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1. Introduction

For a, b, p, q ∈ Z, Horadam introduced in [1,2] the sequence Wn = Wn(a, b; p, q) by the
recurrence relation

Wn = pWn−1 + qWn−2, n ≥ 2

with the initial values W0 = a and W1 = b. This sequence is a generalization of several famous and
known sequences such as the Fibonacci, Lucas, Pell, and Pell–Lucas sequences. These sequences
in combinatorial number theory have been studied by many mathematicians for a long time.
These sequences are also of great importance in many subjects such as algebra, geometry, combinatorics,
approximation theory, statistics, and number theory. For more information, please refer to [1,3–5] and
closely related references therein.

In [3], the Horadam polynomials hn(x) = hn(x; a, b; p, q) were given by the recurrence relation

hn(x) = pxhn−1(x) + qhn−2(x), n ≥ 3

with the initial values h1(x) = a and h2(x) = bx. Some special cases of the Horadam polynomials
hn(x) are as follows:

1. for a = b = p = q = 1, the Horadam polynomials hn(x) = hn(x; 1, 1; 1, 1) are the Fibonacci
polynomials Fn(x);

2. for a = 2 and b = p = q = 1, the Horadam polynomials hn(x) = hn(x; 2, 1; 1, 1) become the Lucas
polynomials Ln−1(x);
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3. for a = q = 1 and b = p = 2, the Horadam polynomials hn(x) = hn(x; 1, 2; 2, 1) reduce to the Pell
polynomials Pn(x);

4. for a = b = p = 2 and q = 1, the Horadam polynomials hn(x) = hn(x; 2, 2; 2, 1) are the Pell–Lucas
polynomials Qn−1(x);

5. for a = b = 1, p = 2, and q = −1, the Horadam polynomials hn(x) = hn(x; 1, 1; 2,−1) are the
Chebyshev polynomials of the first kind Tn−1(x);

6. for a = 1, b = p = 2, and q = −1, the Horadam polynomials hn(x) = hn(x; 1, 2; 2,−1) become
the Chebyshev polynomials of the second kind Un−1(x).

The generating function of the Horadam polynomials is

a + xt(b− ap)
1− pxt− qt2 =

∞

∑
n=0

hn(x)tn. (1)

Some properties of the Horadam polynomials can be found in the papers [2,3].
It is well-known that a tridiagonal determinant a determinant whose nonzero elements locate

only on the diagonal and slots horizontally or vertically adjacent the diagonal. In other words, a square
determinant H = |hij|n×n is called a tridiagonal determinant if hij = 0 for all pairs (i, j) such that
|i − j| > 1. A determinant H = |hij|n×n is called a lower (or an upper, respectively) Hessenberg
determinant if hij = 0 for all pairs (i, j) such that i + 1 < j (or j + 1 < i, respectively). For more details,
see the papers [6–10]. There are many papers connecting the tridiagonal and Hessenberg determinants
with special numbers and polynomials in combinatorial number theory. For more information, please
see the papers [11–35] and closely related references therein.

In the paper, we will present a closed formula for the Horadam polynomials hn(x) in terms of a
tridiagonal determinant and, as applications of this newly-established closed formula for the Horadam
polynomials hn(x), derive closed formulas for the generalized Fibonacci polynomials Fn(s, t), the Lucas
polynomials Ln(x), the Pell–Lucas polynomials Qn(x), and the Chebyshev polynomials of the first
kind Tn(x) in terms of tridiagonal determinants.

2. A Lemma

In order to prove our main results, we need the following lemma.

Lemma 1 ([36], p. 40, Exercise 5). Let u(t) and v(t) 6= 0 be differentiable functions, let U(n+1)×1(t) be an
(n + 1)× 1 matrix whose elements uk,1(t) = u(k−1)(t) for 1 ≤ k ≤ n + 1, let V(n+1)×n(t) be an (n + 1)× n
matrix whose elements

vi,j(t) =


(

i− 1
j− 1

)
v(i−j)(t), i− j ≥ 0;

0, i− j < 0

for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n, and let |W(n+1)×(n+1)(t)| denote the lower Hessenberg determinant of the
(n + 1)× (n + 1) lower Hessenberg matrix

W(n+1)×(n+1)(t) =
[
U(n+1)×1(t) V(n+1)×n(t)

]
.

Then the nth derivative of the ratio u(t)
v(t) can be computed by

dn

d xn

[
u(t)
v(t)

]
= (−1)n

∣∣W(n+1)×(n+1)(t)
∣∣

vn+1(t)
. (2)

This lemma has been extensively applied in the papers [13,15–29,31–35] and closely related
references therein.
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3. Main Results and Their Proof

Our main results can be stated as the following theorem.

Theorem 1. The Horadam polynomials hn(x) for n ≥ 0 can be expressed as a tridiagonal determinant

hn(x) =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0 · · · 0 0
x(b− ap) −px(1

0) 1 0 · · · 0 0
0 −2q(2

0) −px(2
1) 1 · · · 0 0

0 0 −2q(3
1) −px(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −px(n−1

n−2) 1
0 0 0 0 · · · −2q( n

n−2) −px( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3)

Consequently, the Horadam numbers hn = hn(1) for n ∈ N can be expressed as

hn =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0 · · · 0 0
(b− ap) −p(1

0) 1 0 · · · 0 0
0 −2q(2

0) −p(2
1) 1 · · · 0 0

0 0 −2q(3
1) −p(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −p(n−1

n−2) 1
0 0 0 0 · · · −2q( n

n−2) −p( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4)

Proof. Applying u(t) = a+ xt(b− ap) and v(t) = 1− pxt− qt2 to the formula (2) in Lemma 1 leads to

dn

d tn

[
a + xt(b− ap)
1− pxt− qt2

]
=

(−1)n

(1− pxt− qt2)
n+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + xt(b− ap) 1− pxt− qt2 0 0 · · ·
x(b− ap) −(px + 2qt)(1

0) 1− pxt− qt2 0 · · ·
0 −2q(2

0) −(px + 2qt)(2
1) 1− pxt− qt2 · · ·

0 0 −2q(3
1) −(px + 2qt)(3

2) · · ·
...

...
...

...
. . .

0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·

· · · 0 0 0
· · · 0 0 0
· · · 0 0 0
· · · 0 0 0
. . .

...
...

· · · −(px + 2qt)(n−2
n−3) 1− pxt− qt2 ...

· · · −2q −(px + 2qt)(n−1
n−2) 1− pxt− qt2

· · · 0 −2q( n
n−2) −(px + 2qt)( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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→ (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0 · · · 0 0
x(b− ap) −px(1

0) 1 0 · · · 0 0
0 −2q(2

0) −px(2
1) 1 · · · 0 0

0 0 −2q(3
1) −px(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −px(n−1

n−2) 1
0 0 0 0 · · · −2q( n

n−2) −px( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
as t→ 0 for n ∈ N. By the Equation (1), we have

hn(x) =
1
n!

lim
t→0

dn

d tn

[
a + xt(b− ap)
1− pxt− qt2

]

=
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0 · · · 0 0
x(b− ap) −px(1

0) 1 0 · · · 0 0
0 −2q(2

0) −px(2
1) 1 · · · 0 0

0 0 −2q(3
1) −px(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −px(n−1

n−2) 1
0 0 0 0 · · · −2q( n

n−2) −px( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Consequently, the determinantal expression (3) is obtained.
It is easy to see that the determinantal expression 4 can be derived from setting x → 1 in the

Equation (3). The proof of Theorem 1 is thus complete.

4. Corollaries

In this section, we derive closed formulas for the generalized Fibonacci polynomials Fn(s, t),
the Lucas polynomials Ln(x), the Pell–Lucas polynomials Qn(x), and the Chebyshev polynomials of
the first kind Tn(x) in terms of tridiagonal determinants.

Corollary 1 ([21], Theorem 1.1). The generalized Fibonacci polynomials Fn(s, t) for n ≥ 0 can be expressed as

Fn(s, t) =
1
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 · · · 0 0 0
1 (1

0)s −1 0 · · · 0 0 0
0 2(2

0)t (2
1)s −1 · · · 0 0 0

0 0 2(3
1)t (3

2)s · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · (n−2

n−3)s −1 0
0 0 0 0 · · · 2(n−1

n−3)t (n−1
n−2)s −1

0 0 0 0 · · · 0 2( n
n−2)t ( n

n−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5)
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Consequently, the Fibonacci polynomials Fn(s) and the Fibonacci numbers Fn for n ∈ N can be expressed
respectively as

Fn(s) =
1
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 · · · 0 0 0
1 (1

0)s −1 0 · · · 0 0 0
0 2(2

0) (2
1)s −1 · · · 0 0 0

0 0 2(3
1) (3

2)s · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · (n−2

n−3)s −1 0
0 0 0 0 · · · 2(n−1

n−3) (n−1
n−2)s −1

0 0 0 0 · · · 0 2( n
n−2) ( n

n−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

Fn =
1
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 · · · 0 0 0
1 (1

0) −1 0 · · · 0 0 0
0 2(2

0) (2
1) −1 · · · 0 0 0

0 0 2(3
1) (3

2) · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · (n−2

n−3) −1 0
0 0 0 0 · · · 2(n−1

n−3) (n−1
n−2) −1

0 0 0 0 · · · 0 2( n
n−2) ( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. This follows from substituting x, a = 1, q = t, and letting p, b→ s in the Equation (3).

Corollary 2. The Lucas polynomials Ln(x) for n ≥ 0 can be expressed as a tridiagonal determinant

Ln(x) =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 · · · 0 0
−x −x(1

0) 1 0 · · · 0 0
0 −2(2

0) −x(2
1) 1 · · · 0 0

0 0 −2(3
1) −x(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −x(n−1

n−2) 1
0 0 0 0 · · · −2( n

n−2) −x( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6)

Proof. This follows from taking a = 2 and b = p = q = 1 in the Equation (3).

Corollary 3. The Pell–Lucas polynomials Qn(x) for n ≥ 0 can be represented in terms of a tridiagonal
determinant as

Qn(x) =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 · · · 0 0
−2x −2x(1

0) 1 0 · · · 0 0
0 −2(2

0) −2x(2
1) 1 · · · 0 0

0 0 −2(3
1) −2x(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −2x(n−1

n−2) 1
0 0 0 0 · · · −2( n

n−2) −2x( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (7)

Proof. This follows from setting a = b = p = 2 and q = 1 in the Equation (3).
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Corollary 4. The Chebyshev polynomials of the first kind Tn(x) for n ≥ 0 can be represented in terms of a
tridiagonal determinant as

Tn(x) =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
−x −2x(1

0) 1 0 · · · 0 0
0 2(2

0) −2x(2
1) 1 · · · 0 0

0 0 2(3
1) −2x(3

2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −2x(n−1

n−2) 1
0 0 0 0 · · · 2( n

n−2) −2x( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (8)

Proof. This follows from taking a = b = 1, p = 2, and q = −1 in the Equation (3).

5. Conclusions

The formula (2) in Lemma 1 is a very simple, direct, and effectual tool to represent a higher order
derivative of a function in terms of a determinant by regarding the function as a ratio of two functions.
Under some special conditions on the two functions constituting the ratio, the determinant can be a
special determinant such as the tridiagonal determinant, the Hessenberg determinant, and the like.

In analytic combinatorics and analytic number theory, to express a sequence of numbers or a
sequence of polynomials in terms of a special and simple determinant is an interesting and important
direction and topic. However, generally, to do this is not easy, and is even very difficult. However,
the formula (2) in Lemma 1 can make this work easier, simpler, and straightforward.

In this paper, by making use of the formula (2) in Lemma 1 again and considering the generating
function (1) of the Horadam polynomials hn(x) as a ratio of two functions a + xt(b − ap) and
1 − pxt − qt2, we present a closed formula (3) for the Horadam polynomials hn(x) in terms of
a tridiagonal determinant and, consequently, derive closed formulas (5)–(8) for the generalized
Fibonacci polynomials Fn(s, t), the Lucas polynomials Ln(x), the Pell–Lucas polynomials Qn(x),
and the Chebyshev polynomials of the first kind Tn(x) in terms of tridiagonal determinants.
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