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Abstract: Imprecise constrained matrix games (such as fuzzy constrained matrix games,
interval-valued constrained matrix games, and rough constrained matrix games) have attracted
considerable research interest. This article is concerned with developing an effective fuzzy
multi-objective programming algorithm to solve constraint matrix games with payoffs of fuzzy
rough numbers (FRNs). For simplicity, we refer to this problem as fuzzy rough constrained matrix
games. To the best of our knowledge, there are no previous studies that solve the fuzzy rough
constrained matrix games. In the proposed algorithm, it is proven that a constrained matrix game
with fuzzy rough payoffs has a fuzzy rough-type game value. Moreover, this article constructs four
multi-objective linear programming problems. These problems are used to obtain the lower and
upper bounds of the fuzzy rough game value and the corresponding optimal strategies of each player
in any fuzzy rough constrained matrix games. Finally, a real example of the market share game
problem demonstrates the effectiveness and reasonableness of the proposed algorithm. Additionally,
the results of the numerical example are compared with the GAMS software results. The significant
contribution of this article is that it deals with constraint matrix games using two types of uncertainties,
and, thus, the process of decision-making is more flexible.

Keywords: fuzzy rough number; rough interval arithmetic; constraint matrix games;
fuzzy multi-objective programming; game theory

1. Introduction

Different types of uncertainty (such as fuzziness, randomness, ambiguity, roughness) are common
in many real-life decision-making problems, including matrix games. Determining how to represent
uncertain information is one of the most critical issues among other uncertainty-related problems.
However, decision-makers might face hybrid uncertain scenarios where roughness and fuzziness exist
simultaneously. In such scenarios, fuzzy rough numbers (FRNs) are used to model the decision-making
problem. Roughness and fuzziness play a significant role among types of uncertainty problems. Dubois
and Prade [1] discussed the fuzzification of rough sets. Moreover, Morsi and Yakout [2] defined the lower
and upper approximations of the fuzzy rough sets. Rough programming and fuzzy programming have
been proposed for decision-making problems under uncertainty. In these decision-making problems,
fuzziness and roughness are considered separate aspects. Several researchers have studied the issue of
combining roughness and fuzziness in a general framework for the study of fuzzy rough sets. Recently,
the fuzzy rough set has been considered in several practical problems. As an illustration, Wang [3]
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studied the mining of stock price by using a fuzzy rough set system. Shen et al. [4] adopted a fuzzy
rough estimator to study algae populations models, given specific water characteristics. Additionally,
the false-negative and false-positive effects on network attacks have been examined by Yilun Shang [5].
Bhatt et al. [6] proposed a fuzzy rough set algorithm for feature selection. Furthermore, Liu et al. [7]
introduced some properties and definitions of fuzzy rough numbers. Liu et al. [8] studied a fuzzy
rough set for the task of scheduling models. Finally, Yilun Shang [9] studied the robustness of scale-free
networks under attack with tunable grey information.

Game theory is a mathematical tool to study the conflict and cooperation among intelligent, rational
decision-makers. It has many applications in specialized fields such as finance, strategic welfares,
management problems, political voting systems, economic auctions, social problems, and military
issues [10–13]. Because of the imprecision or lack of the available information in real game theory,
the players can only estimate the payoff value with some imprecise degree. In order to make the
constrained matrix game more applicable to real competitive decision-making problems, fuzzy rough
numbers [1] have been applied to describe uncertain and imprecise information appearing in the
constrained matrix game. The fuzzy rough game theory provides an efficient framework which solves
real-life cooperative and conflict problems with fuzzy rough information. It is an interesting research
field not only for mathematicians but also for biologists, behavioral scientists, economists, medical
doctors, environmentalists, and pattern recognizers.

In recent years, many research articles examined imprecise matrix games; for example, linear
programming has been adopted to solve the zero-sum two-person game with payoffs of grey
numbers [14]. Ammar et al. [15] studied constraint matrix games with rough interval payoffs.
Bector et al. [16] studied the duality fuzzy linear programming for matrix games with fuzzy payoffs
and fuzzy goals. Takahashi [17] analyzed the zero-sum two-person matrix game under random
environment. Chunqiao Tan et al. [18] studied Bertrand game in a fuzzy number environment.
Jana et al. [19] examined the solution of matrix games with generalized trapezoidal fuzzy payoffs.
Prasanta Mula et al. [20] proposed a bi-rough programming algorithm for solving bi-matrix games
with bi-rough payoffs. Li and Nan [21] studied imprecise matrix games in a triangular intuitionistic
fuzzy environment. Jiang-Xia Nan et al. [22] studied constraint matrix games with interval payoffs.
Deng-Feng Li et al. [23] analyzed an alfa-cut linear programming algorithm for solving fuzzy constrained
matrix games. Also, Roy [24] discussed the game theory with the fuzzy set theory and multi-criteria
decision-making. Jana et al. [25] considered dual hesitant fuzzy matrix games based on a new
similarity measure. Aggarwal et al. [26] discussed the solution of matrix game with I-fuzzy payoffs.
Bhaumik et al. [27] developed a robust ranking algorithm to solve matrix game with Atanassov’s
intuitionistic fuzzy payoffs. Roy et al. [28] studied intelligent water management with a triangular
type-2 intuitionistic fuzzy matrix games approach.

In this article, we propose a novel algorithm for solving fuzzy rough constrained matrix games.
The lower and upper bounds of the fuzzy rough game value of any fuzzy rough constrained matrix
games can be determined by solving the four multi-objective linear programming models as shown in
Equations (13)–(16). These multi-objective models can be solved using any of the known multi-objective
optimization algorithms, such as goal programming, interactive approaches, fuzzy programming,
and utility theory [29,30]. However, in this article, we develop a fuzzy multi-objective programming
algorithm using Zimmermann’s fuzzy programming algorithm [31].

The main contributions of this article are summarized as follows:

• Developing a new type of constraint matrix games with payoffs of fuzzy rough numbers.
• Constructing fuzzy models from the proposed fuzzy rough models.
• Solving the derived multi-objective models using Zimmermann’s programming approach [31].
• Solving the reduced crisp models using LINGO-14.0 (Lindo Systems, Chicago, IL, USA).
• Demonstrating the models and algorithm with the help of a real example of the market share

game problem [32], obtaining optimal strategies.
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The remainder of this article is organized as follows: Section 2 introduces some essential definitions
such as triangular fuzzy variables, rough variables, and fuzzy rough variables. Section 3 presents the
classical constrained matrix games and their properties. Constrained matrix game with payoffs of FRNs
and Zimmermann method for solving fuzzy multi-objective programming models are introduced in
Section 4. Section 5 presents a numerical experiment of the market share problem that demonstrates
the applicability and validity of the proposed algorithm and models. Finally, Section 6 presents the
conclusions of this work.

2. Preliminaries

Here, we include some properties and concepts of fuzzy variables, rough variables, and fuzzy
rough variables, which are applied in the following sections.

2.1. Triangular Fuzzy Number TFNs

Definition 1 [31] (p. 11): A fuzzy set B̃, defined on the universal set Y is the family B̃ =
{(

y,µB̃(y)
)

: y ∈ Y
}
,

where µB̃ : Y → [0, 1] is the membership function such that µB̃(y) = 0 if y does not belong to B̃, µB̃(y) = 1
if y strictly belongs to B̃.

Definition 2 [31] (p. 14): The support of B̃, represented by supp(B̃), is the set of points y ∈ Y at which µB̃
is positive.

Definition 3 [31] (p. 14): B̃ is normal if there is y ∈ Y such that µB̃(y) = 1.

Definition 4 [33] (p. 23): Let R be the real numbers set, the fuzzy number B̃ is a mapping µB̃ : R→ [0, 1] ,
with the following properties.

(1) µB̃ is the upper semi continuous membership function,

(2) B̃ is the convex fuzzy set, i.e., µB̃(λy + (1− λ)z) ≥ min
[
µB̃(y),µB̃(z)

]
for all y, z ∈ R, λ ∈ [0, 1],

(3) B̃ is normal,

(4) suppB̃ =
{
y ∈ R : µB̃(y) > 0

}
is a support of B̃.

Definition 5 [33] (p. 24): A fuzzy number ẽ = ( e
¯
, e, e ) is said to be a triangular fuzzy number if its

membership function is defined as follows:

µẽ(y) =


y−e

¯e−e
¯

i f e
¯
≤ y < e

1 i f y = e
e−y
e−e i f e < y ≤ e
0 else,

where e is the mean of ẽ, and e and e
¯

are the upper and lower limits of ẽ, respectively. If e
¯
= e = e then TFN

ẽ = ( e
¯
, e, e ) is reduced to a real number.

Definition 6 [33] (p. 24): The α-cut set of the triangular fuzzy number ẽ = ( e
¯
, e, e ) is defined as

ẽ(α) =
{
y
∣∣∣µẽ(y) ≥ α

}
, where α ∈ [0, 1]. Thus, for any α ∈ [0, 1], we can obtain an α-cut set of the triangular

fuzzy number ẽ, which is an interval, denoted by ẽ(α) =
[
eL(α), eR(α)

]
= [αe + (1− α)e

¯
, αe + (1− α)e].

Corollary 1 [34] (p. 374): Let d̃ =
(

d
¯
, d, d

)
and ẽ = ( e

¯
, e, e ) be any two triangular fuzzy numbers. Then,

their arithmetical operations can be represented as follows:

(1)d̃ + ẽ =
(

d
¯
+ e

¯
, d + e, d + e

)



Symmetry 2019, 11, 702 4 of 26

(2)d̃− ẽ =
(

d
¯
− e, d− e, d− e

¯

)
(3)β̃e =

{
( βe

¯
, βe, βe ) i f β ≥ 0

( βe, βe, βe
¯
) i f β < 0

where β , 0 is any real number.

Definition 7 [34] (p. 374): Let d̃ =
(

d
¯
, d, d

)
and ẽ = ( e

¯
, e, e ) be two triangular fuzzy numbers. Then, d̃ ≤ ẽ

if, and only if, d
¯
≤ e

¯
, d ≤ e, and d ≤ e. Similarly, d̃ ≥ ẽ if, and only if, d

¯
≥ e

¯
, d ≥ e, and d ≥ e.

Definition 8 [34] (p. 375): Let ẽ = ( e
¯
, e, e ) be any triangular fuzzy number. The maximization triangular

fuzzy numbers problem is represented as follows:

max
{̃
e
}

s.t. ẽ ∈ η1 ∩ TFN(R)

which is equivalent to the multi-objective mathematical programming problem as follows:

max{ e
¯
}

max{ e }
max

{
e
}

s.t.


ẽ ∈ η1

e
¯
≤ e ≤ e

e
¯
, e and e unrestricted in sign,

where TFN(R) is the triangular fuzzy numbers set, and η1 is the constraints set.

Definition 9 [34] (p. 375): Let ẽ = ( e
¯
, e , e ) be any triangular fuzzy number. The minimization triangular

fuzzy numbers problem is represented as follows:

min
{̃
e
}

s.t. ẽ ∈ η2 ∩ TFN(R)

which is equivalent to the multi-objective mathematical programming model, as follows:

min
{

e
}

min{ e}
min

{
e
}

s.t.


ẽ ∈ η2

e
¯
≤ e ≤ e

e
¯
, e and e unrestricted in sign,

where η2 is the constraints set.

2.2. Rough Interval

Definition 10 [35] (p. 342): Let σ be the universal set, R be the equivalence relation on σ, [σ]R be the equivalence
class set of R, and Υ be a nonempty subset of σ. The lower and upper approximations of the set Υ are defined as

RΥ =
{
σ ∈ σ : [σ]R ⊆ Υ

}
RΥ =

{
σ ∈ σ : [σ]

R
∩ Υ , φ

}
ℵΥ = RΥ−RΥ
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If ℵΥ , φ, then set Υ is called rough set.

Definition 11 [36] (p. 487): The qualitative value BR is called a rough interval (RI) when one can assign two
closed intervals BL and BU on a real number set R to it, where BL

⊆ BU. Moreover,

(i) If y ∈ BL, then BR surely takes y (denoted by y ∈ BR).
(ii) If y ∈ BU, then BR possibly takes y.
(iii) If y < BU, then BR surely does not take y (denoted by y < BR).

BU and BL are called the upper approximation interval and lower approximation interval of BR, respectively.
Further, BR is denoted by BR =

[
BL : BU

]
.

Definition 12 [37] (p. 677): Let * ∈ {+, −, ., /} be a binary operation on rough intervals. For two rough
intervals number ζR and ωR, when ζR

≥ 0 and ωR
≥ 0, we have:

(1)ζR + ωR =
[(
ζU +ωU

)
:
(
ζL +ωL

)]
,

(2)ζR
− ωR =

[(
ζU
−ωU

)
:
(
ζL
−ωL

)]
,

(3)ζR. ωR =
[(
ζU.ωU

)
:
(
ζL.ωL

)]
,

(4)ζR/ ωR =
[(
ζU/ωU

)
:
(
ζL/ωL

)]
,

If ζU =
[
ζU, ζ

U
]
, ζL =

[
ζL, ζ

L
]
, ωU =

[
ωU,ωU

]
, and ωL =

[
ωL,ωL

]
Then

(1)ζR + ωR =
[[
ζU +ωU, ζ

U
+ωU

]
:
[
ζL +ωL, ζ

L
+ωL

]]
,

(2)ζR
− ωR =

[[
ζU
−ωU, ζ

U
−ωU

]
:
[
ζL
−ωL, ζ

L
−ωL

]]
,

(3)ζR. ωR =
[[
ζU.ωU, ζ

U
.ωU

]
:
[
ζL.ωL, ζ

L
.ωL

]]
,

(4)ζR/ ωR =
[[
ζU/ωU, ζ

U
/ωU

]
:
[
ζL/ωL, ζ

L
/ωL

]]
.

Definition 13 [38] (p. 1700): Let ζR =
[
ζL : ζU

]
be a rough value. Then, the lower trust measure of the

rough event ζR
≤ a is defined by TrL

{
ζR
≤ a

}
=

Card(z∈ζL:z≤a)
Card(ζL)

, where Card () represents the cardinal number.
Similarly, the upper trust measure is defined by

TrU
{
ζR
≤ a

}
=

Card
(
z ∈ ζU : z ≤ a

)
Card(ζU)

The trust measure of the rough event is defined by Tr
{
ζR
≤ a

}
= 1

2

{
TrL

{
ζR
≤ a

}
+ TrU

{
ζR
≤ a

}}
.

Definition 14 [38] (p. 1700): Let ζ = ([e, f ], [g, h]) be a rough interval (RI) such that g≤e≤f≤h, then the trust
measure of a rough event ζ ≤ a is defined as

Tr{ζ ≤ a} =



0 i f a ≤ g
1
2

(
g−a
g−h

)
, i f g ≤ a ≤ e

1
2

(
g−a
g−h + e−a

e− f

)
, i f e ≤ a ≤ f

1
2

(
g−a
g−h + 1

)
, i f f ≤ a ≤ h

1 i f a ≥ h
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and the β- pessimistic value of ζ is

ζin f (β) = in f
{
a : Tr{ζ ≤ a} ≥ β

}
=


(1− 2β)g + 2βh, i f β ≤ e−g

2(h−g)

2(1− α)g + (2β− 1)h, i f β ≥ f+h−2g
2(h−g)

g( f−e)+e(h−g)+2β( f−e)(h−g)
( f−e)+(h−g) , otherwise

Theorem 1 [7] (p. 95): Let ζ = ([e, f ] : [g, h]), where (g ≤ e ≤ f ≤ h) is a RI. Then the expected value of ζ is
E(ζ) = 1

2 [α(e + f ) + (1− α) (g + h)].

2.3. Fuzzy Rough Number

Definition 15 [39] (p. 2102): Let Z denote a compact real numbers set. A fuzzy rough variable Z̃R is defined as
Z̃R =

[
Z̃L : Z̃U

]
, where Z̃L and Z̃U are fuzzy numbers called lower and upper approximation fuzzy numbers

of Z̃R with Z̃L
v Z̃U. Supposing D̃R, ẼR

∈ ĨR, we can write D̃R =
[
D̃L : D̃U

]
, ẼR =

[
ẼL : ẼU

]
, where

D̃L, D̃U, ẼL, and ẼU are triangular fuzzy numbers defined as:

D̃L =
(
d
¯

L, dL, d
L
)
, D̃U =

(
d
¯

U, dL, d
U
)
, ẼL =

(
e
¯
L, eL, eL

)
, and ẼU =

(
e
¯
U, eL, eU

)
where d

¯
U
≤ d

¯
L
≤ dL

≤ d
L
≤ d

U
and e

¯
U
≤ e

¯
L
≤ eL

≤ eL
≤ eU.

Definition 16 [39] (p. 2103): For the fuzzy rough Z̃R, the following holds:

i. Z̃R
≥ 0̃R, iff Z̃L

≥ 0̃ and Z̃U
≥ 0̃

ii. Z̃R
≤ 0̃R, iff Z̃L

≤ 0̃ and Z̃U
≤ 0̃.

Definition 17 [39] (p. 2103): A fuzzy rough interval D̃R =
[
D̃L : D̃U

]
is said to be normalized if D̃L and D̃U

are normal.

Definition 18 [39] (p. 2103): Let D̃R =
[
D̃L : D̃U

]
and ẼR =

[
ẼL : ẼU

]
be two fuzzy rough intervals in R.

We write D̃R = ẼR if, and only if, D̃L � ẼL and D̃U � ẼU.

Definition 19 [39] (p. 2104): The α-cut set of a fuzzy rough interval D̃R is defined as:
(
D̃R

)
α
=

[
D̃L

α : D̃U
α

]
=[

(d
¯

L(α), d
L
(α)) : (d

¯
U(α), d

U
(α))

]
, where D̃L

α and D̃U
α are intervals with D̃L

α v D̃U
α.

Definition 20 [39] (p. 2104): For any two fuzzy rough intervals D̃R =
[
D̃L : D̃U

]
and ẼR =

[
ẼL : ẼU

]
, when

D̃R
≥ 0̃R and ẼR

≥ 0̃R, the operation for fuzzy rough numbers can be written as follows:

(1)D̃R + ẼR =
[(

D̃L + ẼL
)

:
(
D̃U + ẼU

)]
,

(2) D̃R
− ẼR =

[(
D̃L
− ẼL

)
:
(
D̃U
− ẼU

)]
,

(3) D̃R
× ẼR =

[(
D̃L
× ẼL

)
:
(
D̃U
× ẼU

)]
,

(4)D̃R
÷ ẼR =

[(
D̃L
÷ ẼL

)
:
(
D̃U
÷ ẼU

)]
.

3. The Classical Constraint Matrix Games

In this Section, a review of the classical constraint matrix games [40] is presented. Let S1 ={
γ1,γ2, . . . .,γm

}
and S2 =

{
ρ1,ρ2, . . . .,ρn

}
be sets of pure strategies for each player. The player I’s

payoff matrix can be represented as A =
(
ai j

)
m×n

. The mixed strategies vectors are expressed as

p =
(
p1, p2, . . . ., pm

)T
and q =

(
q1, q2, . . . ., qn

)T
. Players I and II respectively must select their mixed
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strategies p and q from convex polyhedrons, which are defined as constrained sets determined by
some inequalities and equations. Let P =

{
p : DTp ≤ h, p ≥ 0

}
be player I’s strategy constrained set,

where h = (h1, h2, . . . ., hc)
T, D = (dil)m×c, and c is a positive integer. Let Q =

{
q : FTq ≥ r, q ≥ 0

}
be player II’s strategy constrained set, where r = (r1, r2, . . . ., rd)

T, F =
(
fkj

)
d×n

, and d is a positive

integer. Note that DTp ≤ h includes
∑m

i=1 pi = 1, since
∑m

i=1 pi = 1 is equivalent to both
∑m

i=1 pi ≤ 1
and −

∑m
i=1 pi ≥ −1. Similarly, FTq ≤ r includes

∑m
i=1 qi = 1.

Thus, a constrained matrix game A means that player I’s payoff matrix is A, and player II’s payoff

matrix is −A, and the strategies’ constrained sets for player I and II are P and Q, respectively.
Suppose that players I and II, respectively, select their optimal strategies from the constrained

sets P and Q in order to maximize their payoffs, then player I’s expected payoff can be represented as
follows:

pTAq =
m∑

i=1

n∑
j=1

piai jq j. (1)

Thus, player I will select strategy p∗ ∈ P that satisfies

min
q ∈ Q

{
p∗TAq

}
=

max
p ∈ P

min
q ∈ Q

{
pTAq

}
= u (2)

where u is player I’s gain-floor.
Similarly, player II chooses strategy q∗ ∈ Q that satisfies

max
p ∈ P

{
pTAq∗

}
=

min
q ∈ Q

max
p ∈ P

{
pTAq

}
= v (3)

where v is the player II’s loss-ceiling

Definition 21 [40]: If p∗ ∈ P and q∗ ∈ Q, the following conditions are satisfied:

p∗TAq∗ =
max
p ∈ P

min
q ∈ Q

{
p∗TAq

}
=

min
q ∈ Q

max
p ∈ P

{
pTAq∗

}
(4)

Then, (p∗, q∗) is called the saddle point, and u = p∗TAq∗ is called the game value of the constrained matrix game
A.

Theorem 2 [40]: If (q∗, z∗)T and (p∗, y∗)T are feasible solutions of the two linear programming problems as
follows:

max
{
rTy

}
s.t.


FTy−ATp ≤ 0

DTp ≤ h
y ≥ 0
p ≥ 0

(5)

and
min

{
hTz

}
s.t.


Dz−Aq ≥ 0

Fq ≥ r
z ≥ 0
q ≥ 0

(6)

respectively. Then, (p∗, q∗) is the saddle point, and u = rTy∗ = hTz∗ is the game value of the constrained matrix
game A.
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Theorem 3 [40]: If there exists (p∗, q∗), where p∗ ∈ P, and q∗ ∈ Q, so that

pTAq∗ ≤ p∗TAq∗ ≤ p∗TAq

for all p∗ ∈ P and q∗ ∈ Q, then (p∗, q∗) is the saddle point, and u = p∗TAq∗ is the game value of the constrained
matrix game A.

4. Fuzzy Rough Constraint Matrix Games and Solutions Algorithm

4.1. Fuzzy Rough Constraint Matrix Games

The constrained matrix game problem has been extensively studied in the literature in uncertain
environments [22,23]. However, in some real situations, a single uncertain environment (such as rough,
fuzzy, stochastic, etc.) is not enough to tackle the situation. In such situations, one can introduce
a constrained matrix game with payoffs of fuzzy rough numbers (hybrids of a fuzzy variable with
a rough variable). Let us consider a constrained matrix game with FRNs payoffs, where mixed

strategy P̃
R

and Q̃
R

would be fuzzy rough sets on S1 and S2. The fuzzy rough payoff matrix of player

I is expressed as Ã
R
=

(̃
aR

ij
)
m×n

, where each ãR
ij is a fuzzy rough number, ãR

ij =
[̃
aij

L : ãij
U
]
=[(

aij
L, aij

L, aij
L
)

:
(
aij

U, aij
L, aij

U
)]
(i = 1, 2, . . . ., m; j = 1, 2, . . . ..n). P̃

R
=

{
p : D̃

RTp ≤ h̃
R

, p ≥ 0
}

and

Q̃
R
=

{
q : F̃

RTq ≥ r̃R, q ≥ 0
}

represent the fuzzy rough constraint sets of strategies for player I and II,

where h̃
R
=

(̃
h

R
1, h̃

R
2, . . . ., h̃

R
c

)T
and r̃R =

(̃
rR

1, r̃R
2, . . . ., r̃R

d
)T

are vectors of fuzzy rough numbers, and

D̃
R
=

(
d̃

R
il

)
m×c

and F̃
R
=

(̃
f
R

kj

)
d×n

are fuzzy rough matrixes, with h̃
R

l =
[(

hl
L, hl

L, hl
L
)

:
(
hl

U, hl
L, hl

U
)]

, r̃R
k =

[(
rk

L, rk
L, rk

L
)

:
(
rk

U, rk
L, rk

U
)]

, d̃
R

il =
[(

dil
L, dil

L, dil
L
)

:
(
dil

U, dil
L, dil

U
)]

, and f̃
R

kj =[(
fkj

L, fkj
L, fkj

L
)

:
(
fkj

U, fkj
L, fkj

U
)]
(l = 1, 2, . . . c; j = 1, 2, . . . ..n; k = 1, 2, . . . .d; i = 1, 2, . . .m).

Then, a constrained matrix game with payoffs of fuzzy rough numbers and sets of strategies P̃
R

and Q̃
R

being fuzzy rough constraint sets is simply called a fuzzy rough constrained matrix game.
Thus, Equations (5) and (6) can be expressed in the following corresponding fuzzy rough

mathematical programming models as follows:

max
{̃
rRT y

}
s.t.


F̃

RT y− Ã
RT p ≤ 0

D̃
RT p ≤ h̃

R

y ≥ 0
p ≥ 0

(7)

and
min

{
h̃

RT z
}

s.t.


D̃

R
z− Ã

RT q ≥ 0

F̃
RT q ≥ r̃RT

z ≥ 0
q ≥ 0

(8)

If (p∗, y∗)T is the optimal solution of Equation (7), p∗ is called an optimal strategy of player I in
the fuzzy rough constraint matrix game. Likewise, if (q∗, z∗)T is the optimal solution of Equation (8),
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q∗ is called an optimal strategy of player II in the fuzzy rough constraint matrix game, and (p∗, q∗)T is
called a solution of the fuzzy rough constraint matrix game. Denote

ũ∗R = r̃RT y∗

and
ṽ∗R = h̃

RT z∗

Then, ṽ∗R and ũ∗R are called player II’s loss-ceiling and player I’s gain-floor, respectively.

Theorem 4: Suppose that (p∗, y∗)T and (q∗, z∗)Tare the optimal solutions of Equation (7) and (8) , respectively.

Denote ũ∗R = r̃RT y∗ and ṽ∗R = h̃
RT z∗. Then, ṽ∗R and ũ∗R are fuzzy rough numbers.

We follow the method introduced in [39] to convert fuzzy rough mathematical programming
problems (Equations (7) and (8)) into general fuzzy mathematical programming problems as follows:

max
{̃
rLT y

}
s.t.


F̃

LTy− Ã
LT p ≤ 0

D̃
LT p ≤ h̃

L

y ≥ 0
p ≥ 0

(9)

max
{̃
rUT y

}
s.t.


F̃

UT y− Ã
UT p ≤ 0

D̃
UT p ≤ h̃

U

y ≥ 0
p ≥ 0

(10)

min
{
h̃

LT z
}

s.t.


D̃

L
z− Ã

LT q ≥ 0

F̃
LT q ≥ r̃LT

z ≥ 0
q ≥ 0

(11)

and
min

{
h̃

UT z
}

s.t.


D̃

U
z− Ã

UT q ≥ 0

F̃
UT q ≥ r̃UT

z ≥ 0
q ≥ 0

(12)
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Equations (9)–(12) are fuzzy mathematical programming models. According to Corollary 1 and
Definition 8 or Definition 9, Equations (9)–(12) can be transformed into the multi-objective linear
programming models as follows:

max
{
rLT y

}
max

{
rLT y

}
max

{
¯
r

L
T y

}

s.t.



FLTy−ALT p ≤ 0
FLTy−ALT p ≤ 0
¯
F

L
Ty−

¯
A

L
T p ≤ 0

DLT p ≤ hL

DLT p ≤ hL

¯
D

L
T p ≤

¯
h

L

y ≥ 0
p ≥ 0

(13)

where rL =
(
r1

L, r2
L, . . . ., rd

L
)T

, rL =
(
r1

L, r2
L, . . . ., rd

L
)T

, and
¯
r

L
=

(
r1

L, r2
L, . . . ., rd

L
)T

,

max
{
rUT y

}
max

{
rUT y

}
max

{
¯
r

U
T y

}

s.t.



FUTy−AUT p ≤ 0
FUTy−AUT p ≤ 0
¯
F

U
Ty−

¯
A

U
T p ≤ 0

DUT p ≤ hU

DUT p ≤ hU

¯
D

U
T p ≤

¯
h

U

y ≥ 0
p ≥ 0

(14)

where rU =
(
r1

U, r2
U, . . . ., rd

U
)T

, rU =
(
r1

U, r2
U, . . . ., rd

U
)T

, and
¯
r

U
=

(
r1

U, r2
U, . . . ., rd

U
)T

,

min
{
hLT z

}
min

{
hLT z

}
min

 ¯
h

L
T z



s.t.



DLz−ALT q ≥ 0
DLz−ALT q ≥ 0
¯

D
L

z−
¯

A
L

T q ≥ 0
FLT q ≥ rLT

FLT q ≥ rLT

¯
F

L
T q ≥

¯
r

L
T

z ≥ 0
q ≥ 0

(15)
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where hL =
(
h1

L, h2
L, . . . ., hd

L
)T

, hL =
(
h1

L, h2
L, . . . ., hd

L
)T

, and
¯
h

L

=
(
h1

L, h2
L, . . . ., hd

L
)T

and

min
{
hUT z

}
min

{
hUT z

}
min

 ¯
h

U
T z



s.t.



DUz−AUT q ≥ 0
DUz−AUT q ≥ 0
¯

D
U

z−
¯

A
U

T q ≥ 0
FUT q ≥ rUT

FUT q ≥ rUT

¯
F

U
T q ≥

¯
r

U
T

z ≥ 0
q ≥ 0

(16)

where hU =
(
h1

U, h2
U, . . . ., hd

U
)T

, hU =
(
h1

U, h2
U, . . . ., hd

U
)T

, and
¯
h

U

=
(
h1

U, h2
U, . . . ., hd

U
)T

.

4.2. Zimmermann’s Algorithm

In this Subsection, we introduce a fuzzy multi-objective programming algorithm to solve
Equations (13)–(16) by using Zimmermann’s fuzzy programming algorithm [31].

Firstly, we determine the negative and positive ideal solutions of Equation (13) by solving three
mathematical programming problems with three different objective functions. Using the simplex
technique of linear programming problem, we solve the mathematical programming problem as follows:

max
{
rLT y

}

s.t.



FLTy−ALT p ≤ 0
FLTy−ALT p ≤ 0
¯
F

L
Ty−

¯
A

L
T p ≤ 0

DLT p ≤ hL

DLT p ≤ hL

¯
D

L
T p ≤

¯
h

L

y ≥ 0
p ≥ 0

(17)

denoting its optimal solution by
(
pL1+, yL1+

)T
and its optimal objective value by RL+ = rLT yL1+.
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Analogously, according to Equation (13), we solve the mathematical programming problem using
the simplex technique as follows:

max
{
rLT y

}

s.t.



FLTy−ALT p ≤ 0
FLTy−ALT p ≤ 0
¯
F

L
Ty−

¯
A

L
T p ≤ 0

DLT p ≤ hL

DLT p ≤ hL

¯
D

L
T p ≤

¯
h

L

y ≥ 0
p ≥ 0

(18)

denoting its optimal solution by
(
pL2+, yL2+

)T
and its optimal objective value by RL+ = rLT yL2+.

Analogously, according to Equation (13), we solve the mathematical programming problem using
the simplex technique as follows:

max
{

¯
r

L
T y

}

s.t.



FLTy−ALT p ≤ 0
FLTy−ALT p ≤ 0
¯
F

L
Ty−

¯
A

L
T p ≤ 0

DLT p ≤ hL

DLT p ≤ hL

¯
D

L
T p ≤

¯
h

L

y ≥ 0
p ≥ 0

(19)

denoting its optimal solution by
(
pL3+, yL3+

)T
and its optimal objective value by

¯
R

L+
=

¯
r

L
T yL3+.

Therefore, the positive ideal solution of Equation (13) can be represented as

RL+ =

(
RL+, RL+,

¯
R

L+)
. The negative ideal solution of Equation (13) can be expressed as follows:

RL− = min
{
rLT yLθ+

|θ = 1, 2, 3
}
,

RL− = min
{
rLT yLθ+

|θ = 1, 2, 3
}
,

and
¯
R

L−
= min

{
¯
r

L
T yLθ+

|θ = 1, 2, 3
}

The relative membership functions of the three objective functions in Equation (13) can be
computed as follows:

µL
(
rLT y

)
=


1 if rLT y ≥ RL+

rLT y−RL−

RL+
−RL− if RL−

≤ rLT y ≤ RL+

0 if rLT y < RL−,
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µL
(
rLT y

)
=


1 if rLT y ≥ RL+

rLT y−RL−

RL+
−RL− if RL−

≤ rLT y ≤ RL+

0 if rLT y < RL−,

and

µL
(

¯
r

L
T y

)
=


1 if

¯
r

L
T y ≥

¯
R

L+

¯
r
L

T y−
¯
R

L−

¯
R

L+
−

¯
R

L− if
¯
R

L−
≤

¯
r

L
T y ≤

¯
R

L+

0 if rLT y <
¯
R

L−
,

Using Zimmermann’s algorithm [31], Equation (13) is transformed into the linear programming
problem as follows:

max
{
µL

}

s.t.



FLTy−ALT p ≤ 0
FLTy−ALT p ≤ 0
¯
F

L
Ty−

¯
A

L
T p ≤ 0

DLT p ≤ hL

DLT p ≤ hL

¯
D

L
T p ≤

¯
h

L

rLT y−RL−
≥ µL(RL+

−RL−)

rLT y−RL−
≥ µL

(
RL+

−RL−
)

¯
r

L
T y−

¯
R

L−
≥ µL

(
¯
R

L+
−

¯
R

L−)
y ≥ 0
p ≥ 0

0 ≤ µL
≤ 1,

(20)

solving Equation (20) by using the simplex technique, we obtain the lower bound gain-floor ũL and
the optimal strategy p∗L ∈ P for player I.

In the same analysis of Equation (13), according to Equation (14), we solve the mathematical
programming problem using the simplex technique as follows:

max
{
rUT y

}

s.t.



FUTy−AUT p ≤ 0
FUTy−AUT p ≤ 0
¯
F

U
Ty−

¯
A

U
T p ≤ 0

DUT p ≤ hU

DUT p ≤ hU

¯
D

U
T p ≤

¯
h

U

y ≥ 0
p ≥ 0

(21)

denoting its optimal solution by
(
pU1+, yU1+

)T
and its optimal objective value by RU+ = rUT yU1+.
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Analogously, according to Equation (14), we solve the mathematical programming problem using
the simplex technique as follows:

max
{
rUT y

}

s.t.



FUTy−AUT p ≤ 0
FUTy−AUT p ≤ 0
¯
F

U
Ty−

¯
A

U
T p ≤ 0

DUT p ≤ hU

DUT p ≤ hU

¯
D

U
T p ≤

¯
h

U

y ≥ 0
p ≥ 0

(22)

denoting its optimal solution by
(
pU2+, yU2+

)T
and its optimal objective value by RU+ = rUT yU2+.

Analogously, according to Equation (14), we solve the mathematical programming problem using
the simplex technique as follows:

max
{

¯
r

U
T y

}

s.t.



FUTy−AUT p ≤ 0
FUTy−AUT p ≤ 0
¯
F

U
Ty−

¯
A

U
T p ≤ 0

DUT p ≤ hU

DUT p ≤ hU

¯
D

U
T p ≤

¯
h

U

y ≥ 0
p ≥ 0

(23)

denoting its optimal solution by
(
pU3+, yU3+

)T
and its optimal objective value is denoted by

¯
R

U+

=
¯
r

U
T yU3+.

Thus, the positive ideal solution of Equation (14) can be represented as RU+ =

(
RU+, RU+,

¯
R

U+)
.

The negative ideal solution of Equation (14) can be obtained as follows:

RU− = min
{
rUT yUθ+

|θ = 1, 2, 3
}
,

RU− = min
{
rUT yUθ+

|θ = 1, 2, 3
}
,

and
¯
R

U−
= min

{
¯
r

U
T yUθ+

|θ = 1, 2, 3
}

.

The relative membership functions of the three objective functions in Equation (14) can be
expressed as follows:

µU
(
rUT y

)
=


1 if rUT y ≥ RU+

rUT y−RU−

RU+
−RU− if RU−

≤ rUT y ≤ RU+

0 if rUT y < RU−,
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µU
(
rUT y

)
=


1 if rUT y ≥ RU+

rUT y−RU−

RU+
−RU− if RU−

≤ rUT y ≤ RU+

0 if rUT y < RU−,

and

µU
(

¯
r

U
T y

)
=


1 if

¯
r

U
T y ≥

¯
R

U+

¯
r
U

T y−
¯
R

U−

¯
R

U+

−
¯
R

U− if
¯
R

U−
≤

¯
r

U
T y ≤

¯
R

U+

0 if rUT y <
¯
R

U−
,

Using Zimmermann’s algorithm [31], Equation (14) is transformed into the linear programming
problem as follows:

max
{
µU

}

s.t.



FUTy−AUT p ≤ 0
FUTy−AUT p ≤ 0
¯
F

U
Ty−

¯
A

U
T p ≤ 0

DUT p ≤ hU

DUT p ≤ hU

¯
D

U
T p ≤

¯
h

U

rUT y−RU−
≥ µU(RU+

−RU−)

rUT y−RU−
≥ µU

(
RU+

−RU−
)

¯
r

U
T y−

¯
R

U−
≥ µU

(
¯
R

U+

−
¯
R

U−)
y ≥ 0
p ≥ 0

0 ≤ µU
≤ 1,

(24)

Solving Equation (24) by using the simplex technique, we obtain the upper bound gain-floor
ũU and the optimal strategy p∗U ∈ P for player I.

In the same analysis of Equation (14), according to Equation (15), we solve the mathematical
programming problem using the simplex technique as follows:

min
{
hLT z

}

s.t.



DL z−ALT q ≥ 0
DL z−ALT q ≥ 0
¯

D
L

z−
¯

A
L

T q ≥ 0
FLT q ≥ rLT

FLT q ≥ rLT

¯
F

L
T q ≥

¯
r

L
T

z ≥ 0
q ≥ 0

(25)

denoting its optimal solution by
(
qL1+, zL1+

)T
and its optimal objective value by HL+ = hLT zL1+.
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Analogously, according to Equation (15), we solve the mathematical programming problem using
the simplex technique as follows:

min
{
hLT z

}

s.t.



DL z−ALT q ≥ 0
DL z−ALT q ≥ 0
¯

D
L

z−
¯

A
L

T q ≥ 0
FLT q ≥ rLT

FLT q ≥ rLT

¯
F

L
T q ≥

¯
r

L
T

z ≥ 0
q ≥ 0

(26)

denoting its optimal solution by
(
qL2+, zL2+

)T
and its optimal objective value by HL+ = hLT zL2+.

Analogously, according to Equation (15), we solve the mathematical programming problem using
the simplex technique as follows:

min

 ¯
h

L
T z



s.t.



DL z−ALT q ≥ 0
DL z−ALT q ≥ 0
¯

D
L

z−
¯

A
L

T q ≥ 0
FLT q ≥ rLT

FLT q ≥ rLT

¯
F

L
T q ≥

¯
r

L
T

z ≥ 0
q ≥ 0

(27)

denoting its optimal solution by
(
qL3+, zL3+

)T
and its optimal objective value by

¯
H

L+
=

¯
h

L
T zL3+.

Thus, the positive ideal solution of Equation (15) can be represented as HL+ =

(
HL+, HL+,

¯
H

L+)
.

The negative ideal solution of Equation (15) can be constructed as follows:

HL− = max
{
hLT zLθ+

|θ = 1, 2, 3
}
,

HL− = max
{
hLT zLθ+

|θ = 1, 2, 3
}
,

and
¯

H
L−

= max

 ¯
h

L
T zLθ+

|θ = 1, 2, 3

.

The relative membership functions of the three objective functions in Equation (15) can be
formulated as follows:

λL
(
hLT z

)
=


1 if hLT z ≤ HL+

HL−
−hLT z

HL−
−HL+ if HL+

≤ hLT z ≤ HL−

0 if HL− < hLT z,
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λL
(
hLT z

)
=


1 if hLT z ≤ HL+

HL−
−hLT z

HL−
−HL+ if HL+

≤ hLT z ≤ HL−

0 if HL− < hLT z,

and

λ
L
 ¯
h

L
T z

 =


1 if
¯
h

L
T z ≤

¯
H

L+

¯
H

L−
−

¯
h

L
T z

¯
H

L−
−

¯
H

L+ if
¯

H
L+
≤

¯
h

L
T z ≤

¯
H

L−

0 if
¯

H
L−
< h

LT z,

Using Zimmermann’s algorithm [31], Equation (15) is transformed into the linear programming
problem as follows:

max
{
λL

}

s.t.



DL z−ALT q ≥ 0
DL z−ALT q ≥ 0
¯

D
L

z−
¯

A
L

T q ≥ 0
FLT q ≥ rLT

FLT q ≥ rLT

¯
F

L
T q ≥

¯
r

L
T

HL−
− hLT z ≥ λL(HL−

−HL+)

HL−
− hLT z ≥ λL

(
HL−

−HL+
)

¯
H

L−
−

¯
h

L
T z ≥ λL

(
¯

H
L−
−

¯
H

L+)
z ≥ 0
q ≥ 0

0 ≤ λL
≤ 1,

(28)

solving Equation (28) by using the simplex technique, we obtain the lower bound loss-ceiling ṽL and
the optimal strategy q∗L ∈ Q for player II.

Similarly, according to Equation (16), we solve the mathematical programming problem using the
simplex technique as follows:

min
{
hUT z

}

s.t.



DU z−AUT q ≥ 0
DU z−AUT q ≥ 0
¯

D
U

z−
¯

A
U

T q ≥ 0
FUT q ≥ rUT

FUT q ≥ rUT

¯
F

U
T q ≥

¯
r

U
T

z ≥ 0
q ≥ 0

(29)

denoting its optimal solution by
(
qU1+, zU1+

)T
and its optimal objective value by HU+ = hUT zU1+.
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Analogously, according to Equation (16), we solve the mathematical programming problem using
the simplex technique as follows:

min
{
hUT z

}

s.t.



DU z−AUT q ≥ 0
DU z−AUT q ≥ 0
¯

D
U

z−
¯

A
U

T q ≥ 0
FUT q ≥ rUT

FUT q ≥ rUT

¯
F

U
T q ≥

¯
r

U
T

z ≥ 0
q ≥ 0

(30)

denoting its optimal solution by
(
qU2+, zU2+

)T
and its optimal objective value by HU+ = hUT zU2+.

Analogously, according to Equation (16), we solve the mathematical programming problem using
the simplex technique as follows:

min

 ¯
h

U
T z



s.t.



DU z−AUT q ≥ 0
DU z−AUT q ≥ 0
¯

D
U

z−
¯

A
U

T q ≥ 0
FUT q ≥ rUT

FUT q ≥ rUT

¯
F

U
T q ≥

¯
r

U
T

z ≥ 0
q ≥ 0

(31)

denoting its optimal solution by
(
qU3+, zU3+

)T
and its optimal objective value by

¯
H

U+

=
¯
h

U
T zU3+.

Thus, the positive ideal solution of Equation (16) can be computed as HU+ =

(
HU+, HU+,

¯
H

U+)
.

The negative ideal solution of Equation (16) can be expressed as follows:

HU− = max
{
hUT zUθ+

|θ = 1, 2, 3
}
,

HU− = max
{
hUT zUθ+

|θ = 1, 2, 3
}
,

and
¯

H
U−

= max

 ¯
h

U
T zUθ+

|θ = 1, 2, 3

.

The relative membership functions of the three objective functions in Equation (16) can be obtained
as follows:

λU
(
hUT z

)
=


1 if hUT z ≤ HU+

HU−
−hUT z

HU−
−HU+ if HU+

≤ hUT z ≤ HU−

0 if HU− < hUT z,
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λU
(
hUT z

)
=


1 if hUT z ≤ HU+

HU−
−hUT z

HU−
−HU+ if HU+

≤ hUT z ≤ HU−

0 if HU− < hUT z,

and

λ
U
 ¯
h

U
T z

 =


1 if
¯
h

U
T z ≤

¯
H

U+

¯
H

U−
−

¯
h

U
T z

¯
H

U−
−

¯
H

U+ if
¯

H
U+

≤

¯
h

U
T z ≤

¯
H

U−

0 if
¯

H
U−

< h
UT z,

Using Zimmermann’s algorithm [31], Equation (16) is transformed into the linear programming
problem as follows:

max
{
λU

}

s.t.



DU z−AUT q ≥ 0
DU z−AUT q ≥ 0
¯

D
U

z−
¯

A
U

T q ≥ 0
FUT q ≥ rUT

FUT q ≥ rUT

¯
F

U
T q ≥

¯
r

U
T

HU−
− hUT z ≥ λU(HU−

−HU+)

HU−
− hUT z ≥ λU

(
HU−

−HU+
)

¯
H

U−
−

¯
h

U
T z ≥ λU

(
¯

H
U−
−

¯
H

U+)
z ≥ 0
q ≥ 0

0 ≤ λU
≤ 1,

(32)

solving Equation (32) by using the simplex technique, we obtain the upper bound loss-ceiling ṽU and
the optimal strategy q∗U ∈ Q for player II.

4.3. Solution Methodology

On the basis of the discussion mentioned above, the algorithm for solving fuzzy rough constrained
matrix game can be summarized as follows (Figure 1).

Inputs:

Ã
R

: fuzzy rough payoff matrix
m: strategies number for player I
n: strategies number for player II

P̃
R

: fuzzy rough constraint sets of strategies for player I

Q̃
R

: fuzzy rough constraint sets of strategies for player II

Step 1. Break down the fuzzy rough programming problem Equation (7) into two programming
problems with fuzzy parameters given by the lower problem Equation (9) and the upper problem
Equation (10) for player I.
Step 2. Break down the fuzzy rough programming problem Equation (8) into two programming
problems with fuzzy parameters given by the lower problem Equation (11) and the upper problem
Equation (12) for player II.
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Step 3. Construct the multi-objective programming problem given in Equation (13) and solve it using
Zimmermann’s method [31], hereby obtaining the optimal strategy p∗L and the lower bound gain-floor
ũL of player I .
Step 4. Construct the multi-objective programming problem given in Equation (14) and solve it using
Zimmermann’s method [31], hereby obtaining the optimal strategy p∗U and the upper bound gain-floor
ũU of player I .
Step 5. Construct the multi-objective programming problem given in Equation (15) and solve it
using Zimmermann’s method [31], hereby obtaining the optimal strategy q∗L and the lower bound
loss-ceiling ṽL of player II .
Step 6. Construct the multi-objective programming problem given in Equation (16) and solve it
using Zimmermann’s method [31], hereby obtaining the optimal strategy q∗U and the upper bound
loss-ceiling ṽU of player II.

Outputs: The fuzzy rough game value and the optimal strategies for both players.

  

20 

 

Step 4. Construct the multi-objective programming problem given in Equation (14) and solve it using 

Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐩∗𝐔 and the upper bound gain-

floor ũU of player I . 

Step 5. Construct the multi-objective programming problem given in Equation (15) and solve it using 

Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐪∗𝐋 and the lower bound loss-

ceiling ṽL of player II . 

Step 6. Construct the multi-objective programming problem given in Equation (16) and solve it using 

Zimmermann’s method [31], hereby obtaining the optimal strategy 𝐪∗𝐔 and the upper bound loss-

ceiling ṽU of player II. 

Outputs: The fuzzy rough game value and the optimal strategies for both players. 

 

Figure 1. The flowchart of the proposed algorithm. Figure 1. The flowchart of the proposed algorithm.
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5. Numerical Example

Now, we illustrate the proposed algorithm by a numerical experiment. Since the constrained
matrix game with fuzzy rough payoffs has not been discussed in previous researches, there is no
numerical experiment with fuzzy rough payoffs in previous researches. So, we took an example from
reference [32] and changed its payoffs to triangular fuzzy rough numbers. Considering:

Ã
R
=

(
[(17 , 20, 24) : (15 , 20, 25)] [(−22 ,−18,−15) : (−24 ,−18,−14)]

[(−34 ,−32, −28) : (−36 ,−32,−26)] [(39 , 40, 42) : (37 , 40, 44)]

)
The coefficient matrices and vectors of the constraint sets of strategies for the player I and II are

expressed as follows:

D̃
R
=

(
[(75 , 80, 85) : (72 , 80, 87)] 1 −1
[(45 , 50, 53) : (43, 50, 56)] 1 −1

)
,

F̃
RT =

(
[(−47,−40, −34) : (−49,−40, −32)] 1 −1
[(−74 , −70, −66) : (−78 ,−70, −63)] 1 −1

)
,

and h̃
R

= ([(63 , 67, 72) : (60 , 67, 75)], 1,−1)T, r̃R = ([(−55 ,−52, −51) : (−58 ,−52, −50)], 1,−1)T

respectively.

5.1. Computational Results

We obtain the negative and positive ideal solutions of Equation (15) by solving three mathematical
programming problems with different objective functions, respectively.

According to Equation (25), the mathematical programming problem is formulated as follows:

min
{
63 z1

L + z2
L
− z3

L
}

s.t.



75 z1
L + z2

L
− z3

L
− 17 q1

L + 22 q2
L
≥ 0

45 z1
L + z2

L
− z3

L + 34 q1
L
− 39 q2

L
≥ 0

−47 q1
L
− 74 q2

L
≥ −55

80 z1
L + z2

L
− z3

L
− 20 q1

L + 18 q2
L
≥ 0

50 z1
L + z2

L
− z3

L + 32 q1
L
− 40 q2

L
≥ 0

−40 q1
L
− 70 q2

L
≥ −52

85 z1
L + z2

L
− z3

L
− 24 q1

L + 15 q2
L
≥ 0

53 z1
L + z2

L
− z3

L + 28 q1
L
− 42 q2

L
≥ 0

−34 q1
L
− 66 q2

L
≥ −51

q1
L + q2

L
≥ 1

−q1
L
− q2

L
≥ −1

z1
L, z2

L, z3
L, q1

L, q2
L
≥ 0

(33)

Solving Equation (33) using the simplex technique, an optimal solution (qL1+, zL1+) can be
obtained, where qL1+ = (1, 0) and zL1+ = (1.7, 0, 110.5), and its optimal objective value is represented
by HL+ = hLT zL1+ = −3.4
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According to Equation (26), the mathematical programming problem can be constructed as follows:

min
{
67 z1

L + z2
L
− z3

L
}

s.t.



75 z1
L + z2

L
− z3

L
− 17 q1

L + 22 q2
L
≥ 0

45 z1
L + z2

L
− z3

L + 34 q1
L
− 39 q2

L
≥ 0

−47 q1
L
− 74 q2

L
≥ −55

80 z1
L + z2

L
− z3

L
− 20 q1

L + 18 q2
L
≥ 0

50 z1
L + z2

L
− z3

L + 32 q1
L
− 40 q2

L
≥ 0

−40 q1
L
− 70 q2

L
≥ −52

85 z1
L + z2

L
− z3

L
− 24 q1

L + 15 q2
L
≥ 0

53 z1
L + z2

L
− z3

L + 28 q1
L
− 42 q2

L
≥ 0

−34 q1
L
− 66 q2

L
≥ −51

q1
L + q2

L
≥ 1

−q1
L
− q2

L
≥ −1

z1
L, z2

L, z3
L, q1

L, q2
L
≥ 0

(34)

Solving Equation (34) using the simplex technique, an optimal solution (qL2+, zL2+) can be
obtained, where qL2+ = (0.7321429, 0.2678571) and zL2+ = (0.7, 0 , 45.94643), and its optimal
objective value is given by HL+ = hLT zL2+ = 0.9535714.

According to Equation (27), the mathematical programming problem can be described as follows:

min
{
72 z1

L + z2
L
− z3

L
}

s.t.



75 z1
L + z2

L
− z3

L
− 17 q1

L + 22 q2
L
≥ 0

45 z1
L + z2

L
− z3

L + 34 q1
L
− 39 q2

L
≥ 0

−47 q1
L
− 74 q2

L
≥ −55

80 z1
L + z2

L
− z3

L
− 20 q1

L + 18 q2
L
≥ 0

50 z1
L + z2

L
− z3

L + 32 q1
L
− 40 q2

L
≥ 0

−40 q1
L
− 70 q2

L
≥ −52

85 z1
L + z2

L
− z3

L
− 24 q1

L + 15 q2
L
≥ 0

53 z1
L + z2

L
− z3

L + 28 q1
L
− 42 q2

L
≥ 0

−34 q1
L
− 66 q2

L
≥ −51

q1
L + q2

L
≥ 1

−q1
L
− q2

L
≥ −1

z1
L, z2

L, z3
L, q1

L, q2
L
≥ 0

(35)

solving Equation (35) using the simplex technique, an optimal solution (qL3+, zL3+) can be obtained,
where qL3+ = (0.7113402, 0.2886598) and zL3+ = (0.6417526, 0, 41.80670), and its optimal objective

value is expressed by
¯

H
L+

=
¯
h

L
T zL3+ = 4.399485.

Therefore, the positive ideal solution of Equation (15) can be computed as HL+ = −3.4,

HL+ = 0.9535714, and
¯

H
L+

= 4.399485. Then, the negative ideal solution of Equation (15) can
be written as follows:

HL− = max
{
hLT zLθ+

|θ = 1, 2, 3
}
= −1.376289,

HL− = max
{
hLT zLθ+

|θ = 1, 2, 3
}
= 3.4,

and
¯

H
L−

= max

 ¯
h

L
T zLθ+

|θ = 1, 2, 3

 = 11.9.
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The relative membership functions of the three objective functions in Equation (15) can be
represented as follows:

λL
(
63 z1

L + z2
L
− z3

L
)
=


1 if 63 z1

L + z2
L
− z3

L
≤ −3.4

−1.376289−63 z1
L
−z2

L+z3
L

−1.376289+3.4 if −3.4 ≤ 63 z1
L + z2

L
− z3

L
≤ −1.376289

0 if −1.376289 < 63 z1
L + z2

L
− z3

L,

λL
(
67 z1

L + z2
L
− z3

L
)
=


1 if 67 z1

L + z2
L
− z3

L
≤ 0.9535714

3.4−67 z1
L
−z2

L+z3
L

3.4−0.9535714 if 0.9535714 ≤ 67 z1
L + z2

L
− z3

L
≤ 3.4

0 if 3.4 < 67 z1
L + z2

L
− z3

L,

and

λ
L(

72 z1
L + z2

L
− z3

L
)
=


1 if 72 z1

L + z2
L
− z3

L
≤ 4.399485

11.9−72 z1
L
−z2

L+z3
L

11.9−4.399485 if 4.399485 ≤ 72 z1
L + z2

L
− z3

L
≤ 11.9

0 if 11.9 < 72 z1
L + z2

L
− z3

L,

Using Zimmermann’s algorithm [31], Equation (15) is transformed into the linear programming
problem as follows:

max
{
λL

}

s.t.



75 z1
L + z2

L
− z3

L
− 17 q1

L + 22 q2
L
≥ 0

45 z1
L + z2

L
− z3

L + 34 q1
L
− 39 q2

L
≥ 0

−47 q1
L
− 74 q2

L
≥ −55

80 z1
L + z2

L
− z3

L
− 20 q1

L + 18 q2
L
≥ 0

50 z1
L + z2

L
− z3

L + 32 q1
L
− 40 q2

L
≥ 0

−40 q1
L
− 70 q2

L
≥ −52

85 z1
L + z2

L
− z3

L
− 24 q1

L + 15 q2
L
≥ 0

53 z1
L + z2

L
− z3

L + 28 q1
L
− 42 q2

L
≥ 0

−34 q1
L
− 66 q2

L
≥ −51

−1.376289− 63 z1
L
− z2

L + z3
L
≥ λL(−1.376289 + 3.4)

3.4− 67 z1
L
− z2

L + z3
L
≥ λL(3.4− 0.9535714)

11.9− 72 z1
L
− z2

L + z3
L
≥ λL(11.9− 4.399485)

q1
L + q2

L
≥ 1

−q1
L
− q2

L
≥ −1

0 ≤ λL
≤ 1

z1
L, z2

L, z3
L, q1

L, q2
L
≥ 0

(36)

The optimal solution
(
q∗L, z∗L

)
of Equation (36) can be computed by using the simplex method,

where q∗L = (0.8478494 , 0.1521506)T and z∗L = (1.131971, 0 , 73.83170)T. Then, player II’s lower

bound loss-ceiling ṽL∗ and optimal strategy q∗L are ṽL∗ = h̃
T

z∗L = (−2.51753 , 2.01036, 7.67021) and
q∗L = (0.8478494 , 0.1521506)T, respectively.

The same analysis is followed to compute the upper bound game value and optimal strategies of
player II and for player I. We obtain the optimal strategies for players I and II as follows:[

pL∗ : pU∗
]
[(0.7727145, 0.2272855) : (0.7401451, 0.2598549)][

qL∗ : qU∗
]
[(0.8478494 , 0.1521506) : (0.8357301, 0.1642699)]

and the fuzzy rough game value for players I and II are as follows:[
ũL∗ : ũU∗][(0.627833, 2.77282, 3.48782 ) : (−0.611173, 2.86533, 4.02416)]
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[̃
vL∗ : ṽU∗

]
[(−2.51753 , 2.01036, 7.67021) : (−4.8969, 2.97249, 11.9661)]

Also,
µL∗ = 1.435136, µU∗ = 0.4767324, λL∗ = 0.5639330, λU∗ = 0.4638195.

Obviously, the game value for players I and II is the fuzzy rough interval number.

5.2. Discussion

Since the fuzzy rough constrained matrix game has not been discussed in the literature, there
are no numerical results in other works for the problem under study. Therefore, the outcomes of
our proposed solution are compared to the results obtained from the GAMS software [41]. GAMS
is a multi-objective mathematical programming solver that is widely used by many researchers in
engineering and economics.

The results obtained by solving the same fuzzy rough constrained matrix game problem
using the GAMS software [41] are summarized as follows: player I’s lower bound gain-floor
ũL∗ and optimal strategy p∗L are ũL∗ = r̃Ty∗L = (0.62480734 , 2.76041572, 3.48416093) and
p∗L = (0.77184031, 0.22523647)T, player I’s upper bound gain-floor ũU∗ and optimal strategy P∗U

are ũU∗ = r̃Ty∗L = (−0.61066472 , 2.83290714, 4.01250316) and p∗U = (0.73878336 , 0.25784159)T.
Similarly, player II’s lower bound loss-ceiling ṽL∗ and optimal strategy q∗L are ṽL∗ =

h̃
T

z∗L = (−2.50785714 , 2.00214286, 7.63214286) and q∗L = (0.84528571 , 0.15071429)T and the

player II’s upper bound loss-ceiling ṽU∗ and optimal strategy q∗U are ṽU∗ = h̃
T

z∗U =

(−4.89629986 , 2.97083202, 11.96183987) and q∗U = (0.83564646 , 0.16435354)T.
Comparing the results from the GAMS software to the ones from our proposed solution, it is

evident that the results are almost the same, which confirms that our proposed approach can solve
the fuzzy rough constrained matrix game problem effectively. In addition to that, our approach is
applicable to solve many other fuzzy rough matrix games such as fuzzy rough bi-matrix games,
fuzzy rough coalition games, and fuzzy rough multi-criteria games.

Analyzing the aforementioned fuzzy multi-objective programming algorithm, we summarize the
following advantages of the proposed algorithm:

• Uncertainty is widely common in many real-life models such as roughness, randomness,
and fuzziness. Triangular FRNs can appropriately express fuzziness and uncertainty. Our proposed
algorithm and models can effectively obtain the optimal strategies of fuzzy rough constrained
matrix games.

• Our proposed algorithm is effective in solving fuzzy rough constrained matrix games based on
the Zimmermann’s technique [31] and the lower and upper approximation of FRNs, which can
decrease the uncertainty to a great extent.

• Our proposed algorithm ensures that any fuzzy rough constrained matrix game has a triangular
FRNs-type value, which can be estimated by solving the derived four multi-objective linear
programming problems.

6. Conclusions

To the best of the authors’ knowledge, the existing research has not investigated the problem of
fuzzy rough constrained matrix games. In this article, we developed an effective fuzzy multi-objective
programming algorithm to solve fuzzy rough constrained matrix game. Based on both the upper and
lower approximation of the FRNs and the linear programming problems of the classical constrained
matrix game, we have constructed new auxiliary fuzzy multi-objective linear programming problems for
each player. Furthermore, the proposed approach can ensure that any fuzzy rough constrained matrix
game has the fuzzy rough interval-type value, which can be explicitly obtained by solving the derived
four multi-objective linear programming problems (i.e., Equations (13)–(16)). Finally, a numerical
experiment of market share game model is given to illustrate the validity of the proposed method.
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Our proposed technique is developed to obtain the optimal strategies of constrained matrix games
with payoffs of triangular FRNs, which are a special form of FRNs. However, there are many forms of
FRNs, such as trapezoidal FRNs, intuitionistic FRNs, convex FRNs, and L-R FRNs. Using these forms
of FRNs to describe uncertainty and imprecision in games theory requires further research. Moreover,
our proposed method has a wide range of future applications. For example, it can be applied to solve
fuzzy rough n-person non-cooperative games, fuzzy rough bi-matrix games, fuzzy rough coalition
games, fuzzy rough multi-criteria games, and many other games models.
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