·‖) be a normed linear space with origin θ. Let < : E −→ 2E be a set-valued mapping
defined by

<(v) := {rv | r ∈ K}, v ∈ E.

It is obvious that <(θ) = {θ} and <(v) is closed and convex for each v ∈ E. Let C be a nonempty
subset of E and f : C −→ E be a mapping. The kernel of f is the set ker f denoted by

ker f := {x ∈ C | f (x) = θ}.

A scalar λ ∈ K and a point v ∈ C with v 6= θ are called an eigenvalue and the corresponding
eigenvector of f , respectively, if f (v) = λv. In this section, we study the following eigenvector problem
(EIVP, for short):

(EIVP) Find v ∈ C with v 6= θ and λ ∈ K such that f (v) = λv.

The following result can be proved immediately from definitions.
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Lemma 4. Let (E, ‖·‖) be a normed linear space and C be a nonempty subset of E. Let the function µ : E −→ R
be defined by

µ(x) = d(x, C) := inf{‖x− a‖ | a ∈ C}, x ∈ E.

Then, µ is continuous. Furthermore, if C is convex, then µ is convex.

The following lemma is very crucial for our results.

Lemma 5. Let (E, ‖·‖) be a normed linear space with origin θ, C be a nonempty convex subset of E, <(x) :=
{rx | r ∈ K} for x ∈ C, and f : C −→ E be a continuous mapping. Then, for any y ∈ C, the set

{x ∈ C | d( f (y),<(x)) ≥ d( f (x),<(x))}

is a nonempty closed subset of C.

Proof. Let y ∈ C be fixed. Clearly, y ∈ {x ∈ C | d( f (y),<(x)) ≥ d( f (x),<(x))} 6= ∅. Following a
similar argument as in the proof of [32] (Theorem 3.2), we can prove its closedness.

By applying Theorem 1, we give a sufficient condition for the existence of the solution of
eigenvector problem.

Theorem 5. Let (E, ‖·‖) be a normed linear space with origin θ, C be a nonempty convex subset of E with
θ /∈ C, and f : C −→ E be an affine and continuous mapping satisfying ker f 6= ∅. Suppose that

(H) there exists a nonempty compact subset K of C such that for each x ∈ C \ K there exists y ∈ K such that
d( f (y),<(x)) < d( f (x),<(x)).

Then, the problem (EIVP) has a solution; that is, there exists v ∈ C with v 6= θ and λ ∈ K such that
f (v) = λv.

Proof. Let κ : C× C −→ R be defined by

κ(x, y) := d( f (y),<(x))− d( f (x),<(x)).

For each x ∈ C, since f is affine and continuous, by Lemma 4, the function y −→ κ(x, y) is convex
and continuous. Define T : C −→ 2C by

T(x) := {y ∈ C | κ(x, y) < 0}, x ∈ C.

Thus, T(x) is convex for each x ∈ C. Clearly, x /∈ T(x) = coT(x) for each x ∈ C. For each y ∈ C,
by Lemma 5, we know that

T−1(y) = {x ∈ C | κ(x, y) < 0}

is open in C. Hence, T is a set-valued mapping of class L. By our coercivity condition (H), there exists
a nonempty compact subset K of C such that K ∩ T(x) 6= ∅ for each x ∈ C \ K. Applying Theorem 1,
there exists v ∈ C such that T(v) = ∅, or, equivalently,

d( f (x),<(v)) ≥ d( f (v),<(v)) for all x ∈ C.

Clearly, v 6= θ due to θ /∈ C. Since ker f 6= ∅, there exists z ∈ C such that f (z) = θ. Hence, we get

d( f (v),<(v)) ≤ d( f (z),<(v)) = 0,

which deduces d( f (v),<(v)) = 0. By the closedness of <(v), we obtain f (v) ∈ <(v). Therefore, there
exists λ ∈ K such that f (v) = λv.
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Remark 4. It is worth mentioning that the coercivity condition (H) in Theorem 5 is different from the two
main coercivity conditions (H1) in [32] (Theorem 3.4) and (H2) in [32] (Theorem 4.1). Thus, Theorem 5 is not a
special case of any result in [32].

The following conclusion is immediate from Theorem 5.

Corollary 2. Let (E, ‖·‖) be a normed linear space with origin θ, C be a nonempty compact convex subset of E
with θ /∈ C, and f : C −→ E be an affine and continuous mapping satisfying ker f 6= ∅. Then, the problem
(EIVP) has a solution.

Here, we give an example illustrating Theorem 5 (or Corollary 2).

Example 3. Let E = R3 with the usual metric and K = R. Then, C := {(0, y, z) ∈ R3 | 1 ≤ y ≤ 5,−6 ≤
z ≤ 9} is a nonempty compact convex subset of E. Clearly, θ := (0, 0, 0) /∈ C. Define f : C −→ E by

f (x, y, z) := (x, 2y + z, 2y + z).

Then, f is affine and continuous. Let λ̂ := 3 and v̂ := (0, 1, 1) ∈ C. It is easy to see that f (v̂) = λ̂v̂, so
(λ̂, v̂) is a solution of problem (EIVP). On the other hand, since (0, 1,−2) ∈ C and f (0, 1,−2) = (0, 0, 0),
we have ker f 6= ∅. Hence, we can also show that the problem (EIVP) has a solution by using Theorem 5
(or Corollary 2).

6. Conclusions

In this paper, we prove two existence theorems of maximal elements in noncompact H-spaces.
More accurately, we deal with the correspondence to be of L-majorized mappings in the setting
of noncompact strategy sets, but merely require some milder coercive conditions. As applications,
we obtain an equilibrium existence theorem for general abstract economies, together with a new fixed
point theorem, and give a sufficient condition for the existence of solutions of the eigenvector problem
(EIVP). More precisely, we make the following remarks, so that the reader understands what we
consider to be.

(1) In order to prove our results, we introduce a new concept of H-spaces with covering polytopes,
and develop some technical tools. It is known that the mapping H-coT of a set-valued mapping
T in any locally convex topological vector space preserves the open lower sections. Lemma 1
indicates that such a property still holds in any H-space with covering polytopes. The reader
might study further some general topological space, such as G-spaces [27] and FC-spaces [33],
and offers some interesting property to avoid such an additional assumption.

(2) Many existence theorems of maximal elements do not need any compactness on the strategy
sets. In the literature, there are many ways to control the noncompact case. One classical way
is to consider various set-valued mappings, such as compact mapping or condensing mapping.
The other way is to offer a proper and novel coercive condition on the strategy set, such as [25]
(Theorem 4), [24] (Theorem 3), [34] (Theorem 3.3 and its corollary), and [35] (Theorem 3 and its
corollary), which are closely related to our coercive conditions.

(3) KKM theory and fixed point theorem are often related, and play crucial roles in proving the
existence of maximal elements. They are logically equivalent with various optimization problems,
such as minimax inequality, variational inequality, coincidence theorem, complementarity
problems, and equilibrium problems. As we know, most of the earlier works present existence
theorems of maximal elements by using fixed point theorems. However, we have an interesting
tour in this paper. In fact, we apply a general KKM theorem (see Lemma 2) of Chang and Ma [13]
(Theorem 1) to establish our existence theorems of maximal elements, and then obtain a general
fixed point theorem. More results on KKM theory can be found in [27,28,30,31,33].
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