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Abstract: Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m, be a nonempty subset of (X, d).
An operator T : ∪1≤i≤mΩi → ∪1≤i≤mΩi is called an alternative map if T(Ωj) ⊆ ∪i 6=jΩi,
j = 1, 2, . . . , m. In addition, if for any x, y ∈ ∪1≤i≤mΩi, there exists a constant α ∈ [0, 1) such
that d(Tx, Ty) ≤ αd(x, y) + (1− α)d(Ωj, Ωk) for some Ωj and Ωk ∈ {Ωi}m

i=1 with x ∈ Ωj and y ∈ Ωk,
then we call T an alternative contraction. Moreover, if (X, d) has an alternative UC property and T is
an alternative contraction, then the best proximity point of T exists.

Keywords: alternative map; best proximity point; convergence theorem

1. Introduction

When viewing the topic of n-sets methodology, it can be seen that many authors will often create
contractions that consider only a sequential pattern in their published findings.

However, Kirk et al. (2003) [1] , and Eldred and Veeramani [2] (2006)’s 2-sets methodologies
which both use a sequential pattern also allows for this paper’s newly proposed “alternative n-sets”
contraction to be defined as a special case in which we may now consider that the map of point does
not need to follow a sequential pattern. Additionally, this alternative n-sets contraction in conjunction
with Suzuki et al. [3] (2009)’s UC Property and Fan [4] (1969)’s Best Proximity Points allows for the
defining of a “New UC Condition” and non-sequential best proximity points.

It is this paper’s purpose to explore this idea of a non-sequential n-sets methodology and inspire
new possibilities with said idea.

Definition 1 (Kirk et al. [1]). Let (X, d) be a metric space, Ωi be nonempty subsets of X, i = 1, 2, . . . , m.
A map T : ∪m

i=1Ωi → ∪m
i=1Ωi is a cyclic map if T(Ωi) ⊆ Ωi+1 for i = 1, 2, . . . , m and Ωm+1 = Ω1.

The map proposed by Kirk et al. may follow a certain fixed path; that is, the point always is
sent by an operator T from one set to another sequentially. Moreover, Eldred and Veeramani gives a
contraction on the two subsets of X in 2006 as follows:

Definition 2 (Eldred and Veeramani [2]). Let (X, d) be a metric space, and let A and B be nonempty subsets
of X. A map T : A∪B→ A∪B is a cyclic map if T(A) ⊆ B and T(B) ⊆ A. A map T : A∪B→ A∪B

is a cyclic contraction if there exists α ∈ [0, 1) satisfying

d(Tx, Ty) ≤ αd(x, y) + (1− α)d(A,B),

for all x ∈ A, y ∈ B.

The contribution of Eldred and Veeramani was to create the cyclic contraction. Many authors
have created several different contractions by modifying Eldred and Veeramani; see e.g., [5–18]. In this
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paper, we define a new map which is concerned with the alternative n-sets methodology instead of
2-sets or sequentially n-sets as follows:

Definition 3. Let (X, d) be a metric space, Ωi, i = 1, 2, . . . , m be nonempty subsets of (X, d). A map
T : ∪m

i=1Ωi → ∪m
i=1Ωi is called an alternative map if T(Ωi) ⊆ ∪j 6=iΩi, for i = 1, 2, . . . , m. Next, T is defined

as an alternative contraction (AC) if T is an alternative map and there exists a constant α ∈ [0, 1) such that for
any x ∈ Ωj, y ∈ Ωk for some Ωj, Ωk ∈ {Ωi}m

i=1, the following condition holds:

d(Tx, Ty) ≤ αd(x, y) + (1− α)d(Ωj, Ωk).

Now, consider Suzuki et al. [3]’s UC condition:

Definition 4 (Suzuki et al. [3]). Let A and B be nonempty subsets of a metric space (X, d). Then (A, B)
is said to satisfy the property UC if the following holds: If {xn} and {x′n} are sequences in A and {yn} is a
sequence in B such that lim

n
d(xn, yn) = d(A,B) and lim

n
d(x′n, yn) = d(A,B), then lim

n
d(xn, x′n) = 0 holds.

The UC condition only takes into consideration Eldred and Veeramani [2]’s 2-sets model. Taking
into account the above alternative contraction, an alternative UC Condition may be created:

Definition 5 (Alternative UC condition). Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m be nonempty
subsets of X. If {Ωi}m

i=1 is said to satisfy the UC condition if the following holds. Let y1
n, yν

n ∈ Ar and
y2

n, y3
n, . . .,yν−1

n /∈ ∪j 6=rΩj for some positive integer ν ≥ 2. If lim
n→∞

d(y1
n, y2

n) = lim
n→∞

d(y2
n, y3

n) . . . =

lim
n→∞

d(yν−1
n , yν

n) = d(A,B) for some A,B ∈ {Ωi}m
i=1, then lim

n→∞
d(y1

n, yν
n) = 0.

One can easily see that a cyclic map is a special case of an alternative map.
Due to Fan [4], many authors publish their papers with their Best Proximity Points in [19–34]:

Definition 6. Let (X, d) be a metric space and A, B be nonempty subsets of X. If p ∈ X is called a best
proximity point of a cyclic map T if

d(Tp, p) = d(A,B).

Using the alternative UC condition and the alternative contraction, we may define new best
proximity points:

Definition 7. Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m, be nonempty subsets of X. If p ∈ X is
called a best proximity point of an alternative map T if there exists a positive integer ` (≥ 2), Ωrj ∈ {Ωi}m

i=1
for some j = 0, 1, 2, . . . , `− 1 and p ∈ Ωr0 , Tp ∈ Ωr1 , T2 p ∈ Ωr2 , . . . , and T`−1 p ∈ Ωr`−1 satisfying the
following three conditions:

1. p = T`p,
2. d(Ti p, Ti+1 p) = d(Ωri , Ωri+1), i = 0, 1, 2, . . . , `− 1 (Here T0 p = p),
3. d(Ωr0 , Ωr1) = d(Ωr1 , Ωr2) = · · · = d(Ωr`−1 , Ωr0).

The traditional cyclic map can be used to deal with the best proximity points of a model using
two mirrors. Based on Eldred and Veeramani [2]’s cyclic map, the cyclic contraction is formulated to
specify the path that the light will follow from one mirror to next. Suzuki et al. [32] proves that under
cyclic contraction and the UC condition, there will be certain points reflected many times between
the two mirrors; these points, called the best proximity points, are bounced infinite times, creating
particularly bright points. This paper’s alternative map changes the model from a two-mirror map
into one concerning numerous mirrors. In this model, after the light is reflected from a mirror, the light
will not necessarily return to said mirror and its path may diverge to any given point. According to the
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variance of the angle of refraction, it is impossible to know to which mirror the light will be reflected
to next. Nevertheless, in this article we prove when light is reflected many times under the conditions
of the proposed alternative contraction and the UC condition, in some mirrors, these points will be
become particularly shining points, or the best proximity points of the alternative map.

Theorem 5 proves that if T is an alternative contraction, some proximity points exist. Some
preparations presented in Sections 2 and 3 explain the reasoning behind this proof. Finally, we may
assert that the main results are not unusual since it can be applied to both compact space and complete
metric space.

2. Alternative Contractions

We rewrite the alternative maps in Definition 3 as if for any x ∈ Ωi, then Tx ∈ Ωj, for some j 6= i.
Next, we introduce two weaker conditions of the alternative contraction (AC): alternative decreasing
contraction (ADC) and alternative limiting contraction (ALC) as below.

Definition 8. Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m, be nonempty subsets of X.

• T is called an alternative decreasing contraction (ADC) if for any x ∈ ∪m
i=1Ωi, there exists a constant

α ∈ [0, 1) satisfying
d(T2x, Tx) ≤ αd(Tx, x) + (1− α)d(Ωj, Ωk),

with Tx ∈ Ωj, x ∈ Ωk for some different j, k.
• T is called an alternative limiting contraction (ALC) if the following two conditions holds: (i) if the limit

lim
i→∞

Tni x exists for some x ∈ ∪m
i=1Ωi and some subsequence {ni}∞

i=1 of N, then

lim
i→∞

d(T( lim
j→∞

Tnj x), Tni+1x) = 0 holds.

Lemma 1. AC is ADC.

Lemma 2. AC is ALC.

Proof. Assume that T : ∪m
i=1Ωi −→ ∪m

i=1Ωi is a AC. Since lim
i→∞

Tni x exists for some x ∈ ∪m
i=1Ωi and

some subsequence {ni}∞
i=1 of N by assumption, it follows that lim

i→∞
Tni x ∈ A for some A ∈ {Ωi}m

i=1.

In addition, since x ∈ ∪m
i=1Ωi, we have {Tni x}∞

i=1 ⊆ {Ωi}m
i=1. By the pigeonhole principle, we can

choose a subsequence {nij}
∞
j=1 ⊆ {ni}∞

i=1 and Ωs for some s such that T
nij x ∈ Ωs for all j ∈ N. Since

{nij}
∞
j=1 is a subsequence of {ni}∞

i=1 and lim
i→∞

Tni x exists, we have lim
j→∞

T
nij x exists and lim

j→∞
T

nij x =

lim
i→∞

Tnj x. It follows that

d(A, Ωs) ≤ d( lim
j→∞

Tnj x, T
nij x).

By definitions of alternative contractions, then

lim
i→∞

d(T( lim
i→∞

Tni x), Tni+1x) = lim
j→∞

d(T( lim
j→∞

Tnj x), Tnj+1x)

(by AC) = lim
j→∞

(
αd( lim

j→∞
Tnj x, Tnj x) + (1− α)d(A, Ωs)

)
≤ lim

j→∞

(
αd( lim

j→∞
Tnj x, Tnj x) + (1− α)d( lim

j→∞
Tnj x, T

nij x)
)

= lim
j→∞

d( lim
j→∞

Tnj x, Tnj x)

=0.
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Since the d(T( lim
j→∞

Tnj x), Tnj+1x) is always nonnegative, we have

lim
j→∞

d(T( lim
j→∞

Tnj x), Tnj+1x) = 0

Next, we introduce some properties of ADC as follows:

Theorem 1. Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m, nonempty subsets of X. If T : ∪m
i=1Ωi −→

∪m
i=1Ωi is an alternative contraction, then for any x ∈ ∪m

i=1Ωi,

lim
n→∞

d(Tn+1x, Tnx) exists.

Proof. Since T is an alternative map, for any x ∈ ∪m
k=1Ωk and any n ∈ N, then Tn−1x ∈ Ωi(n−1)(where

T0x , x), it follows that Tnx = T(Tn−1x) ∈ Ωi(n), it can be easily checked that Ωi(n−1) 6= Ωi(n).
Moreover, because T is an alternative contraction, there exists a constant α ∈ [0, 1) such that

d(Tn+1x, Tnx) = d(T2(Tn−1x), T(Tn−1x))

≤ αd
(

T
(

Tn−1x
)

, Tn−1x
)
+ (1− α)d(Ωi(n−1), Ωi(n))

= αd(Tnx, Tn−1x) + (1− α)d(Ωi(n−1), Ωi(n)). (1)

Furthermore, since Tnx ∈ Ωi(n) and Tn−1x ∈ Ωi(n−1), we have d(Ωi(n), Ωi(n−1)) ≤ d(Tnx, Tn−1x)
and it then

d(Tn+1x, Tnx) ≤ αd(Tnx, Tn−1x) + (1− α)d(Ωi(n), Ωi(n−1))

≤ αd(Tnx, Tn−1x) + (1− α)d(Tnx, Tn−1x)

= d(Tnx, Tn−1x),

for any n ∈ N. That is, {d(Tn+1x, Tnx)}n∈N is a decreasing sequence. Furthermore, since d(Tn+1x, Tnx)
is bounded below by “0", lim

n→∞
d(Tn+1x, Tnx) exists by the bounded monotone theorem.

Corollary 1. If T : ∪m
i=1Ωi −→ ∪m

i=1Ωi is an ADC, then for any x ∈ ∪m
i=1Ωi, {d(Tn+1x, Tnx)}n∈N is a

decreasing sequence.

3. Best Proximity Points

In this section, in order to give the definition of best proximity points of alternative maps,
we would remind the definition of a best proximal point of a cyclic map which is proposed by Fan and
we rewrite to be applied in the metric space below.

Definition 9 (Fan [4]). Let (X, d) be a metric space and A, B be nonempty subsets of X. If p ∈ X is called a
best proximity point of a cyclic map T if

d(Tp, p) = d(A,B).

Next, we would like to extend the above definitions to the alternative map as follows:

Definition 10. Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m, be nonempty subsets of X. If p ∈ X is
called a best proximity point of an alternative map T if there exists a positive integer ` (≥ 2), Ωrj ∈ {Ωi}m

i=1
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for some j = 0, 1, 2, . . . , `− 1 and p ∈ Ωr0 , Tp ∈ Ωr1 , T2 p ∈ Ωr2 , . . . , and T`−1 p ∈ Ωr`−1 satisfying the
following three conditions:

1. p = T`p,
2. d(p, Tp) = d(Ωr0 , Ωr1)

d(Tp, T2 p) = d(Ωr1 , Ωr2)

d(T2 p, T3 p) = d(Ωr2 , Ωr3)
...

d(T`−1 p, T`p) = d(Ωr`−1 , Ωr0),
3. d(Ωr0 , Ωr1) = d(Ωr1 , Ωr2) = · · · = d(Ωr`−1 , Ωr0).

From the above definitions, we know that the number ` is not unique. We give an example
as follows:

Example 1. Let Ω1 = {(x, y) ∈ R2|x− y ≥ 1, x + y ≥ 1}, Ω2 = {(x, y) ∈ R2|x− y ≤ 1, x + y ≥ 1},
Ω3 = {(x, y) ∈ R2|x− y ≤ −1, x + y ≤ −1}, Ω4 = {(x, y) ∈ R2|x + y ≤ −1, x− y ≥ −1}. Let the map
T as

T

(
x
y

)
=

1
2

(
0 1
−1 0

)τ {(
x
y

)
+

(
1
0

)
:

(
x
y

)
∈ R2

}
,

where τ is a random variable in (4N+ + 1) ∪ (4N+ + 2) ∪ (4N+ + 3).
At second, we will complete our works step by step as follows.

Theorem 2. Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m, be nonempty subsets of X. Let
T : ∪m

i=1Ωi −→ ∪m
i=1Ωi be an alternative contraction, then for any x ∈ ∪m

i=1Ωi, we have

lim
n→∞

d(Tn+1x, Tnx) ∈ {d(Ωi, Ωj)}1≤i 6=j≤m.

Proof. Assume that Tnx ∈ Ωi(n), for some i(n) ∈ I, this would imply that Ωi(n−1) 6= Ωi(n) for any n
because T is an alternative map. Moreover, since T is an alternative contraction, there exists a constant
α such that

d(Tn+2x, Tn+1x) = d
(

T
(

Tn+1x
)

, T (Tnx)
)

≤ αd(Tn+1x, Tnx) + (1− α) d(Ωi(n+1), Ωi(n)). (2)

Taking “lim sup” on both sides of inequality (2) and let c = lim
n→∞

d(Tn+1x, Tnx) by Theorem 1, it

follows that
c ≤ cα + (1− α) lim sup

n→∞
d(Ωi(n+1), Ωi(n)),

and then
c (1− α) ≤ (1− α) lim sup

n→∞
d(Ωi(n+1), Ωi(n)), (3)

dividing (1− α) on both sides of (3), we have

c ≤ lim sup
n→∞

d(Ωi(n+1), Ωi(n)). (4)

For any n ∈ N, since Tn+1x ∈ Ωi(n+1) and Tnx ∈ Ai(n), we have d(Ωi(n+1), Ωi(n)) ≤
d(Tn+1x, Tnx) and then

lim sup
n→∞

d(Ωi(n+1), Ωi(n)) ≤ lim sup
n→∞

d(Tn+1x, Tnx)(= c). (5)
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By (4) and (5), we have
c = lim sup

n→∞
d(Ωi(n+1), Ωi(n)).

Since the cardinal number of {Ωi}m
i=1 is “m", the choice of {d(Ωi, Ωj)}i 6=j is at most m(m+1)

2 and
we have lim sup

n→∞
d(Ωi(n+1), Ωi(n)) = d(Ωα, Ωβ) for some 1 ≤ α 6= β ≤ m. Hence

c = d(Ωα, Ωβ).

Lemma 3. Let (X, d) be a metric space, Ωi, i = 1, 2, . . . , m, be nonempty subsets of X and S be a subsequence
of N with cardinal number |S| = ∞. Consider an alternative map T : ∪m

i=1Ωi −→ ∪m
i=1Ωi and for any

x ∈ ∪m
i=1Ωi, we can find a subsequence {ni}∞

i=0 ⊆ S and some subsets Ωr0 , Ωr1 , . . ., Ωrη ∈ {Ωi}m
i=1 such that

Tni x ∈ Ωr0 Tni+1x ∈ Ωr1 , . . . , Tni+η x ∈ Ωrη , Tni+η+1x ∈ Ωr0

for some η ∈ N.(Please note that some of {Ωrj}
η
j=0 may be the same.)

Proof. Let I = {1, 2, . . . , m}, x ∈ ∪m
i=1Ωi, then {Tnx : n ∈ S} ⊆ ∪m

i=1Ωi. By the pigeonhole principle,
there exists S0 ⊆ S with |S0| = ∞ and r0 ∈ I such that Tni x ∈ Ωr0 for any ni ∈ S0.

Therefore, we have Tni+1x ∈ ∪j 6=r0 Ωj for any ni ∈ S0. Since the cardinal number of S0 is also
infinitely many and the cardinal number of {Ωj}j 6=r0 is only“m− 1", there exists r1 ∈ I − {r0} and
S1 ⊆ S0 with |S1| = ∞ such that Tni+1x ∈ Ωr1 for any ni ∈ S1.

Similarly, we have Tni+2x ∈ ∪j 6=r1 Ωj for any ni ∈ S2. Since the cardinal number of S1 is also
infinitely many and the cardinal number of {Ωj}j 6=r1 is only“m− 1", there exists r2 ∈ I − {r1} and
S2 ⊆ S1 with |S2| = ∞ such that Tni+2x ∈ Ωr2 for any ni ∈ S2. If Ωr2 = Ωr0 , let η = 1, the proof is
completed. Else, if Ωr2 6= Ωr0 , will continue the process.

By induction, there exists r3 ∈ I − {r2}, . . ., ru ∈ I − {ru−1}, . . . , rv ∈ I − {rv−1} and Sj+1 ⊆ Sj
with |Sj+1| = ∞ for j = 2, 3, . . . , v such that Tni+jx ∈ Ωrj for any ni ∈ Sj, j = 2, 3, . . . , v− 1. Continuing
the process until Ωrv ∈ {Ωrj}

v−1
j=0 , then stopping, say Ωrv = Ωru for some u ∈ {0, 1, 2, . . . , v− 1}. In this

way, we reset the index of Ωrj , j = u, u + 1, u + 2, . . . , v and let η = v− u, then

Tni x ∈ Ωr0 , Tni+1x ∈ Ωr1 , . . . , Tni+η x ∈ Ωrη .

Next, we would check that this process would finish by at most m + 1 steps. Consider the
(m + 1)-th step, since the steps of algorithms is already m + 1, that is, we produce m + 1 sets. However,
the cardinal number of {Ωi}m

i=1 is only m, and so, by the pigeonhole principle, there exists two
different rj, rk such that Ωrj = Ωrk . WLOG (Without loss of generalization) , we may assume that
j < k. Reset k− j− 1 as η and reset Ωrj as Ωr0 , reset Ωrj+1 as Ωr1 , reset Ωrj+2 as Ωr2 , . . . , reset Ωrk−1 as
Ωrk−j−1(= Ωrη ), reset Ωk as Ωη+1 = Ωr0 such that

Tniη x ∈ Ωr0 , Tniη+1x ∈ Ωr1 , . . . , Tniη+η x ∈ Ωrη , Tniη+η+1x ∈ Ωr0 .

The proof is completed.
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Lemma 4. Let (X, d) be a metric space, Ωi, i = 1, 2, . . . , m, be nonempty subsets of X and T be an alternative
contraction. Assume that there exists x ∈ X and a subsequence {nj} ⊆ N such that lim

j→∞
Tnj x exists.

Let lim
j→∞

Tnj x ∈ A for some A ∈ {Ωi}m
i=1 and Tnj x ∈ Ωnj for some Ωnj ∈ {Ωi}m

i=1 for any j ∈ N, then

lim sup
j→∞

d(A, Ωnj) ≤ lim
n→∞

d(Tn+1x, Tnx).

Proof. Let p = lim
j→∞

Tnj x. Since lim
j→∞

Tnj x ∈ A and Tnj x ∈ Ωnj , we have d(A, Ωnj) ≤ d(p, Tnj x) for any

j. Thus,
lim sup

j→∞
d(A, Ωnj) ≤ lim sup

j→∞
d(p, Tnj−1x). (6)

Since T is an alternative contraction, by Theorem 1, lim
n→∞

d(Tn+1x, Tnx) exists. It follows that

lim sup
j→∞

d(p, Tnj−1x) = lim sup
j→∞

d(Tnj x, Tnj−1x)(since p = lim
j→∞

Tnj x)

= lim
n→∞

d(Tnx, Tn−1x). (7)

The proof is completed by (6) and (7).

Next, we would use the alternative UC condition as follows:

Definition 11 (Alternative UC condition). Let (X, d) be a metric space and Ωi, i = 1, 2, . . . , m be nonempty
subsets of X. If {Ωi}m

i=1 is said to satisfy the UC condition if the following holds. Let y1
n, yν

n ∈ Ar and
y2

n, y3
n, . . .,yν−1

n /∈ ∪j 6=rΩj for some positive integer ν ≥ 2. If lim
n→∞

d(y1
n, y2

n) = lim
n→∞

d(y2
n, y3

n) . . . =

lim
n→∞

d(yν−1
n , yν

n) = d(A,B) for some A,B ∈ {Ωi}m
i=1, then lim

n→∞
d(y1

n, yν
n) = 0.

It is clear that the UC condition of the cyclic map is a special case of the alternative UC Condition.

Lemma 5. Let (X, d) be a metric space, Ωi, i = 1, 2, . . . , m be nonempty subsets of X and T : ∪m
i=1Ωi −→

∪m
i=1Ωi be an alternative contraction. If there exists k ∈ N such that lim

i→∞
Tni+jx = pj exists, j = 0, 1, 2, . . . , k

for some x ∈ X and for some subsequence {ni}∞
i=0, then the following four conditions are equivalent

(1) d(p1, p0) ≤ lim
n→∞

d(Tnx, Tn+1x),

(2) d(p1, p0) = lim
n→∞

d(Tnx, Tn+1x),

(3) d(pk+1, pk) ≤ · · · ≤ d(p1, p2) ≤ d(p0, p1) ≤ lim
n→∞

d(Tnx, Tn+1x),

(4) d(pk+1, pk) = · · · = d(p1, p2) = d(p0, p1) = lim
n→∞

d(Tnx, Tn+1x).

Proof. (2) ⇒ (1), (4) ⇒ (3), (4) ⇒ (2) and (3) ⇒ (1) are obvious. The remainder part is to prove
(1)⇒ (4). By Corollary 2.4, {d(Tn+1x, Tnx)}n∈N is a decreasing sequence, we have

lim
n→∞

d(Tn+1x, Tnx) ≤ d(Tni+kx, Tni+k−1x) ≤ · · · ≤ d(Tni+2x, Tni+1x) ≤ d(Tni+1x, Tni x). (8)

Since pj = lim
i→∞

Tni+jx exist, j = 1, 2, . . . , k and then taking lim on inequality (9). It follows that

lim
n→∞

d(Tn+1x, Tnx) ≤ d(pk, pk−1) ≤ · · · ≤ d(p2, p1) ≤ d(p1, p0). (9)

By assumption (1),
d(p1, p0) ≤ lim

n→∞
d(Tn+1x, Tnx). (10)
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Combining (9) and (10), we have

d(pk+1, pk) = · · · = d(p1, p2) = d(p0, p1) = lim
n→∞

d(Tnx, Tn+1x).

Theorem 3. Let (X, d) be a metric space with UC condition, Ωi, i = 1, 2, . . . , m be nonempty subsets of X and
T : ∪m

i=1Ωi −→ ∪m
i=1Ωi be an ADC with the UC condition. If there exists x ∈ X and a subsequence {ni}∞

i=0 of
N such that pj = lim

i→∞
Tni+jx, j = 0, 1, 2, . . . , m with d(p1, p) ≤ lim

i→∞
d(Tnx, Tn+1x), then there exist different

k, ` ∈ N such that pk = p`.

Proof. Since T : ∪m
i=1Ωi −→ ∪m

i=1Ωi is an ADC and there exists a subsequence {ni}∞
i=0 such that

pj = lim
i→∞

Tni+jx, j = 0, 1, 2, . . . , m with d(p1, p) ≤ lim
i→∞

d(Tnx, Tn+1x), by Lemma 5, we have

d(pk+1, pk) = · · · = d(p1, p2) = d(p0, p1) = lim
n→∞

d(Tnx, Tn+1x).

Since p0, p1, . . . , pm ∈ ∪m
i=1Ωi, the cardinal number of {pi}m

i=0 is m + 1 and the cardinal number
of {Ωi}m

i=1 is m, by the pigeonhole principle, there exist two different k, ` ∈ N such that pk, p` ∈ Ωj for
some j. WLOG, we assume that k < `, then

d(p`, p`−1) = · · · = d(pk+2, pk+1) = d(pk+1, pk) = lim
n→∞

d(Tnx, Tn+1x). (11)

By Theorem 2, we have lim
n→∞

d(Tnx, Tn+1x) = d(A,B) for some A, B ∈ {Ωi}m
i=1 and it then

pk = p` by (11) and the UC condition.

Theorem 4. Let (X, d) be a metric space, Ωi, i = 1, 2, . . . , m be nonempty subsets of X. Suppose T :
∪m

i=1Ωi −→ ∪m
i=1Ωi is a ALC, if for any x ∈ ∪m

i=1Ωi, there exists a subsequence {ni}∞
i=1 of N with pj =

lim
i→∞

Tni+jx existing for j = 0, 1, 2, . . . , m, then pj = T j p0, j = 1, 2, . . . , k.

Proof. For any j = 1, 2, . . . , k,

pj = lim
i→∞

Tni+jx

= lim
i→∞

T(Tni+j−1x))

= T( lim
i→∞

Tni+j−1x)) (since T is a ALC)

= Tpj−1.

By induction, we have pj = T j p0.

Theorem 5. Let (X, d) be a metric space, Ωi, i = 1, 2, . . . , m be nonempty subsets of X. Suppose T :
∪m

i=1Ωi −→ ∪m
i=1Ωi is an alternative contraction, if there exists x ∈ ∪m

i=0Ωi and a subsequence {ni}∞
i=1 of N

such that pj = lim
i→∞

Tni+jx exists, j = 0, 1, 2, . . . , m, then there exist some best proximity points of T.

Proof. Since T is an AC and by Theorem 4, we have

pj = T j p0, j = 1, 2, . . . , m. (12)

Moreover, by the definitions of ALC,

d(Tp, p) ≤ lim
n→∞

d(Tn+1x, Tnx).
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We can derive by (12) and it leads

d(p1, p) ≤ lim
n→∞

d(Tn+1x, Tnx).

By Theorem 3, we have
pκ = pρ for some κ < ρ. (13)

Moreover, by Lemma 5, we observe

d(pκ , pκ+1) = d(pκ+1, pκ+2) = . . . = d(pρ−1, pρ) = lim
n→∞

d(Tn+1x, Tnx).

Let p = pκ , ` = ρ− κ and qj = pκ+j, j = 1, 2, . . . , `, it then

qj = pκ+j = T j pκ = T j p (14)

by (12). By (13) above, we can derive that

p = pκ = pρ = T`p. (15)

One has lim
n→∞

d(Tn+1x, Tnx) = d(Aα, Aβ) by Lemma 5, this implies

d(p, q1) = d(q1, q2) = . . . = d(q`−1, q`) = d(Aα, Aβ). (16)

Then by (14) and (16),

d(p, Tp) = d(Tp, T2 p) = . . . = d(T`−1 p, T`p) = d(Aα, Aβ). (17)

Let T j p ∈ Ωrj for some Ωrj ∈ {Ωi}m
i=1, j = 0, 1, . . . , `. Hence

d(T j+2 p, T j+1 p) ≤ τd(T j+1 p, T j p) + (1− τ)d(Ωrj+1 , Ωrj)

=⇒d(Ωα, Ωβ) ≤ τd(Ωα, Ωβ) + (1− τ)d(Ωrj+1 , Ωrj) (by (17))

=⇒(1− τ)d(Ωα, Ωβ) ≤ (1− τ)d(Ωrj+1 , Arj)

=⇒d(Ωα, Ωβ) ≤ d(Ωrj+1 , Ωrj). (18)

Moreover, since T j+1 p ∈ Ωrj+1 and T j p ∈ Ωrj , we have

d(Ωrj+1 , Ωrj) ≤ d(T j+1 p0, T j p0) = d(Ωα, Ωβ). (19)

Combining (18) and (19), it follows that

d(Ωrj+1 , Ωrj) = d(Ωα, Ωβ) (20)

for j = 0, 1, 2, . . . , `. By (15), (17) and (20), we have p is a best proximity point of T.

Theorem 6. Let (X, d) be a compact metric space and Ωi, i = 1, 2, . . . , m be nonempty closed subsets of (X, d).
Suppose T : ∪m

i=1Ωi −→ ∪m
i=1Ωi is an alternative map, then there exists a best proximity point of T.

Proof. By Lemma 3, for any integer k, there exists a subsequence {ni}∞
i=0 ⊆ N such that

Tni x ∈ Ωr0 Tni+1x ∈ Ωr1 , . . . , Tni+kx ∈ Ωrk
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for all i. For any j = 0, 1, 2, . . . , k, since X is compact, we have lim
i→∞

Tni+jx exists. Moreover, since

Ωrj ∈ {Ωi}m
i=1 and Ωi is closed, i = 1, 2, . . . , m, it follows that lim

i→∞
Tni+jx exists and

lim
i→∞

Tni+jx ∈ Ωrj , j = 0, 1, 2, . . . , k.

By Theorem 5, there exists a best proximity point of T.

Corollary 2. Let (X, d) be a compact(or weakly countable compact) metric space, Ωi, i = 1, 2, . . . , m be
nonempty closed subsets of (X, d). Suppose T : ∪m

i=1Ωi −→ ∪m
i=1Ωi is an AC, then there exists a best proximity

point of T.

Proof. This corollary can be derived by Theorem 5 and Theorem 6 immediately.

Theorem 7. Let (X, d) be a complete metric space, Ωi, i = 1, 2, . . . , m be nonempty closed subsets of (X, d).
Suppose T : ∪m

i=1Ωi −→ ∪m
i=1Ωi is an AC with UC condition, then there exists a best proximity point of T.

Proof. Since Tni+jx ∈ ∪m
i=1Ωi, j = 1, 2, . . . , m + 1, by the pigeonhole principle, there exist 1 ≤ µ < ν ≤

m + 1 such that Tni+µx, Tni+νx ∈ Ωk for any i ∈ N and some k ∈ {1, 2, . . . , m}. Moreover, since T is an
alternative contraction, by Theorem 1, we have

lim
i→∞

d(Tni+νx, Tni+ν−1x) = lim
i→∞

d(Tni+ν−1x, Tni+ν−2x)

= lim
i→∞

d(Tni+ν−2x, Tni+ν−3x)

= · · ·
= lim

i→∞
d(Tni+µ+1x, Tni+µx) = lim

n→∞
d(Tn+1x, Tnx).

By UC condition, lim
n→∞

d(Tni+ν x, Tni+µ x) = 0. This can imply lead to a Cauchy sequence. That is

lim
i→∞

Tni x = z

for some z ∈ X. By Theorem 5, there exists a best proximity point of T.
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