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Abstract: A Chebyshev pseudospectral-two-step three-order boundary value coupled method is
proposed and presented for handling the issue associated with complicated calculation, low precision,
and poor stability in the process of transient response of transmission line. The first order differential
equation in time domain is obtained via dispersing the telegraph equation in space domain by utilizing
the pseudospectral method (PSM) based on Chebyshev polynomial. Then the two-step three-order
boundary value method (BVM3) is presented and employed to resolve the obtained differential
equation, so the numerical solution of the space discrete points can be obtained. Furthermore, the
Chebyshev pseudospectral-two-step three-order boundary value coupled method (PSM-BVM3) is
presented and compared with the Chebyshev pseudospectral-two-step two order boundary value
coupled method (PSM-BVM2), the pseudospectral-differential quadrature method (PSM-DQM),
and the pseudospectral method—trapezoid rule (PSM-TR) to validate the feasibility of the new
proposed method. Theoretical analysis and numerical simulation reveal that the proposed Chebyshev
PSM-BVMB3 has a higher performance than the conventional method. For the proposed Chebyshev
PSM-BVM3, the higher precision, efficiency, and numerical stability can be obtained and achieved
only with fewer discrete points in the space domain, which is suitable for solving the transient
response of transmission line. The proposed PSM-BVM3 can improve the drawback of numerical
instability of the PSM and can also improve the disadvantage of the BVM as it is not easy to change
the latter’s timestep size.

Keywords: Chebyshev pseudospectral method (PSM); two-step two-order boundary value method
(BVM2); two-step three-order boundary value method (BVM3); differential quadrature method
(DQM); numerical stability

1. Introduction

As the main carrier of information data of transmission line response, the research of transmission
line response on excitation signal is significantly crucial in the electromagnetic transient analysis
of transmission line. It is investigated that the transmission frequency of signal in high-speed and
large-scale lumped circuit will gradually extend to high frequency and even ultra-high frequency [1,2].
Therefore, the issues of delay, distortion, and crosstalk caused by excitation signal passing through
transmission line is becoming increasingly serious, which will directly influence the accuracy of
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transmission line response. As a result, in order to fully and accurately reflect the transient
electromagnetic effect of the excitation signal passing through the transmission line, it is of great
necessity to analyze the transient response process of transmission line.

Scholars have proposed many numerical methods to resolve the issues in transient response of
transmission line, which mainly include the time domain analysis method and frequency domain
analysis method. These methods mainly focused on solving the measurement-efficiency and precision
problems of non-uniform multi-conductor transmission lines. Among them, Kokkinos et al. have
proposed a finite difference time domain method (FDTD) that is simple and easy to implement and
employ in practical applications but the calculation timestep of this method is constrained by the
stability condition, which resulted in low computation efficiency [3,4]. Jiang et al. have proposed a
precise integration method (PIM) that employed in the numerical calculation of telegraph equations
in transient response process of transmission line [5,6]. PIM has the performance of good numerical
stability and high precision as the calculation of numerical matrix exponent increases with the increase
of system dimension. Feng et al. have proposed an improved FDTD (IFDTD) method that is has the
higher calculation accuracy than the previous FDTD [7]. By using a time domain method that is similar
to Maxwell’s equations, the modeling problem of transmission lines is resolved, and the accuracy of
time domain solution is improved remarkably. However, as the calculation time step is quite small and
the overall computation is accordingly increasing, it is hard to employ in practical applications. Xu et
al. have applied the differential quadrature method (DQM) to transient response of transmission lines
and the accuracy can be guaranteed due to its global approximation but with a complex calculation [8].
Hagci et al. have proposed a fast Fourier transform (FFT) method for calculating transient response
of transmission line [9]. By using a high-order time-based function to approximate the transmission
line parameters, it can preferably overcome electromagnetic interference and have good compatibility
while bein susceptible to numerical dispersion and performing with deficiency. Thielen et al. have
employed the convolution technique (CT) which shows that the instantaneous response of transmission
line is calculated quickly, does not need to solve a large number of matrix equations, and has certain
advantages in computation efficiency [10]. However, the stability is limited and numerical oscillation
occurs easily. In general, the existing methods cannot take into full account stability, computation
accuracy, and efficiency. Therefore, it is necessary to research the coupled algorithm with good
comprehensive performance to analyze the transient response of transmission line.

Javidi et al. have proposed the pseudospectral method (PSM), which is also called spectral
collocation method [11-13]. Itis a numerical method widely used to resolve partial differential equation.
The principle is to define a set of orthogonal functions as the basis function in the computation region,
and then the basis function is used to approximate the resolved variable as its spectral approximation.
Because PSM requires fewer discrete nodes to obtain higher approximation precision, Arribas et al.
have successfully applied it in many fields. However, there are still some shortcomings for the PSM
as the singularity of conventional PSM at the boundary will lead to numerical instability during the
practical calculation [14-16]. Besides, most of the problems in engineering applications are non-periodic
and the solution area is irregular, which will influence the calculation accuracy.

Truhlar et al. have proposed the boundary value method (BVM), Dahlquist et al. have studied
the two-step boundary method, and Noor et al. have investigated the convergence and stability of
the three and four step boundary value method. The results have shown BVM can control global
error and has a high accuracy and great advantages in stability [17-22]. However, BVM still has
some disadvantages such as its heavy and deficient calculation and it cannot change the step size. A
synthesis of the transient response calculation approach proposed in the literature, depending on the
type of analysis, is presented in Table 1.
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Table 1. Synthesis of transient response calculation approach. Finite difference time domain method
(FDTD); precise integration method (PIM); improved FDTD (IFDTD); differential quadrature method
(DQM); fast Fourier transform (FFT); convolution technique (CT); pseudo spectral method (PSM);

boundary value method (BVM).

Transient Response

Calculation Approach Advantages Drawbacks
FDTD Simple and easy to implement and Calculation timestep limitation, low
employ in practical application computation efficiency
Good numerical stability, high Calculahop of numerical matrix
PIM . exponent increase due to increase of
precision . .
system dimension
[FDTD Higher calculation accuracy than Calculation burden due to its small
conventional FDTD calculation timestep
DOM Accuracy can ?)e gL}aranteed due to its Complex calculation
global approximation
Can preferably rgduce Susceptible to numerical dispersion
FFT electromagnetic interference and has . -
o and performed with deficiency
good compatibility
CT Good computation efficiency Sta‘?lht}/ limitation, numerical
oscillation
Requires fewer discrete nodes to Singularity at the boundary,
PSM o .. L
obtain higher precision non-periodic
BVM High accuracy and great stability Heavy and deficient calculation

By coupling the Chebyshev pseudospectral method and the boundary value method, a Chebyshev
pseudospectral-two-step three-order boundary value coupled method is proposed and presented to
resolve the transient response process of transmission line. Firstly, the first order differential equation in
time domain is obtained by using the Chebyshev pseudospectral method to discrete telegraph equation
in space domain, and then the equation is resolved by using the two-step three-order boundary value
method, so the time domain solution of each discrete node can be obtained. Compared with the same
level of pseudospectral-differential quadrature method and the Chebyshev pseudospectral-two-step
two order boundary value coupled method, the simulation result shows that the coupled method
proposed in this paper can simulate the transient response process of transmission line more accurately,
and has high precision and efficiency. Moreover, it is unconditionally stable in the time domain, is no
longer constrained by Courant conditions, and the spectral precision is convergent in space domain.

2. Chebyshev Pseudospectral Method

)

The p-order Chebyshev differential matrix 51(5 is defined as:

¢=p"u 1)

where: G = [g(®), -+ 8@’ DY = (47 U = W), u@), % =

ij )(N+1)><(N+1)'
cos(in/N),i,j € (O,N).
Babolian et al. have defined the formula of any element of the one-order Chebyshev differential
matrix when p = 1, as shown in Formula (2) [23-27]. And the two-order Chebyshev differential matrix
can be directly obtained as shown in Formula (3).

1 1
diy) = —d(j), = (2n? +‘1+2/6
) _ i (-1’ g
di]' -2y sin(ﬁl#j)ﬁ) sin((i'—]‘)ﬁ)’l *J 5
EZE;) =-1 cos(%)(l + Cotz(lﬁ)),i =ji#0,N @)
[ 2k=0N
T 1,ke (1,N=1)
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=2) _ =1)=(1)
Dy’ =Dy Dy ©)
As can be known that the Chebyshev point x; in the general interval [4, b] can be obtained by
simple linear transformation as shown in Formula (4). Where, i € (0,N).

xi=a+ Z0GE 1) (@)

2
Accordingly, the Chebyshev differential matrix DI(\’; )

interval [a, b] can be given as:

corresponding to Chebyshev point x; in any
2 V=@
Dg):(b—a) Dy ®)

For simplicity, the above method is called Chebyshev pseudospectral method in the following text.

3. Two-Step Three-Order Boundary Value Method

Consider the initial value problem of the following first-order ordinary differential equation:

() = it y(o), < (10 1) o
y(to) =y,

The two-step boundary value method is used to solve the first-order ordinary differential equation
as shown in Formula (6). In addition, the calculation form of the two-step two-order boundary value
method is shown in Formula (7).

Ym+1~ (1 +ﬁ)ym +ﬁym—1 = g[(B _ﬁ)fm _(1 +ﬁ)fm—1]'m € (1/M_ 1) (7)

In the same way, Dahlquist et al. [19] gave the calculation equation of the two-step three-order
boundary value method and is shown in Formula (8).

s = (1 00+ By = 5[5+ 0)f, 11 +8(1=0)f,,~ (14 56)f, [ me (1LM=-1) @

In Formulas (7) and (8), & is the length of the time-integral step, and M is the number of time
intervals. Where, h = t, 41—ty = (tf - to)/M, fosi = f(tm+i,ym+i),i =-1,0,1, y,.; = y(tusi),
tpti =tm +iXh.

In Formulas (7) and (8), if we attempt to resolve the unknown points y,,y,, - ,y;,_;, the two
boundary values y,,, y,; must be obtained. For the initial value problem (6), only y, is known. Therefore,
the additional equation should be introduced to solve the unknown point y,,.

h
Yy = Yp1 T E(fM +fu-1) )

Combining Formulas (7) or (8) and (9) to resolve the initial value question (6), we can get the
value of each time discrete point y,, k € (1, M).

4. Calculation Method for Transient Response of Transmission Line Based on Chebyshev
Pseudospectral-Two-Step Three-Order Boundary Value Coupled Method

Topology Model of a single uniform transmission line is shown in Figure 1. In Figure 1, Ry, Ly,
Go, and Cy are the resistance, inductance, conductance, and capacitance per unit length of the single
uniform transmission line, respectively.
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Figure 1. Topological model of a single uniform transmission line.

The famous telegraph equations known to describe voltage and current variations on a uniform
transmission line can be written as:

Pw(z,t) dw(z,t) ,w(z,t)

7 + ko 3 a5 0.2 +bow(z, t) (10)
RoG GoL1+CoR
where, ag = ﬁ, by = —ijcgf ko = = éo+L10 g

The new variable w(z, t) represents the voltage or current of the transmission line. The definition
domain is (z,t) € [¢,d] X [0, T], and the initial conditions are:

w(z,0) = v1(z), z € [¢,d] (11)

wt(z,0) = va(2), z € [c,d] (12)

The Dirichlet boundary conditions are:

w(ct) =h(t), tel0,T] (13)
w(d, t) =hy(t), te[0,T] (14)
By multiplying e~%!/2 in both sides of Equation (10), the equation can be simplified as:

Pa(z,t) a292(3(zr t)
o2 0 922

+ (bo + }Lké)ca(z, t) (15)

In Formula (15), @(z, t) = ék!/2w(z, t), the definition domain of the new variable is not changing,
and the initial conditions are:
@(z,0) = v1(z), z € [c,d] (16)

@t(z,0) = va(z) + %kom(z), z € [c,d] (17)

The Dirichlet boundary condition is changed to:
o(c,t) = 2pi (),  tel0,T] (18)

o(d,t) = & 2my(t),  tel0,T] (19)
By using Chebyshev pseudospectral method, the @, in Formula (15) can be dispersed as formula as:

N
CHENEDY df]?%a(zj, f), ie(ON) (20)
=0
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2 —
where, dsz) = (ﬁ) ‘Z‘(]‘Z)' zi =Cc+ % (x; + 1). Substituting Formula (20) into Formula (15), we can get:

d’e 2 1
5 = [uéDl(\]) + (bo + Zké)b\wl]@ (21)
where, @ = [@(z;,1)]", i € (0,N). In,1 is a N + 1 dimensional identity matrix. Define the following
vector ¢, and let & = C}i‘?
9
= [ i ] 22)
Then the following initial value problem can be obtained:
{z;:m; e (0,T) 23)
c(t=0) ==&
in Formula (23),
0 P
A= ( r o ) (24)

in Formula (24), P = aéDl(\? ) + (bo + %tkg)INH, and I' is the N + 1 dimensional identity matrix.

The first-order ordinary differential initial value model for transient response calculation of
transmission line is obtained. By using the two-step three-order boundary value method as the basic
method, and using the implicit trapezoid formula as the last point method, the global discrete solution
of Formula (23) in the time domain can be carried out, and the following equations can be obtained:

Jo6 =2 (25)

in Equation (25), J, is a constant coefficient matrix, g = 2(N + 1), i € (1, M). The form of each variable is:

c=[ehel, e & e v (26)
[Z1r22/ . ,zM]T, zj € R (27)
L Js 0
EO S
Jo= (28)
I 5T
0 I+ >
in Formula (28):
J = —[(1 Loy + 20 Q)hA] (29)
1
I, = (Iq - EhA) (30)
Js = oty + S| &)
1
I, — —(L, n EhA) (32)
5+0
Js = [Iq— ( 1+2 )hA] (33)

where, I, is a gq-order identity matrix.
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As can be seen from the above derivation, if Gauss elimination is directly used to solve Equation (25),
the trig decomposition of a g X M dimensional matrix will be involved. In this way, the calculated
amount is about 2¢°M? /3 times multiplication and division without considering the sparsity of .
However, because ] is a large dimensional block tridiagonal matrix, the catch-up method for a block
tridiagonal matrix equation is applied to solve this equation [28]. In this case, the calculated amount
can be reduced to 2Mg>/3 + 2Mg?. As a contrast, the s-step s-order differential quadrature method
based on network uniformity and fast numerical algorithm based on V-conversion are used to solve
the initial value problem (23). Danesh et al. have presented the calculation process and calculation
amount of this method in detail, which is not repeated in this paper [29]. Through comparison, the
advantages of the proposed algorithm in calculation precision and efficiency can be further illustrated.
The final point method is the same, and only ], should be adjusted accordingly.

5. Simulation Test

For different values of parameters in Equation (10), two examples are given to validate the
improved performance of the proposed algorithm. The Chebyshev pseudospectral-two-step two-order
boundary value coupled method (PSM-BVM2), the Chebyshev pseudospectral-two-step three-order
boundary value coupled method (PSM-BVM3), and the Chebyshev pseudospectral-two-step differential
quadrature method (PSM-DQM?2) are adopted to solve the initial value problem (23), to validate
the performance of the proposed method. All three methods are approximated dispersing by the
Chebyshev pseudospectral method in space domain and adopting the same step size h in time domain.
The simulation software is Matlab7.14, and the hardware platform is CPU Intel core i7-8700k 3.70 GHz.

5.1. Test for Example 1

In Equation (10), a9 = 2, by = -312, kg = 8m, ¢ = 0, d = 1. The initial value and Dirichlet
boundary condition are determined by analytic solution of w(z,t) = ¢~ sin(nz). Here the PSM-BVM2
(B = —6), PSM-BVM3 (0 = —3), and PSM-DQM2 are used to resolve the initial value problem (23).
The spatial discrete points of the Chebyshev pseudospectral method are N’. The absolute error (AE)
and relative error (RE) were compared.

In order to test the computational accuracy of the proposed algorithm, different simulation times
are selected using the analytic solution as the benchmark. The numerical errors of the above algorithms
are compared and analyzed. As shown in Tables 2 and 3, the results of the PSM-BVM2, PSM-BVM3,
and PSM-DQM?2 are given.

Table 2. The calculation error of the Chebyshev pseudospectral-two-step two-order boundary value
coupled method (PSM-BVM2, the Chebyshev pseudospectral-two-step three-order boundary value
coupled method (PSM-BVM3), and the Chebyshev pseudospectral-two-step differential quadrature
method (PSM-DQM2). (N’ = 8,1 = 0.1 ms).

e PSM-BVM2 (x1078) PSM-BVMS3 (x10~11) PSM-DQOM2 (x1078)
S
AE RE AE RE AE RE
0.5 43670 8.4341 3.1342 6.2379 5.2916 9.0227
1 1.5147 8.7979 1.1578 6.4569 1.9340 9.6047
0.1238 8.8508 0.1058 6.5736 0.1605 9.6879

Table 3. The calculation error of PSM-BVM3, PSM-BVM2 and PSM-DQM2. (N’ = 12,1 = 0.1 ms).

e PSM-BVM2 (x1078) PSM-BVMS3 (x10~11) PSM-DQM2 (x10%)
S
AE RE AE RE AE RE
0.5 2.8129 41365 1.2515 29344 7.4130 6.2612
1 1.9138 5.3662 0.9821 3.5907 3.0820 7.6619

2 0.1017 5.7901 0.1048 3.6808 0.2664 7.8543
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From Tables 2 and 3, it can be seen that the measurement error of the PSM-BVM3 and the
PSM-BVM2 are less than that of the PSM-DQM?2, which can prove that the proposed PSM-BVM
algorithm exhibits improved performance. Moreover, the measurement error of the PSM-BVM3 is three
times less than that of the PSM-DQM?2 and the PSM-BVM?2. In conclusion, according to the result, the
PSM-BVM3 has higher accuracy than the other two algorithms of the PSM-BVM2 and the PSM-DQM2.

To validate the computation efficiency of the proposed algorithm, the CPU consumption time of
the above three methods was tested under different spatial discrete points, as shown in Table 4. In
Table4, T =2s,h = 0.1 ms.

Table 4. Comparison of CPU consumption time between three algorithms.

N PSM-BVM2 PSM-BVM3 PSM-DQM2
8 0.936 s 1.172s 5.386 s
12 1.013 s 1.948 s 5.742s

From Table 4, it can be seen that the average CPU consumption time is 0.9745 s for the PSM-BVM2,
1.560 s for the PSM-BVM3, and 5.564 s for the PSM-DQM?2, which indicated that the PSM-BVM3 and
PSM-BVM2 have higher computation efficiency. Moreover, the runtime of the PSM-BVM3 is larger
than the PSM-BVM2. But considering the measurement accuracy and the runtime cost, the PSM-BVM3
exhibits the most improved performance than the PSM-DQM?2 and the PSM-BVM2, which can prove
that the higher runtime required by PSM-BVM3 (see Table 4) is justified by an improvement in the
quality of the solutions.

5.2. Test for Example 2

In Equation (10), ap = 1/m, by = —4, kg = 4,c = 0, d = 1. In the same way, the initial value
and Dirichlet boundary condition are determined by analytic solution of w(z,t) = ¢~ cosh(nz). The
number of spatial discrete points is N” = 14. h = 0.001 s, T = 15 s. Here the PSM-BVM2 (8 = —6) and
PSM-BVM3 (0 = —3) are used to solve, by using the analytic solution of (10) as the benchmark. The
absolute error of the two methods err(z,t) = |5 (z,t) —w(z, t)| are tracked, where @ is the numerical
solution. The error curves are shown in Figures 2 and 3. The numerical results of PSM-BVM3 w(z, t)
and analytical solutions of example 2 are shown in Figures 4 and 5. Only part of sample points are
intercepted in Figures 2-5.

Figure 2. Three-dimensional curve of absolute error of the PSM-BVM3.
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Figure 5. Analytic solutions of example 2.

From Figures 2 and 3 we can see that both the PSM-BVM2 and PSM-BVM3 can well track
the transient response process of analog transmission lines, and the calculation errors are generally
decreasing with the change of time, so the algorithm has good convergence. In the time domain, the
PSM-BVM3 has better calculation accuracy than the PSM-BVM2.

From Figures 4 and 5, the numerical results of the PSM-BVM3 are almost the same as the real
analytical solutions, which fully shows that the algorithm is unconditionally stable in the time domain
and the spectral precision is convergent in the space domain.

In conclusion, the example 1 shows that the PSM-BVM2 and PSM-BVM3 are more accurate and
efficient than the PSM-DQM?2, and example 2 shows that the numerical stability of the proposed
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algorithm can be guaranteed after long time integration process. Therefore, compared with the
PSM-DQM2, PSM-BVM2, and PSM-BVM3 have higher precision and efficiency, and good numerical
stability, so they can simulate the transient response process of transmission line for a long time.

5.3. Calculation of Transient Response of Nondestructive Transmission Line

In order to validate the feasibility and effectiveness of the proposed coupled method in practical
cases, the example of the transient response of transmission line is carried out, in which the
comparison between the PSM-BV3, PSM-BVM2 and the pseudospectral method—trapezoid rule
(PSM-TR) is presented.

The simulation circuit diagram of nondestructive transmission line is shown in Figure 6. And the
parameters of the transmission are set as:

R, =100Q 1 = 400km
— - :

C) e, =220kV R, [
il L L L]

| I |
L~
M\
a
| |
11
Sy —

Figure 6. Nondestructive transmission line circuit.

The excitation source is a step voltage source ¢; = 100¢(t) kV where ¢(t) is a unit step function.
The internal resistance of source is Rg = 100 Q). The transmission line length is I = 400 km, and
the distribution parameters of transmission line are Ly = 2.5 x 1077H/m, Cyp = 1.0 x 1071°F/m. The
maximum transmission speed in the transmission line is v = 2 X 108m/s. The load parameters are:
resistance Ry, = 200 (), inductance L; = 300 mH, capacitance C; = 3000 pF. The number of spatial
discrete points of the PSM is N = 7. The time integral step length of the PSM-BVM3, PSM-BVM2
and PSM-TR are hi; = 8.0 x 1078s, iy = 8.0 x 10785 and /13 = 1.0 X 10785, respectively. The calculation
results of end terminal load voltage of nondestructive transmission line are shown in Figure 7, in which
(a) is the result of the PSM-BVM3, (b) is the result of the PSM-BVM2 and (c) is the result of the PSM-TR.

It can be obtained from Figure 7 that the calculation results of steady state voltage of the three
numerical methods are consistent, and the value is about 130 kV. The transient load voltage calculated
by the PSM-BVMS3 did not generate numerical oscillation due to the abrupt change of excitation signal,
while for the PSM-BVM2 a little numerical oscillation appears in the calculation result and for the
PSM-TR a large number of high frequency components are included in the calculation result. The
reason is the time integral step of the PSM-BVM3 is large, and error accumulation can be well avoided,
so numerical oscillation can be effectively avoided. Moreover, the time step of the PSM-BVM3 is
larger than that of the PSM-TR, but the PSM-BVM3 is better than the PSM-TR in transient response of
transmission line, which proves the improved effectiveness of the proposed coupled method.

The simulation results show that the proposed new method exhibits improved performance of
faster decay rate to reduce the truncation error, which can effectively suppress the numerical oscillation
phenomenon and reduce the transient calculation error of the transmission line caused by the oscillation.
Besides, the proposed coupled method can compensate the drawback of the pseudospectral method
which results in numerical instability caused by the singularity at the boundary and can also improve
the calculation accuracy. Moreover, it can make improvements regarding the disadvantage of the
boundary value method in which it is not easy to change the step size and the computational efficiency
of which is not high. In conclusion, the method has the advantages of high computational precision,
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high computational efficiency, and numerical stability and is easy to expand in the practical application
of transmission line problems in complex systems.

160 : : ‘ ‘ 160
140 1 1or \/\\
120 120
100 | 100l
2 8oF > 80
) =
5 60 ERC)
af . sl
20F 1 ok
o—— op—
20 ‘ ‘ : : ‘ : ‘ 2 . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
t/us tus
(a) (b)
160
140
120 -
100 -
> 8o0f
=
1
=
40
20
ob—
20 ‘ ‘ ‘ ‘ ‘ . ‘
0 200 400 600 800 1000 1200 1400 1600
t/us
(c)

Figure 7. The calculation results of end terminal load voltage of nondestructive transmission line.
(a) PSM-BVMS3; (b) PSM-BVM2; (c) PSM-TR.

6. Conclusions

A Chebyshev pseudospectral-two-step three-order boundary value coupled method to resolve
the transient response of transmission line is proposed in this study. In the given Chebyshev grid
points, the telegraph equation is dispersed in space domain by the Chebyshev pseudospectral method,
and the first-order linear differential equation is obtained. Moreover, such equation can be obtained by
using the two-step three-order boundary value method to discrete the differential equation in the time
domain. To avoid dimension disaster, the catch-up method of block tridiagonal is used to solve this
equation. The numerical examples and simulation example prove that:

(1) The numerical results show that the coupled method in this paper is more accurate, efficient,
and stable than the conventional PSM-DQM and PSM-BVM2 in the time domain. Moreover, the
proposed coupled method is unconditionally stable in the time domain, and the spectral precision is
convergent in the space domain. Furthermore, through the simulation of the lossless transmission
line, it is proved that the proposed coupled method can better simulate the transient response of
transmission line and can be applied in the practical application.
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(2) The proposed coupled method exhibits improved performance of faster decay rate to reduce
the truncation error, which can effectively suppress the numerical oscillation phenomenon and reduce
the transient calculation error of the transmission line caused by the oscillation.

(3) The proposed coupled method can compensate the drawback of the pseudospectral method
which results in numerical instability caused by the singularity at the boundary and can also improve
the calculation accuracy. Moreover, it can improve on the disadvantage of the boundary value method,
in which it is not easy to change the step size and the computational efficiency of which is not high.

Theoretical analysis and numerical simulation reveal that the proposed Chebyshev PSM-BVM3 has
higher computation accuracy, efficiency, and better numerical stability. The coupled method is suitable
for solving the transient response of the transmission line in the power system. Besides, applying the
couple method, the issue of transmission oscillation and inaccurate signal transmission caused by delay,
distortion, and crosstalk on the transmission line can be resolved. Furthermore, by employing the
proposed method, the excitation signal in the power system can be accurately transmitted to the load.
Therefore, the calculation benefit problem caused by the measurement inaccuracy can be improved,
and the economic loss in the power system can be reduced.

Transient electromagnetic response on the transmission line can be coupled to the secondary
and protection device, which will cause the secondary and protection device work abnormaly.
Therefore, in order to accurately predict the electromagnetic transient process of transmission line, it
is significant to analyze the transient response process of the transmission line. Thus, the proposed
Chebyshev PSM-BVM3 method for transmission line transient response is significant in electromagnetic
compatibility research.
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