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Abstract: In our paper we discuss how elements of algebraic hyperstructure theory can be used
in the context of underwater wireless sensor networks (UWSN). We present a mathematical model
which makes use of the fact that when deploying nodes or operating the network we, from the
mathematical point of view, regard an operation (or a hyperoperation) and a binary relation. In this
part of the paper we relate our context to already existing topics of the algebraic hyperstructure theory
such as quasi-order hypergroups, EL-hyperstructures, or ordered hyperstructures. Furthermore,
we make use of the theory of quasi-automata (or rather, semiautomata) to relate the process of
UWSN data aggregation to the existing algebraic theory of quasi-automata and their hyperstructure
generalization. We show that the process of data aggregation can be seen as an automaton, or rather
its hyperstructure generalization, with states representing stages of the data aggregation process of
cluster protocols and describing available/used memory capacity of the network.

Keywords: clustering protocols; quasi-automaton; quasi-multiautomaton; semihypergroup; UWSN

1. Introduction

Underwater wireless sensor networks (UWSN) are often used in environment monitoring where
they review how human activities affect marine ecosystems, undersea explorations such as detecting
oilfields, for disaster prevention, e.g., when monitoring ocean currents, in assisted navigation for
the location of dangerous rocks in shallow waters, or for disturbed tactical surveillance for intrusion
detection.

The fact that such wireless sensor networks are deployed underwater results in profound
differences from terrestrial wireless sensor networks. The key aspects that are different include
the communication method, i.e., radio waves vs acoustic signals, cost (while terrestrial networks
experience decreasing prices of components, underwater sensors are still expensive devices), memory
capacity (because water is a problematic medium resulting in the loss of large quantities of data),
power limitations due to the nature of the signal and longer distances handled, as well as problems
related to the deployment of the network, i.e., issues connected to static or dynamic deployment.
In underwater sensor networks, we commonly face challenges of limited bandwith, high bit error
rates, large propagation delays, and limited battery resources caused by the fact that in an underwater
environment, sensor batteries are impossible to recharge especially because no solar energy is available
underwater. The power losses, which cannot be avoided, result in the need to reconfigure the network
topology in order to maintain network connectivity and communication between sensor nodes. Thus,
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size of the UWSN coverage area and efficiency of data aggregation are affected. Obviously, efficiency
in battery use influences network lifetime without sacrificing system performances. These differences
are shown in Table 1.

Table 1. Comparison of some features of terrestrial and underwater wireless sensor networks (UWSN).

(Terrestrial) WSN UWSN

Communication Media RF Waves Acoustic Waves
Frequency High Low
Node size Small Large

Deployment Dense Sparse
Power Low High

Energy consumption Low High
Propagation delay Low High

Bandwidth High Low
Path loss Low High

Cost Inexpensive Expensive
Memory Sensor nodes have low capacity Sensor nodes require large capacity

We use different protocols for discovering and maintaining routes between sensor nodes.
As mentioned in Novák, Křehlík, and Ovaliadis [1], the most commonly used routing protocols
are: Flooding, multipath, cluster, and miscellaneous protocols, see Wahid and Dongkyun [2]. In the
flooding approach, the transmitters send a packet to all nodes within the transmission range. In the
multipath approach, source sensor nodes establish more than one path towards sink nodes on the
surface. Finally, in the clustering approach the sensor nodes are grouped together in a cluster. For
an easy-to-follow reading on how UWSN’s work and on advantages of clustering see Domingo and
Prior [3], the basic idea is shown in Figures 1, 2.

Recent research shows that the cluster based protocols give a great contribution towards
the concept of energy efficient networks, see Ayaz et al. [4], Ovaliadis and Savage [5], or Rault,
Abdelmadjid, and Yacine [6]. A common cluster based network consists of a centralized station
deployed at the surface of the sea called a sink (or surface station) and sensor nodes deployed at
various tiers inside the sea environment. These are grouped into clusters. In this architecture, each
cluster has a head sensor node called a cluster head (CH). The cluster head is assumed to be inside
the transmission range of all sensor nodes that belong to its cluster. Every cluster head operates as
a coordinator for its cluster, performing significant tasks such as cluster maintenance, transmission
arrangements, data aggregation, and data routing (Figure 2).

Mathematical Background of the Model

In the UWSN topology, several aspects are important for successful data aggregation. First of
all, there must exist a path linking every element of the network to the surface station. However,
these paths need not be unique as there might be multiple possible paths which the data from a given
element can use to reach the surface station. Second, there always exists a cetain kind of ordering of
the set of the network elements. They can be ordered with respect to their physical depth, with respect
to their importance, with respect to communication priority, remaining battery power, etc. Finally, as
data are collected, they are combined in the "upwards" elements in order to be sent further on.

Thus one may employ techniques of algebra or graph theory in the description of the data
aggregation process as has been recently done by Aboyamita et al., Domingo, or Jiang et al. [7–9].
However, given the multivalued nature of data aggregation (multiple paths, more than one possible
links of elements, etc.), it seems relevant to make use of the elements of the algebraic hyperstructure
theory. Notice that while in "classical" algebra, we regard operations, i.e., mappings f : Hn → H, in
the algebraic hyperstructure theory we work with hyperoperations, i.e., mappings g : Hn → P∗(H),
where P∗(H) is the power set of H with ∅ excluded (one need not consider this exclusion though). For



Symmetry 2019, 11, 734 3 of 16

the general introduction to the theory as well as definitions of concepts not explicitly defined further
on, see Corsini and Leoreanu [10].

In the algebraic hyperstructure theory, there are several concepts which make use of the aspect of
ordering. A small selection includes Comer, Corsini, Cristea, De Salvo et al. [11–15]. Further on we
discuss three of these: EL–hyperstructures, quasi-order hypergroups, and ordered hyperstructures.
Each of these concepts uses somewhat different background and assumptions:

EL–hyperstructures are constructed from pre- and partially-ordered semigroups, i.e., the
hyperoperation is defined using an operation and a relation compatible with it;

Quasi-order hypergroups are constructed from pre-ordered sets, i.e., the hyperoperation is defined
using a relation only;

Ordered hyperstructures are algebraic hyperstructures on which a relation compatible with the
hyperoperation is defined.

All of these have been studied in depth and numerous results have been achieved in their
respective theories. The idea of EL–hyperstructures has been implicitely present in a number
of works since at least the 1960s, for example Pickett [16]. The definition and first results were
given by Chvalina [17] and the theory has been elaborated by Novák (later jointly with Chvalina,
Křehlík, and Cristea) in a series of papers including [18–22]. It is to be noted that, since the class of
EL–hyperstructures is rather broad, the aim of many theorems included in some of those papers was to
establish a common ground for some already existing ad hoc derived results. Recently, some examples
concerning various types of cyclicity in hypergroups have been constructed using EL–hyperstructures,
see Novák, Křehlík and Cristea [23].

The idea of quasi-order hypergroups was proposed by Chvalina in [17,24,25]. Some results
achieved with the help of this concept are included in Corsini and Leoreanu [10]. Not to be missed
are results concerning the theory of automata collected in Chvalina and Chvalinová [25]. It should be
stressed that these results were motivated by Comer [26] and Massouros and Mittas [27].

Ordered hyperstructures were introduced by Heidari and Davvaz [28]. Numerous results have
been published since, mainly by Iranian authors.

For the following set of basic definitions see Novák, Křehlík, and Ovaliadis [1].

Definition 1. By an EL–semihypergroup we mean a semihypergroup, in which, for all a, b ∈ H, there is
a ∗ b = {x ∈ H | a · b ≤ x}, where (H, ·,≤) is a quasi-ordered semigroup.

Proposition 1. [20,22] If, for all a, b ∈ H, there is {a, b} ∈ a ∗ b, then the EL–semihypergroup (H, ∗) is a
hypergroup. If (H, ·,≤) is a partially ordered group, then its EL–hypergroup (H, ∗) is a join space.

Definition 2. Let (H, ∗) be a hypergroupoid. We say that H is a quasi-order hypergroup, i.e., a hypergroup
determined by a quasi-order, if, for all a, b ∈ H, a ∈ a3 = a2, and a ∗ b = a2∪ b2. Moreover, if a2 = b2 ⇒ a = b
holds for all a, b ∈ H, then (H, ∗) is called an order hypergroup.

Proposition 2. [10] A hypergroupoid is a quasi-order hypergroup if and only if there exists a quasi-order "≤"
on the set H such that, for all a, b ∈ H, there is a ∗ b = [a)≤ ∪ [b)≤.

Definition 3. An ordered semihypergroup (H, ∗,�) is a semihypergroup (H, ∗) together with a partial
ordering "�" which is compatible with the hyperoperation, i.e., x � y⇒ a ∗ x � a ∗ y and x ∗ a � y ∗ a for all
a, x, y ∈ H. By a ∗ x � a ∗ y we mean that for every c ∈ a ∗ x there exists d ∈ a ∗ y such that c � d.

Notation. Further on, for some a ∈ H, by [a)≤ means the set {x ∈ H | a ≤ x}. For this reason, closed
intervals will not be denoted by [a, b] but by 〈a; b〉.
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2. Mathematical Model

The mathematical model presented in this section was published as an extended abstract of the conference
contribution Novák, Ovaliadis, and Křehlík [1] presented by the authors of this paper at International Conference
on Numerical Analysis and Applied Mathematics (ICNAAM 2017).

UWSNs consist of elements of different types: First, we have surface stations, which pass data to a
ship or to a data-collecting station located on the sea shore; second, we have sensor nodes deployed
at various tiers in water or at the sea bed. The sensors, which are deployed in water, can function as
sensors measuring the requested data or as transporters of information from seabed sensors. In any
case, information collected from all sensors must be passed to surface stations. From these it can be
collected either by a ship passing by or, alternatively, transmitted to a data-collecting station located
on the sea shore. The ship or the data-collecting stations are central nodes.

Denote H the set of all elements of an arbitrary UWSN. Suppose that all elements are capable
of handling (i.e., receiving or transmitting) data in the same way. Also suppose that they perform
the same set of tasks. Thus they are, from the mathematical point of view, interchangeable and equal
(of course, with respect to their functionality as sinks and sensor nodes). The aim of the system is to
collect information. Therefore, our elements of H must communicate data. This should be done ideally
upwards, towards the surface. As we have mentioned above, there are different ways of passing
information. In our model we concentrate on multipath and cluster routing approach (see Figure 1 and
Figure 2). For details concerning these see Ayaz et al. and Li et al. [4,29]. Multipath routing protocols
(Figure 1), forward the data packets to the sink via other nodes while in cluster based routing protocols
(Figure 2), data packets are first aggregated to the respective cluster heads and only then forwarded
via other cluster heads to the sink. For our purposes, we denote the i–th cluster by cli. Its cluster head
will be denoted by CHi. We call non-CH nodes ordinary and sinks will be treated as cluster heads.

Now, suppose that the elements of our system are clustered. In other words, some elements of H
function as cluster heads, i.e., masters, while others are ordinary. The data aggregation process goes
as follows: Within their cluster, the ordinary elements pass information to their cluster head while
between clusters, i.e., supposedly over longer distances, only cluster heads communicate. At a given
point in time, each cluster has the unique cluster head, and each element can belong to exactly one
cluster. We denote the i–th cluster by cli and its cluster head by CHi.

Figure 1. Multipath approach to UWSN data aggregation. Notice the oriented communication
between nodes.
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Figure 2. Cluster based approach to UWSN data aggregation—idealized deployment. The tiers need
not be horizontal, we usually regard distance towards sink instead of depth.

Now, for a given pair a, b ∈ H, regard a binary hyperoperation, where a ∗ b is, for arbitrary
a, b ∈ H, defined by:

a ∗ b =

{
{a, b} ∪ [a · b)≤ for (a = CHi, b = CHj) or a, b ∈ cli
{a, b} for (a 6= CHi or b 6= CHj) and (a ∈ cli, b ∈ clj, i 6= j)

(1)

By [a · b)≤ we mean a set {x ∈ H | a · b ≤ x}, where a · b is a result of a single-valued binary operation
such that a · b is, for arbitrary a, b ∈ H, defined by:

a · b =


CHi for a, b ∈ cli
CHk for a = CHi, b = CHj, i 6= j
s for ((a 6= CHi or b 6= CHj) and (a ∈ cli, b ∈ clj, i 6= j)) or a = s or b = s

(2)

and CHk is such a cluster head that CHi ≤ CHk, CHj ≤ CHk, where a ≤ b is a relation between
elements of H such that: (1) s ≤ s, s ≤ CHi and CHi ≤ s for all clusters cli, (2) within the same cluster
cli we have aj ≤ CHi for all aj ∈ cli while mutually different ordinary elements of the cluster are
incomparable, (3) between clusters for a = CHi, b = CHj the fact that a ≤ b means that the tier of b
(measured towards the surface) is smaller than or equal to the tier of a, and (4) in all other cases a
and b are not related. By CHk above we mean a cluster head on the closest tier above both CHi and
CHj. Of course, CHk always exists yet need not be unique as there may be more cluster heads at this
closest tier. In such a case, we choose the most suitable one or regard all cluster heads as equal. Notice
that, in our definitions, the fact that CHi ≤ CHj and simultaneously CHj ≤ CHi does not mean that
CHi = CHj, rather it only means that CHi and CHj are on the same tier. If we are able to chose the
most suitable cluster head (further on we remark that we are), the relation "≤" (restricted to H \ {s})
becomes partial ordering and we can write CHk = sup{CHi, CHj} (with respect to the relation "≤").
Finally, the element s is an element of H reserved for situations when a and b fail to communicate. It is
artificially added to our set of elements H or we can agree that one (given the actual sensor deployment
is of course carefully chosen) of elements of H will be s. In this way, technically speaking, we should
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in fact write He = H ∪ {s}, where He could mean "expanded". Of course, if we choose the option of
s ∈ H, then He = H.

Under these definitions, a · b is the element in which the data from a and b meet, and a ∗ b is
the path in which the data from both a and b can spread. The facts that a · b = s or a ∗ b = {a, b} or
a ∗ b = {a, b, s} all stand for communication failure.

Lemma 1. [1] (H,≤) is a quasi-ordered set.

Suppose now that we have arbitrary a, b ∈ H. Since the result of a · b is such an element of
H in which the data from a and b meet, it is natural to suppose that a · b = b · a, i.e., that "·" is
commutative. However, we can suppose this only on condition that there exists such an algorithms
that a · b = CHk = CHl = b · a for arbitrary clusters clk, cll . Further on suppose that such an algorithm
exists, i.e., that (H, ·) is a commutative groupoid. The following lemma is obvious.

Lemma 2. [1] If (H, ·) is a commutative groupoid, then (H, ∗) is a commutative hypergroupoid.

In the following lemma notice that weak associativity of the hyperoperation is defined as a ∗ (b ∗
c) ∩ (a ∗ b) ∗ c 6= ∅ for all a, b, c ∈ H; a quasi-hypergroup is a reproductive hypergroupoid.

Lemma 3. [1] The hypergroupoid (H, ∗) is a Hv–group, i.e., a weak associative quasi-hypergroup.

Lemma 4. [1] The quasi-ordering "≤" and the operation "·" are compatible, i.e., for all a, b ∈ H such that
a ≤ b and an arbitrary c ∈ H there is a · c ≤ b · c and c · a ≤ c · b.

Now, denote HCH ⊆ H the set of cluster heads. This notation enables us to regard both clustering
based systems and multipath systems because the fact that HCH = H means that every element of
H is a cluster head, i.e., the system is in fact a multipath one. In such a case the model simplifies
substantially. This is because there is no need for the special element s and we do not distinguish
between communication within and between clusters. The operation "·" defined by Equation (2)
reduces to a · b = c (we still suppose that it is commutative) and, consequently, the hyperoperation
Equation (1) reduces to a ∗ b = {a, b} ∪ [a · b)≤, in both cases for all a, b ∈ H.

Lemma 5. [1] If we are able to uniquely identify CHk in Equation (2), then (HCH , ·,≤) is a partially ordered
semigroup.

Finally, what is x ∈ [a)≤? This means that a ≤ x, i.e., that the data from the element a reach the
element x. Thus, if x is a sink, than the fact that x ∈ [a)≤ means that the data from a can be successfully
collected. What we want is that, if we denote S the set of all sinks, for all a ∈ H there exists at least
one x ∈ S such that x ∈ [a)≤, which means that data from all elements of our network H can be
successfully collected. Of course, in order to achieve this, it is crucial to have an algorithm for unique
determination of CHk in Equation (2). Yet clustering algorithms such as the Distributed Underwater
Clustering Scheme (DUCS) [3] or Low Energy Adaptive Clustering Hierarchy (LEACH) protocol can
provide this.

3. Use of the Theory of Quasi-Automata

In Definition 2, the concept of quasi-order hypergroup is defined. Chvalina and Chvalinová [25]
relate these to the theory of quasi-automata, i.e., automata without output. For an automaton they
construct a quasi-order hypergroup of its state set and show that the automaton is connected if and
only if the state hypergroup is inner irreducible as well as strogly connected, i.e., we can reach any
state from any other state, if and only if the state hypergroup is (in a special way) cyclic. In other
words, if we look at the problem of data aggregation from the point of view of the automata theory,
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where every step is an application of the transition function with the initial state "data aggregation
to begin" and the desirable state "data from all elements collected" (or rather "useful data from all
elements sent" since every CH not only receives data but also separates useful data from useless ones),
we should be interested in constructing such automata or studying their properties.

We call the concept defined below quasi-automaton even though this term is not much frequent
(we do this to be consistent with some earlier papers on hyperstructure theory). In fact, we could
speak of semiautomata or deterministic finite automata (the below mentioned paper Chvalina and
Chvalinová [25] uses a general term automaton; however, notice that [25], p. 107, plain text, defines
automaton in the way of Definition 4, which is a definition adopted by the authors of [25] in later
years). For an overall discussion of the concepts and the reasons for our choice of the name see Novák
et al. [30]. For some further reading and applications see also Hošková et al. [31–33].

Definition 4. By a quasi–automaton we mean a structure A = (I, S, δ) such that I 6= ∅ is a monoid, S 6= ∅
and δ : I × S→ S satisfies the following condition:

1. There exists an element e ∈ I such that δ(e, s) = s for any state s ∈ S;
2. δ(y, δ(x, s)) = δ(xy, s) for any pair x, y ∈ I and any state s ∈ S.

The set I is called the input set or input alphabet, the set S is called the state set and the mapping δ is called
next-state or transition function. Condition 2 is called GMAC (Generalized Mixed Associativity Condition).

In [25], Chvalina and Chvalinová defined what they called a state hypergroup of an automaton.
This is in fact a state set with a special hyperoperation, defined by means of the transition function.
In this way, the concept of a state hypergroup is fixed to the automata theory. However, the way of
defining this concept is a parallel to the concept of quasi-order hypergroups, which means that state
hypergroups of quasi-automata are quasi-order hypergroups. The fact that the below defined (S, ◦)
is a hypergroup, or rather quasi-order hypergroup, (hence the name state hypergroup) was proved
in [25]. (Notice that in [25] I and S are swapped.)

Definition 5. Let A = (I, S, δ) be an automaton. We define a binary hyperoperation "◦" on the state set S by:

s ◦ t = δ(I∗, s) ∪ δ(I∗, t) (3)

for any pair of states s, t ∈ S, where A∗ is a free monoid of words over the (non-empty) alphabet A. The
hyperstructure (S, ◦) is called state hypergroup of the automaton A.

Some properties of automata following from properties of its state hypergroup are proved in [25].
This includes the properties of being connected or separated.

Definition 6. Let A = (I, S, δ) be a quasi-automaton. A quasi-automaton B = (I, S1, δ1) such that S1 ⊆ S
and δ1 is a restriction of δ on I × S1 and δ(a, s) ∈ S1 for any state s ∈ S1 and any word a ∈ I∗, is called a
sub quasi-automaton of A. A sub quasi-automaton B = (I, S1, δ1) of a quasi-automaton A = (I, S, δ) is called
separated if δ(S \ S1, I∗) ∩ S1 = ∅. A quasi-automaton is called connected if it does not posses any separated
proper subautomaton. A quasi-automaton A = (I, S, δ) is called strongly connected if for any states s, t ∈ S
there exists a word a ∈ I∗ such that δ(a, s) = t.

If in quasi–automata we suppose that the input set I is a semihypergroup instead of a free monoid,
we arrive at the concept of a quasi–multiautomaton. When defining this concept, caution must be
exercised when adjusting the conditions imposed on the transition function δ as on the left-hand
side of condition 2 we get a state while on the right-hand side we get a set of states. However, in the
dichotomy deterministic — nondeterministic, quasi–multiautomata still are deterministic because the
range of δ is S. The difference between the transition function of a quasi-automaton and the transition
function of a quasi-multiautomaton is that in quasi-automata the state achieved by applying y in a
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state, which is the result of application of x in s, is the same as the state achieved by applying xy in s,
while condition (4) says that it is one of the many states achievable by applying any command from
x ∗ y in state s.

Definition 7. A quasi–multiautomaton is a triad A = (I, S, δ), where (I, ∗) is a semihypergroup, S is a
non–empty set, and δ : I × S→ S is a transition map satisfying the condition:

δ(b, δ(a, s)) ∈ δ(a ∗ b, s) for all a, b ∈ I, s ∈ S. (4)

The hyperstructure (I, ∗) is called the input semihypergroup of the quasi–multiautomaton A (I alone is called
the input set or input alphabet), the set S is called the state set of the quasi–multiautomaton A, and δ is called
next-state or transition function. Elements of the set S are called states, elements of the set I are called input
symbols.

Further on, we will make use of the above mentioned concepts to model the process of
data aggregation. Notice that in Novák et al. [30], Cartesian composition of automata resulting
in a quasi-multiautomaton is used to describe a task from collective robotics. Moreover, in
Chvalina et al. [18], the issue of state sets and input sets having the form of vectors and matrices
(of both numbers and special classes of functions) is discussed in the context of quasi-multiautomata.

In Figure 2 we can see that the elements of the UWSN are divided into several tiers. Also, the
nodes are grouped into clusters. The process of data aggregation happens as follows: First, data
is collected in cluster heads and then transmitted between cluster heads towards the surface, i.e.,
"upwards". Obviously, we can only transmit the amount of data that the capacity of available memory
allows. Suppose that clusters cover areas of more or less the same size, i.e., it does not matter how
many nodes there are in respective clusters. Now, regard a set of vectors:

Sv = {~v = (v1, v2, . . . , vn) | vi ∈ 〈0; 1〉; i ∈ {1, . . . , n}} (5)

of such a number of components that corresponds to the number of tiers (with index 1 meaning surface
and index n meaning seabed or the deepest tier). The components vi carry information about how
much total memory all cluster heads at a given tier has been used. In other words, v2 = 0.6 means
that at the second tier 60% memory capacity has been used, regardless of whether this 60% means that
every cluster head at this level has 40% free capacity or whether 6 out of 10 cluster heads already have
no available memory while 4 are 100% free.

The process of data aggregation starts with ~v = (0, . . . , 0), i.e., at the moment when all cluster
heads have empty memory. Since, at first data are collected within clusters, ~v immediately becomes
non-zero. The process of communication between cluster heads is described by the change of ~v by
means of multiplying ~v by a square matrix of real numbers:

IM =

Ak =

a11 . . . a1n
. . . . . . . . .
an1 . . . ann

 | aij ∈ 〈0; 1〉 for i ≥ j, aij = 0 for i < j; i, j ∈ {1, . . . , n}; ‖Ak‖1 ≤ 1

 ,

where ‖Ak‖1 is the column norm of Ak. In other words, IM is a subset of the set of upper triangular
matrices, i.e., we can also write:

IM =

Ak =


a11 0 0 . . . 0
a21 a22 0 . . . 0
...

...
. . .

...
...

an1 an2 an3 . . . ann

 | ‖Ak‖1 ≤ 1

 (6)
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Now, these two sets Sv and IM will be linked with a transition function δ by:

δ(A,~v) = ~v ·A (7)

for all A ∈ IM and all ~v ∈ Sv. If we regard the usual matrix multiplication (only swapped), i.e.,
A� B = B ·A for all A, B ∈ IM, then (IM,�) is a monoid such that the free monoid I∗M = IM. Thus
we can regard the triple (IM, Sv, δ) and study whether it is a quasi-automaton. In our context, the
operation of creating words from input symbols of our alphabet I will be matrix multiplication, i.e., a
word will be a product of matrices, i.e., again a matrix.

Theorem 1. The triple (IM, Sv, δ) is a quasi-automaton.

Proof. The identity matrix En is the neutral element of IM. Property 1 of Definition 4 holds trivially.
Verification of Property 2 is also straightforward:

δ(A, δ(B,~v)) = δ(A,~v · B) = (~v · B) ·A = ~v · B ·A = δ(B ·A,~v) = δ(A� B,~v).

The set IM consists of matrices such that the column norm ||A||1 is at most one. In the following
Remark, we show that without this condition the set IM would not be closed with respect to "�".

Remark 1. Suppose two matrices A, B ∈ IM. If we denote:

A =


a11 0 0 . . . 0
a21 a22 0 . . . 0
...

...
. . .

...
...

an1 an2 an3 . . . ann

 B =


b11 0 0 . . . 0
b21 b22 0 . . . 0

...
...

. . .
...

...
bn1 bn2 bn3 . . . bnn

 ,

then,

B�A = A · B =



1
∑

i=1
a1ibi1 0 0 . . . 0

2
∑

i=1
a2ibi2

2
∑

i=2
a2ibi2 0 . . . 0

...
...

. . .
...

...
n
∑

i=1
anibin

n
∑

i=2
anibin

n
∑

i=3
anibin . . .

n
∑

i=n
anibin


and it is obvious that the column norm ‖B�A‖1 will not exceed 1, i.e., B�A ∈ IM. Indeed, suppose that A is
an all-ones matrix upper triangular matrix (which, of course violates the condition that ‖A‖1 ≤ 1). Then all the

sums in B�A reduce to
n
∑
i=j

bij which are (due to the fact that ‖B‖1 ≤ 1) smaller than 1. If moreover ‖A‖1 ≤ 1,

none of the sums becomes greater. Of course, in IM we could have used the row norm instead of column one with
the same result.

Example 1. Regard sensor nodes deployed under water, which are divided into four tiers with tier 1 being
0− 25 m, tier 2 being 25− 50 m, tier 3 being 50− 75 m, and tier 4 being 75− 100 m under water. Every
tier has an arbitrary number of clusters, i.e., an arbitrary number of cluster heads, each with the same memory
capacity. Then by vector e.g., ~v = (0.3; 0.1; 0; 0.5), we describe such a state of the system that, at a certain
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point in time, 30% data has been collected (or rather, 30% memory capacity has been used) from tier 1 with the
numbers being 10% from tier 2, 0% from tier 3, and 50% from tier 4. Now regard a matrix:

A =


0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 0

 ∈ IM,

which we apply on ~v. Then δ(A,~v) = (0.1; 0.1; 0.5; 0), which describes the new state of the system. Of course,
the first 30% of data (represented by the first component of ~v) did not get lost, which we can regard as output, i.e.,
to each quasi-automaton we can assign output, meaning that data from the upmost tier 1 have been processed,
sent out of the system. Furthermore, in our example, data from tier 2 were transferred to tier 1 (and left in tier 2,
i.e., in this case we have a backup copy). Also, data from tier 4 were transferred to tier 3, which had been empty,
and simultaneously deleted in tier 4. It can be easily observed that the issue of suitable construction of matrices
used for quasi-automata inputs is a topic for further research which will be closely linked to various aspects of
optimization theory.

When describing the state hypergroup of (IM, Sv, δ), we must first of all decide whether or not
(Sv, ◦) defined by Equation (3) is trivial. However, this task is rather simple.

Lemma 6. The state hypergroup (Sv, ◦) of (IM, Sv, δ) is not trivial, i.e., there exist states s, t ∈ Sv such that
∅ 6= δ(I∗M, s) ∪ δ(I∗M, t) 6= Sv.

Proof. The transition function δ is defined on (IM, Sv, δ) by δ(A,~v) = ~vA for all A ∈ IM and all ~v ∈ Sv.
Moreover, by Equation (5), components of vectors from Sv are real numbers from interval 〈0; 1〉, and
by (6) matrices from IM are upper triangular with entries taken from the same interval. Finally, in a
text preceding Theorem 1 we have already mentioned that I∗M = IM. Thus, for all s, t ∈ IM and all
A ∈ IM, we have that:

δ(A,~s) =~sA = (s1, s2, . . . , sn)


a11 0 0 . . . 0
a21 a22 0 . . . 0
...

...
. . .

...
...

an1 an2 an3 . . . ann

 =

(
n

∑
i=1

siai1,
n

∑
i=2

siai2, . . .
n

∑
i=n−1

siain−1, snann

)
.

Now suppose that sn = 0.1. Obviously in this case there cannot be δ(A,~s) = Sv because we are
not able to find such a matrix A ∈ I∗M = IM that snann = 0.9 as this would require ann = 9 which is out
of the interval 〈0; 1〉 in which all entries of A should be. Naturally, there are infinitely many of these
choices. The fact that δ(I∗M, s) ∪ δ(I∗M, t) 6= ∅ is obvious.

Regard now the set ÎM which will be different from IM because the condition of the column norm
will be dropped and we will assume that bii ≥ bij for all i ∈ {1, 2, . . . , n} and j ∈ {1, . . . , i}, i.e., that
each diagonal element will be greater than all other elements in the given row.

On ÎM we define a hyperoperation "∗" by:

A ∗ B =




c11 0 0 . . . 0
c21 c22 0 . . . 0
...

...
. . .

...
...

cn1 cn2 cn3 . . . cnn

 | cii ∈ 〈aii · bii; 1〉 and cij ∈ 〈aij · bij; aii · bii〉 for i 6= j

 (8)
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for all A, B ∈ ÎM, where "·" is the usual multiplication of real numbers and cij belongs to a
closed interval bounded by the product aij · bij and either 1 or the product of the corresponding
diagonal elements.

Remark 2. Notice that by removing the assumption regarding the column norm we are making our model more
real-life because we regard memory losses and overflows. Indeed, suppose we have a vector e.g., ~v = (0.8; 0.7)

and a matrix e.g., A =

[
1 0
1 1

]
. Then δ(A,~v) = ~vA = (1.5; 0.7), which (since vector components are taken

from the interval 〈0; 1〉 because they describe percentages of memory capacity) must be reduced to (1; 0.7).

Theorem 2. The pair ( ÎM, ∗) is a commutative hypergroup.

Proof. Commutativity of the hyperoperation "∗" is obvious because we work with entry-wise
multiplication of real numbers.

For the test of associativity, i.e., A ∗ (B ∗ C) = (A ∗ B) ∗ C for all triples A, B, C ∈ ÎM, recall that
we will be comparing sets of matrices of the same dimension, elements of which fall within intervals
defined by Equation (8). As far as diagonal elements are concerned, there is obviously no problem
because we make use of the multiplication of real numbers. For the non-zero, non-diagonal elements
the lower bounds of the intervals are the products of their smallest elements, i.e., aij(bijcij) = (aijbij)cij,
while the upper bounds of the intervals are products of their greatest possible, i.e., diagonal, elements
i.e., aii(biicii) = (aiibii)cii. Thus, in all cases, associativity of the hyperoperation follows from the
associativity of (positive) real numbers (smaller than 1).

Reproductive axiom is also obviously valid because since the null matrix 0 is an element of ÎM
and A ∗ 0 = ÎM.

Notice that in the following theorem, δ(A,~v) is the usual vector and matrix multiplication with
the additional condition that no diagonal component is allowed to exceed 1. For its motivation see
Remark 2.

Theorem 3. The triple ( ÎM, Sv, δ) is a quasi-multiautomaton, where, for all A ∈ ÎM and all ~v ∈ Sv,

δ(A,~v) =

(
n

∑
i=1

viai1, . . . ,
n

∑
i=1

viain

)
, (9)

where in case that
n
∑

i=1
viaik > 1 for some k ∈ {1, 2, . . . , n}, we set, by default,

n
∑

i=1
viaik = 1.

Proof. Thanks to Theorem 2, we shall verify condition Equation (4) only. The left-hand side of the
condition is:

δ(A, δ(B,~v)) = δ(A,~v · B) = δ

(
A,
(

n
∑

i=1
vibi1, . . . ,

n
∑

i=1
vibin

))
=

(
n
∑

i=1
vibi1, . . . ,

n
∑

i=1
vibin

)
·

a11 . . . a1n

. . . . . . . . .
an1 . . . ann

 ,
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which, if we regard that A, B are upper triangular matrices, is:(
n
∑

i=1
vibi1a11 +

n
∑

i=2
vibi2a21 + . . . +

n
∑

i=n−1,
vibin−1,an−1,1 +

n
∑

i=n
vibinan1,

n
∑

i=1
vibi10 +

n
∑

i=2
vibi2a22 + . . . +

n
∑

i=n−1,
vibin−1,an−1,2 +

n
∑

i=n
vibinan2,

n
∑

i=1
vibi10 +

n
∑

i=2
vibi20 + . . . +

n
∑

i=n−1,
vibin−1,an−1,n−1 +

n
∑

i=n
vibinann, . . .

. . . ,
n
∑

i=1
vibi10 +

n
∑

i=2
vibi20 + . . . +

n
∑

i=n−1,
vibin−1,0 +

n
∑

i=n
vibinann

)

On the right-hand side of the condition we get:

δ(A ∗ B,~v) =

(〈
n

∑
i=1

viai1bi1; 1

〉
,

〈
n

∑
i=2

viai2bi2; 1

〉
, . . . ,

〈
n

∑
i=n−1

viain−1bin−1; 1

〉
,

〈
n

∑
i=n

viainbin; 1

〉)
,

which is a vector of intervals upper-bounded by 1 such that their lower bounds are sums of
lower bounds of respective intervals in the definition of the hyperoperation in Equation (8) after
multiplication by vector ~v has been performed. (Notice that we work with non-negative matrix and
vector entries only.) We have to show that:

n

∑
i=1

viai1bi1 ≤
n

∑
i=1

vibi1a11 +
n

∑
i=2

vibi2a21 + . . . +
n

∑
i=n−1,

vibin−1,an−1,1 +
n

∑
i=n

vibinan1

n

∑
i=2

viai2bi2 ≤
n

∑
i=1

vibi10 +
n

∑
i=2

vibi2a22 + . . . +
n

∑
i=n−1,

vibin−1,an−1,2 +
n

∑
i=n

vibinan2

. . .
n

∑
i=n−1

viain−1bin−1 ≤
n

∑
i=1

vibi10 +
n

∑
i=2

vibi20 + . . . +
n

∑
i=n−1,

vibin−1,an−1,n−1 +
n

∑
i=n

vibinann

n

∑
i=n

viainbin ≤
n

∑
i=1

vibi10 +
n

∑
i=2

vibi20 + . . . +
n

∑
i=n−1,

vibin−1,0 +
n

∑
i=n

vibinann

i.e.,

n

∑
i=1

viai1bi1 ≤
n

∑
i=1

vibi1a11 +
n

∑
i=2

vibi2a21 + . . . +
n

∑
i=n−1,

vibin−1,an−1,1 +
n

∑
i=n

vibinan1

n

∑
i=2

viai2bi2 ≤
n

∑
i=2

vibi2a22 + . . . +
n

∑
i=n−1,

vibin−1,an−1,2 +
n

∑
i=n

vibinan2

. . .
n

∑
i=n−1

viain−1bin−1 ≤
n

∑
i=n−1,

vibin−1,an−1,n−1 +
n

∑
i=n

vibinann

n

∑
i=n

viainbin ≤
n

∑
i=n

vibinann
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Now, if we move the sums on the left-hand side of the inequalities to the right-hand side and
expand all the sums, we get for the first sum, i.e., for the first component of the vectors:

v1a11b11 + v2a21b21 + v3a31b31 + . . . + vnan1bn1 ≤ v1b11a11 + v2b21a11 + . . . + vnbn1a11 +

+v2b22a21 + v3b32a21 + . . . + vnbn2a21 +

...

+vn−1bn−1,n−1an−1,1 + vnbn,n−1an−1,1 +

+vnbnnan1,

which, after we put elements vi, i ∈ {1, 2, . . . , n} in front of the brackets, means that:

0 ≤ v2(b21a11 + b22a21 − a21b21) +

v3(b31a11 + b32a21 + b33a31 − a31b31) +

...

vn−1(bn−1,1a11 + bn−1,2a21 + . . . + bn−1,n−1an−1,1 − an−1,1bn−1,1) +

vn(bn1a11 + bn2a21 + . . . bnnan1 − an1bn1)

which, since all numbers are non-negative, will be greater than zero if bii ≥ bi1 for all i ∈ {2, 3, . . . n}.
In a completely analogous manner we get for the second sum, i.e., for the second component of
the vectors:

v2a22b22 + v3a32b32 + . . . + vnan2bn2 ≤ v2b22a22 + v3b32a22 + . . . + vnbn2a22 +

+v3b33a32 + v4b43a32 + . . . + vnbn3a32
...

+vn−1bn−1,n−1an−1,2 + vnbn,n−1an−1,2 +

+vnbnnan2,

which will give us condition that bii ≥ bi2 for all i ∈ {3, 4, . . . n}, etc. until the (n− 1)th component will
result in condition bii ≥ bi,n−1 for i = n; and the first and the last condition bii ≥ bii for all i ∈ {1, n}
hold trivially.

Thus, altogether we get that bii ≥ bij for all i ∈ {1, 2, . . . , n} and j ∈ {1, . . . , i}. In other words,
each diagonal element must be greater than all other elements in the given row, which is exactly what
we suppose ÎM to be.

Remark 3. If we want to find out whether we are able to reach any state from any other state with the help of
our transition functions (i.e., test strong conectedness), we must take into account that the fact that we regard
diagonal matrices means that for known vectors ~u,~v and an unknown matrix A the equation ~uA = ~v results in
a linear system in the row echelon form and the task of finding the unknown matrix A is equivalent to finding its
solution. Of course, we have to consider the fact that ~v might have components being zero, which will affect the
solvability of the linear system.
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Example 2. The hyperoperation on the input set, i.e., the fact that we work with hypergroups, gives us a better
tool for controlling the process of data aggregation. Suppose that we have the same vector as in Example 1, i.e.,
~v = (0.3; 0.1; 0; 0.5). Furthermore, assume the same context as in Example 1. Let the matrix be:

A =


1 0 0 0

0.9 1 0 0
0.2 1 1 0

0.01 0.3 1 0

 ∈ ÎM.

Suppose that in our quasi-multiautomaton this matrix is applied on vector ~v, i.e.

δ(A,~v) = (0.3; 0.1; 0; 0.5) ·


1 0 0 0

0.9 1 0 0
0.2 1 1 0
0.01 0.3 1 0

 .

Now, focus on the multiplication of ~v and the first column of A. We get that:

(0.3 · 1 + 0.1 · 0.9 + 0 · 0.2 + 0.5 · 0.01; a; b; c) = (0.395; a; b; c),

which means that the capacity of tier 1 is filled by 39.5% in such a way that the original 30% was accompanied
by further 9.5% from tier 2 (which had originally been filled up by 10%, i.e., we have a 1% transmission loss),
0% from tier 3, and 0.5% from tier 4. In this case it is obvious that the transmission from tier 4 is extremely
difficult with a substantial data loss. Theoretically, we could model the process of data aggregation with matrices
with all-one columns. However, this would not be a real-life case. When looking for an optimal transition input
(i.e., an optimal matrix), we could regard matrices such as those in Equation (8) with increasing entries. The
definition of the hyperoperation (8) means that from a certain moment on, the memory capacity could be filled to
maximum and data will start being lost, i.e., not stored in cluster heads on upper tiers anymore. However, this
depends also on the initial state of the system, i.e., on the initial vector. In the case of our vector, ~v, even matrix:

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ,

i.e., a matrix with maximal possible entries will secure successful data aggregation because vector ~v suggests
that the process started when all tiers had enough free memory capacity in all cluster heads without any risk of
memory overflow.

4. Conclusions and Future Work

In Remark 3, we saw in a general case a strong connectedness of our quasi(-multi) automata was
not secured. Moreover, in Lemma 6, we observed that the state hypergroup of the quasi-automaton
(IM, Sv, δ) was not trivial. These two facts are motivations for future research into properties of
quasi-(multi)automata, especially in their interpretation of our real-life problem, i.e., UWSN design
and data aggregation. Furthermore, the range of lemmas included in Section 2 provides a good starting
point for linking our context to the already established results of the algebraic hyperstructure theory.
Finally, the issue of optimal choice of input matrices is another line of possible research.

Author Contributions: Investigation, M.N., Š.K. and K.O.; Methodology, M.N., Š.K. and K.O.; Supervision, M.N.,
Š.K. and K.O.; Writing—original draft, M.N., Š.K. and K.O.; Writing—review & editing, M.N., Š.K. and K.O.

Funding: The first author was supported by the FEKT-S-17-4225 grant of Brno University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2019, 11, 734 15 of 16

References
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