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Abstract: The paradigmatic spin-boson model considers a spin degree of freedom interacting with
an environment typically constituted by a continuum of bosonic modes. This ubiquitous model is
of relevance in a number of physical systems where, in general, one has neither control over the
bosonic modes, nor the ability to tune distinct interaction mechanisms. Despite this apparent lack
of control, we present a suitable transformation that approximately maps the spin-boson dynamics
into that of a tunable multiphoton Jaynes-Cummings model undergoing dissipation. Interestingly,
the latter model describes the coherent interaction between a spin and a single bosonic mode via the
simultaneous exchange of n bosons per spin excitation. Resorting to the so-called reaction coordinate
method, we identify a relevant collective bosonic mode in the environment, which is then used to
generate multiphoton interactions following the proposed theoretical framework. Moreover, we show
that spin-boson models featuring structured environments can lead to non-Markovian multiphoton
Jaynes-Cummings dynamics. We discuss the validity of the proposed method depending on the
parameters and analyse its performance, which is supported by numerical simulations. In this manner,
the spin-boson model serves as a good analogue quantum simulator for the inspection and realization
of multiphoton Jaynes-Cummings models, as well as the interplay of non-Markovian effects and, thus,
as a simulator of light-matter systems with tunable interaction mechanisms.

Keywords: spin-boson model; Jaynes-Cummings model; multiphoton processes; quantum simulation

1. Introduction

The rapid technological progress we have experienced during the last few decades has made possible
previously inconceivable experiments at the quantum regime, boosting their degree of precision, isolation
and control to unprecedented limits [1]. Currently, quantum systems can be inspected in a very controllable
manner in a number of distinct setups. This experimental breakthrough has therefore stimulated the
emergence of research areas such as quantum information and computation and quantum simulation,
where the exploitation of quantum effects will allow us to surpass both the capabilities of their classical
counterparts in the near future [2]. In particular, quantum simulation considers a scenario in which
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a well-controlled quantum system serves as a simulator of other inaccessible systems [3–5]. In this
manner, interesting quantum dynamics (i.e., the target dynamics) may be explored using, for example,
optical lattices [6] or trapped ions [7]. The target dynamics can be obtained either by decomposing the
time-evolution propagator in a set of simple quantum operations (digital quantum simulation) or by
finding a map that brings the Hamiltonian into the desired form of the model to be simulated (analogous
to quantum simulation) [5]. In this article, we will consider the latter method, by using as a quantum
simulator the paradigmatic spin-boson model [8,9].

The spin-boson model describes a spin immersed in an environment formed by a large, typically
infinite, number of bosonic modes, in contrast to the quantum Rabi or Jaynes-Cummings models where
the interaction comprises a single bosonic mode [10–13]. The spin-boson model encompasses very rich
physics depending on how the spin couples with the distinct bosonic modes. Hence, while it is a minimal
model to scrutinize the quantum effects of dissipation, it has application in a broad range of systems [8,9],
ranging from defects in solid state platforms to quantum emitters in biological systems [14]. Moreover,
much effort inspecting the spin-boson model has dealt with its critical behaviour, that is with the emergence
of a quantum phase transition between a delocalized and a localized phase of the spin degree of freedom as
one increases the spin-environment coupling [8]. The simulation of the spin-boson model (or of a generic
open quantum system) in the strong coupling regime is however computationally very demanding,
as acknowledged in [15–21], since the spin and the bosonic modes become entangled, forming a truly
quantum many-body system. In some situations, one can still resort to analytical methods, which may
simplify the problem considerably. Among these methods one finds the so-called reaction coordinate
mapping [22–28], which can be viewed as a first step of the more general semi-infinite chain mapping of
the environmental degrees of freedom [29,30]. The reaction coordinate is defined as a collective mode of
the original environment oscillators. In this manner, one can bring the spin-boson model into the form of
a generalized quantum Rabi model [10,11,13] whose bosonic mode undergoes dissipation as it interacts
with the residual environment. In particular cases, upon rearranging the original environmental degrees
of freedom, the dissipation acquires a Markovian character, hence simplifying considerably the complexity
of the problem (see for example [24]). It is also worth mentioning other attempts to capture quantum
dynamics effectively with complex system-environment interactions, as for example the recent work
relying on pseudo-modes [31], which builds on the proven equivalence for the dynamics of the system in
both frames [32].

The quantum Rabi model (QRM), as well as its simplified version known as the Jaynes-Cummings
model (JCM) [12] play a central role in the description of light-matter interacting systems and in quantum
information science [2,13]. In these models, the interaction mechanism between the spin and bosonic
degrees of freedom has a linear form, namely the spin gets excited or deexcited by absorbing or emitting
one bosonic excitation. While this interaction is ubiquitous in quantum physics and with application
in various experimental platforms [33], other forms of a spin-boson exchange mechanisms beyond this
simple case are also of interest. On the one hand, interactions beyond the linear fashion are of relevance
for several applications in quantum computation and simulation (e.g., the Kerr effect [34]). Furthermore,
these exchange mechanisms may unveil interesting phenomena in light-matter systems [35,36], as well
as in their multiple spin counterparts [37]. One possible generalization of the QRM or JCM consists
of considering a spin-multiphoton interaction, where the spin exchanges n excitations simultaneously
with the bosonic mode. Such a generalization is often regarded as n-photon QRM or JCM, (nQRM or
nJCM), and it has recently attracted attention mainly in its n = 2 form [35,36,38–41], although models
with n > 2 have been also analysed [42]. From an experimental point of view, however, such multiphoton
terms are typically hard to attain. Thus, its realization may benefit from quantum simulation protocols,
allowing for enough tunability and control over multiphoton interaction terms, as proposed using optical
trapped ions [35,38] or superconducting qubits [40]. These latter schemes realize effective multiphoton
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exchange terms by exploiting the nonlinear fashion in which the spin and bosonic degrees of freedom
couple. It is however still possible to realize such multiphoton models even when the setup comprises
solely a linear, i.e., standard, interaction mechanism, and thus, it is not suited for a direct simulation of
these models, as shown in [43].

In this article, we follow the theoretical framework developed in [43,44], combining the ideas of
the reaction-coordinate mapping [22–28] to show that the paradigmatic spin-boson model, featuring
a continuum of bosonic modes, can serve as an analogue quantum simulator for the realization of different
dissipative multiphoton Jaynes-Cummings models by tuning the frequency and bias parameter of the
spin. In this manner, we demonstrate the emergence of a connection between the dynamics of these
paradigmatic and fundamental quantum models, which was not previously unveiled. Moreover, as the
spin-boson model is of considerable experimental significance, i.e., it describes the ubiquitous scenario
of a two-level system interacting with an arbitrary environment, our method paves the way for the
simulation of multiphoton Jaynes-Cummings models in distinct setups. In particular, by considering
a full spin-boson model, we naturally extend the theoretical framework beyond the standard local master
equation description of dissipation effects in the simulator, as considered in [44]. Furthermore, we show
that the simulated multiphoton Jaynes-Cummings models may acquire non-Markovian behaviours when
the spin-boson model features a structured environment, thus highlighting the suitability of the proposed
theoretical framework to explore aspects of non-Markovianity in distinct light-matter interacting systems.

The article is organized as follows. In Section 2, we introduce the spin-boson model, while in
Section 3, we explain how to map the spin-boson model into a different Hamiltonian comprising the
desired spin-multiphoton interaction terms and discuss how the dissipative effects must be transformed
into the aimed model. For that, we first introduce the reaction coordinate mapping in Section 3.1, while in
Section 3.2, we explain how to extend the theoretical framework to incorporate further bosonic modes
in the realization of the desired multiphoton model. After having provided the theoretical derivation of
how to perform the analogue quantum simulation, we present examples and numerical results for the
simulation of different multiphoton Jaynes-Cummings models in Section 4. Finally, we summarize the
main conclusions of this article in Section 5.

2. The Spin-Boson Model

The spin-boson model describes a two-level system interacting with a large, typically infinite, number
of bosonic modes, which constitute the environment. This model has been acknowledged as a paradigm
for the inspection of quantum dissipation and quantum-to-classical transition [8,9]. As many physical
systems can be well approximated as a two-level system for sufficient low temperature, the spin-boson
model has become a cornerstone in the description of quantum effects in diverse physical realizations,
ranging from quantum-based setups [8,9] to biological complexes [14]. In addition, this model has played
a key role in the development of the theory of open quantum systems [45], providing a suitable test-bed to
benchmark distinct approximations and tools aimed to deal with the large number of environment degrees
of freedom efficiently. Moreover, the relevance of the spin-boson model also encompasses the context of
critical systems, as it features a quantum phase transition between spin localized and delocalized phases
(see References [46,47] and the references therein). Hence, the spin-boson model exhibits rich physics, and
it is of fundamental relevance in many different areas of research.

The Hamiltonian of the spin-boson model can be written as:

HSB = HS + HE + HS−E (1)
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where each contribution reads as:

HS =
ε0

2
σz +

∆0

2
σx, (2)

HE = ∑
k

ωkc†
k ck, (3)

HS−E = σx ∑
k

fk(ck + c†
k). (4)

The first two terms represent the free-energy Hamiltonians of the spin and environment, while the
last describes the interaction between them. Here, we consider that the frequency splitting of the spin is
given by ∆0, while ε0 accounts for the bias between the eigenstates of the two-level system |±〉 and with
~σ = (σx, σy, σz) the usual spin- 1

2 Pauli matrices (see Figure 1a). Hence, σx |±〉 = ± |±〉, σz |e〉 = |e〉 and
σz |g〉 = − |g〉. The interaction with the environment is dictated by HS−E, where the kth mode with energy
ωk is coupled to the spin with a strength fk. These bosonic modes fulfil the usual commutation relation
[ck, c†

k′ ] = δk,k′ . Remarkably, the system-environment interaction can be completely characterized in terms
of the spectral density, JSB(ω) = ∑k f 2

k δ(ω − ωk), which here is assumed to be known. In anticipation
of the developed theoretical framework that allows us to bring HSB into the form of a multiphoton
Jaynes-Cummings model, we comment that while the frequency splitting ∆0 tunes the multiphoton order
of the interaction, the bias parameter ε0 will be proportional to the interacting strength of the simulated
model (see Section 3).

In addition, we comment that one could consider the application of nd drivings onto the spin.
As discussed in [43,44], under certain conditions that we will explain in the following section, applying
spin drivings enables the simultaneous realization of different multiphoton Jaynes-Cummings interaction
terms. In this manner, while a multiphoton Jaynes-Cummings model can be attained without the need
for any driving, nd = 0, the realization of a multiphoton quantum Rabi model requires the application
of at least one, i.e., nd = 1. In general, the free-energy Hamiltonian of the spin under nd drivings with
amplitude εj and detuning ∆j with respect to the spin frequency splitting ∆0 reads as:

HS,d =
∆0

2
σx +

nd

∑
j=0

εj

2
[
cos(∆j − ∆0)t σz + sin(∆j − ∆0)t σy

]
. (5)

Clearly, setting εj>0 = 0 (or ∆j = ∆0), we recover the form of the standard drivingless HS given in
Equation (2). For the sake of simplicity, in this article, we will focus on cases with nd = 0, i.e., aiming to
realize multiphoton Jaynes-Cummings models. However, we stress that the procedure explained in the
following can be applied in a straightforward manner when nd > 0.
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(a)
E
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(c) E'

...

(b)

σ+an+H.c.
σ+a†n+H.c.

(d)

RC1 RC2

E1' E2'

S+RC S'=S+RC1+RC2

Figure 1. (a) Spin-boson model in the customary star configuration, where each of the circles corresponds to
a harmonic oscillator of the environment with frequency ωk interacting with the spin through σx fk(ck + c†

k),
before the reaction coordinate mapping. In (b), we show an underdamped spin-boson spectral density
JSB(ω), peaked at ω0 (cf. Equation (8)). Upon the reaction coordinate mapping, a collective degree of
freedom is included into the system, which in turn interacts with the residual environment, as sketched in
(c) (see the main text for further details). For an underdamped JSB(ω), JRC(ω) adopts a Markovian
form, as depicted in (b). Such interaction with a collective coordinate can be exploited to realize
Hamiltonians containing multiphoton interaction terms, as indicated in (c) and explained in detail in
Section 3. For structured environments, one can still rearrange the original environment using more
collective coordinates into the augmented system S′, where each of them interacts now with its own
residual environment, as sketched in (d) (see Section 3.2 for further details).

3. Analogue Simulation of Multiphoton Spin-Boson Interactions

The task now consists of bringing the spin-boson Hamiltonian HSB into the form of a n-photon model,
i.e, into a model containing interaction terms of the form σ±an and σ±(a†)n. For that, one could perform
the approximate mapping used in [43,44] directly onto HSB. This would require the selection of a particular
bosonic mode out of the environment with frequency ωq to now play the role of a in the interaction with the
spin (cq → a), while treating the rest of ck 6=q as a residual environment. Here, however, we resort to a more
sophisticated procedure, based on the so-called reaction coordinate (RC) mapping [22–28], which consists
of rearranging the environment degrees of freedom, such that a small number of collective coordinates can
be included in the Hamiltonian part, which in turn interact with the residual environment. In certain cases,
the open-quantum system description of the augmented system is considerably simplified with respect to
the original system plus environment. Clearly, if the spin-boson model involves just a discrete number of
modes, the reaction-coordinate procedure then trivially retrieves the original discrete environment.

3.1. Reaction Coordinate Mapping

In the following, we summarize how to make use of the RC mapping for a spin-boson model,
which has been studied previously in different works [24,25], while referring to Appendix A and
References [22–28] for further details of the calculations and of the RC mapping.
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We shall start by defining a collective mode or reaction coordinate, described by the annihilation and
creation operators a and a†, such that:

λ(a + a†) = ∑
k

fk(ck + c†
k), (6)

while the residual environmental degrees of freedom transform into bk and b†
k , requiring that the latter

appear in a normal form in the Hamiltonian. In this manner, the original spin-boson Hamiltonian adopts
the form of HSB = HS+RC + HRC−E′ + HE′ , where the former is given by:

HS+RC =
∆0

2
σx + Ωa†a + λσx(a + a†) +

nd

∑
j=0

εj

2
[
cos(∆j − ∆0)t σz + sin(∆j − ∆0)t σy

]
, (7)

and the other two terms are HRC−E′ + HE′ = (a + a†)∑k gk(bk + b†
k ) + (a + a†)2 ∑k

g2
k

ωk
+ ∑k ωkb†

k bk.
The reaction coordinate map is completed upon the identification of the parameters λ, Ω, and gk or,
thus, JRC(ω) = ∑k g2

kδ(ω − ωk). For certain cases, such mapping allow for an exact relation between
the original and transformed parameters [28]. Indeed, considering an underdamped spin-boson spectral
density in the initial spin-boson model,

JSB(ω) =
αΓω2

0ω

(ω2
0 −ω2)2 + Γ2ω2

, (8)

one can show that the resulting spectral density for the residual environment interacting with the reaction
coordinate reads as:

JRC(ω) = γωe−ω/Λ (9)

provided Λ/ω � 1 and where the parameters are related according to γ = Γ/(2πω0), Ω = ω0, and λ =√
παω0/2 (see Appendix A or [22–24,28] for further details of this derivation). Here, the frequency

ω0 in JSB(ω) denotes the position at which the spectral density features a maximum, while Γ and α

account for its width and strength, respectively. For JRC(ω), the coupling strength is given by γ. In this
manner, by augmenting the system incorporating a collective mode, the original spin-boson model with
JSB(ω) is transformed into a spin plus reaction coordinate, which now in turn interacts with a Markovian
environment, where the standard Born-Markov approximations can be performed [45]. Indeed, the master
equation governing the dynamics of the augmented system, spin plus reaction coordinate, reads as
(see Appendix A for the details of the calculation, which closely follows [24]):

ρ̇S+RC(t) =− i [HS+RC, ρS+RC(t)]− [x, [χ, ρS+RC(t)]] + [x, {Θ, ρS+RC(t)}] . (10)

with x = a + a†, while the quantities χ and Θ define the rates affecting the reaction coordinate. They are
defined as:

χ ≈ π

2 ∑
jk

JRC(ξ jk) coth(βξ jk/2)xjk
∣∣φj
〉
〈φk| , (11)

Θ ≈ π

2 ∑
jk

JRC(ξ jk)xjk
∣∣φj
〉
〈φk| , (12)

where xjk =
〈
φj
∣∣ x |φk〉, HS+RC

∣∣φj
〉
= ϕj

∣∣φj
〉
, and ξ jk = ϕj − ϕk.



Symmetry 2019, 11, 695 7 of 21

Having obtained the reaction coordinate Hamiltonian, we undertake the transformation of HS+RC,
and thus, of Equation (10), to achieve a model that comprises spin-multiphoton interaction terms. For that
purpose, we will introduce two auxiliary Hamiltonians Ha and Hb, which will arise in the intermediate
steps by moving into a suitable interaction picture and transforming them accordingly. The first step
consists indeed of moving to a rotating frame in which HS+RC ≡ H I

a,1 where Ha = Ha,0 + Ha,1 with
Ha,0 = −∆0/2σx. In this manner, we find:

Ha = Ωa†a + λσx(a + a†) +
nd

∑
j=0

εj

2
[
cos ∆jtσz + sin ∆jtσy

]
. (13)

while Equation (10) transforms into:

ρ̇a(t)=− i [Ha, ρa(t)]− [x, [χ̂, ρa(t)]] + [x, {Θ̂, ρa(t)}]. (14)

where χ̂ = Ua,0χU†
a,0 and Θ̂ = Ua,0ΘU†

a,0, such that Ux = T e−i
∫ t

0 dsHx(s) is the time-evolution operator of
a Hamiltonian Hx. Then, we perform a further transformation using the unitary operator T(α), defined
as T(α) = 1/

√
2
[
D†(α) (|e〉 〈e| − |g〉 〈e|) + D(α) (|g〉 〈g|+ |e〉 〈g|)

]
with D(α) = eαa†−α∗a the standard

displacement operator. Hence, Hb ≡ T†(−λ/Ω)HaT(−λ/Ω) such that ρb = T†ρaT, which leads to
(see Appendix B for further details):

ρ̇b = −i [Hb, ρb]−
[

T†xT,
[

T†χ̂T, ρb(t)
]]

+
[

T†xT,
{

T†Θ̂T, ρb(t)
}]

, (15)

where the Hamiltonian Hb can be written as:

Hb = Ωa†a +
nd

∑
j=0

εj

2

[
σ+e2λ(a−a†)/Ωe−i∆jt + H.c.

]
. (16)

Hence, the dissipator acting on ρb has the same form as in Equation (14), but with transformed
operators, namely T†xT, T†χ̂T, and T†Θ̂T, where T ≡ T(−λ/Ω). Finally, by moving to an interaction
picture with respect to Hb,0 = (Ω − ν̃)a†a − ω̃σz/2 and expanding the exponential in Equation (16)
(the latter requires that |2λ/Ω|

√
〈(a + a†)2〉 � 1 for truncating the exponential to a finite number of

terms), we arrive at a Hamiltonian containing multiphoton interaction terms. The latter condition is
commonly known as the Lamb-Dicke regime. In addition, we consider the driving frequencies to be
∆j = ±nj(ν̃−Ω)− ω̃ with |Ω− ν̃| � εj/2, so that one can safely perform a rotating-wave approximation
keeping only those terms that are resonant, i.e., time independent (see Appendix B for further details
of the calculation). Note that, as Hb is similar to the Hamiltonian describing an optical trapped ion
under the action of lasers driving vibrational sidebands [48], the procedure to obtain Jaynes-Cummings
or quantum Rabi models is analogous to those cases [35,49,50]. In this manner, we can approximate
H I

b,1 ≡ U†
b,0Hb,1Ub,0 ≈ Hn, where Hn contains the aimed at multiphoton interactions,

Hn =
ω̃

2
σz + ν̃a†a + ∑

j∈r

εj(2λ)nj

2Ωnj nj!
[
σ+anj + H.c.

]
+ ∑

j∈b

εj(2λ)nj

2Ωnj nj!

[
σ+(−a†)nj + H.c.

]
. (17)

Note that the sets r and b encompass the terms with amplitude εj driving red- and blue-sidebands,
that is those terms in Equation (5) with frequency ∆j∈r = +nj(ν̃−Ω)− ω̃ and ∆j∈b = −nj(ν̃−Ω)− ω̃.
Each of these drivings will contribute with a multiphoton interaction, either σ+anj + H.c. for j ∈ r or
σ−anj + H.c. for j ∈ b, which produce transitions between the states |m〉 |g〉 ↔

∣∣m∓ nj
〉
|e〉. We stress that
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for a time-independent spin-boson model, as given in Equations (1)–(4) (or equivalently with nd = 0 in
HS,d as given in Equation (5), one obtains a single n-photon [anti]-Jaynes-Cummings interaction term,
σ+an + H.c. [σ+(−a†)n + H.c.], by choosing ∆0 = n(ν̃−Ω)− ω̃ [∆0 = −n(ν̃−Ω)− ω̃] in the original
spin-boson Hamiltonian HSB. Thus, one needs the knowledge of the relevant bosonic frequency Ω to
simulate multiphoton interaction terms properly.

In order to show how the dissipative part transforms, it is advisable to introduce the time-dependent
unitary operator:

Φ = U†
b,0T†Ua,0. (18)

Then, one can see that, defining χ̃ = ΦχΦ†, Θ̃ = ΦΘΦ† and x̃ = Φ(a + a†)Φ†, the resulting master
equation for ρn(t) is:

ρ̇n(t) = −i[Hn, ρn(t)]− [x̃, [χ̃, ρn(t)]] + [x̃, {Θ̃, ρn(t)}] (19)

where the state ρn(t) of the multiphoton model is related to the original spin-boson upon the reaction
coordinate mapping, ρS+RC(t), through a unitary transformation:

ρn(t) ≈ ΦρS+RC(t)Φ†. (20)

From the previous expression, it follows that the purity of the total state ρS+RC and that of ρn are
approximately equal. Moreover, the reduced spin state in the different frameworks are related according
to TrB[ρSB(t)] = TrRC[ρS+RC(t)] ≈ TrRC[Φ†ρn(t)Φ], where TrB[·] and TrRC[·] denote the trace over the
environment degrees of freedom and reaction coordinate, respectively. In this manner, having access to
the spin degree of freedom, one can have access to the dissipative spin dynamics dictated by the master
Equation (19) under a multiphoton Hamiltonian Hn, given in Equation (17), whose parameters can be
tuned. In addition, we remark that the initial state at t0 = 0 in the multiphoton frame is related to that of
the spin-boson model as ρn(0) = T†ρS+RC(0)T.

At this stage, a few comments regarding the validity of Equation (20) are in order. While the steps
performed from HS+RC to Hb are exact, Hn is attained in an approximate manner. The good functioning
of the simulation depends on how these approximations are met. That is, Equation (20) holds within the
Lamb-Dicke regime |2λ/Ω|

√
〈(a + a†)2〉 � 1 and for parameters satisfying |Ω− ν̃| � εj/2 ∀j, so that one

can perform a rotating-wave approximation. As a consequence, this approximation also sets a constraint on
the total duration for a good simulation (see Appendix B). Note that, as the parameters λ and Ω are directly
related to the original spin-boson spectral density, these conditions set constraints onto the accessible
parameters, as well as on the temperature of the environment. Furthermore, in order to observe coherent
multiphoton dynamics, the noise rates in Equation (19) must be small compared to the parameters involved
in Hn. For the considered shape of JSB(ω), this translates into Γ� ν̃, g̃n, where g̃n = ε0(2λ)n/(2Ωnn!) for
an nd = 0 and ∆0 = ±n(ν̃−Ω)− ω̃ (cf. Equation (17).

Finally, we comment that the previous scheme can be carried out beyond the Lamb-Dicke regime [44].
Admittedly, when the Lamb-Dicke approximation does not hold, the Hamiltonian Hn is no longer a good
approximation to the dynamics. In this case, the Hamiltonian Hn must be replaced by a suitable nonlinear
Jaynes-Cummings or quantum Rabi model, whose coupling constants crucially depend on the Fock-state
occupation number in a nonlinear fashion [51–54]. These nonlinear, yet multiphoton Hamiltonians appear
then as a good approximation to Hb, and thus to HSB whenever |2λ/Ω|

√
〈(a + a†)2〉 � 1 is not fulfilled,

as recently shown in [44]. In this article, however, we will constrain ourselves to parameters within the
Lamb-Dicke regime.
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3.2. Structured Environments

As previously mentioned, the simulation of multiphoton spin-boson interactions is not restricted
to a determined form of JSB(ω). Here, we show the derivation of the procedure to obtain an effective
multiphoton Hamiltonian when the initial spin-boson model features a more complicated interaction
with the environment. For simplicity, we consider that JSB(ω) can be split in two parts, JSB(ω) =

JSB,1(ω) + JSB,2(ω), although its generalization to more is straightforward. The first contribution, JSB,1(ω),
is considered here to be suitable for the realization of multiphoton interactions as described in Section 3.1.
In addition, we will work under the assumption that the environment degrees of freedom corresponding
to JSB,2(ω) can be treated and simplified using again a collective or reaction coordinate, as sketched
in Figure 1c.

As discussed previously, we identify a collective coordinate for each of the contributions to the
spectral density JSB(ω). In this manner, we augment the system to include both reaction coordinates,
denoted here by S′ = S + RC1 + RC2. Hence, its Hamiltonian is given by:

HS′ = HS,d + Ω1a†
1a1 + λ1σx(a1 + a†

1) + Ω2a†
2a2 + λ2σx(a2 + a†

2), (21)

where HS,d is the original spin Hamiltonian, which may contain spin rotations, introduced in Equation (5),
while the subscripts denote the corresponding reaction coordinate. The parameters λi and Ωi are
determined by the spectral density JSB,i(ω). The dynamics of the augmented system S′ is governed
by the following master equation:

ρ̇S′(t) = −i [HS′ , ρS′(t)]− [x1, [χ1, ρS′(t)]]− [x2, [χ2, ρS′(t)]]

+ [x1, {Θ1, ρS′(t)}] + [x2, {Θ2, ρS′(t)}] , (22)

where xi = ai + a†
i for i = 1, 2, and χi and Θi are defined in analogy to Equations (11) and (12).

In order to find a suitable transformation to realize multiphoton interaction terms from HS′ ,
we proceed in a similar manner as for a single reaction coordinate. That is, we first move to a rotating frame
where HS′ ≡ H I

a,1, with Ha = Ha,0 + Ha,1 and Ha,0 = −∆0/2σx. Therefore, the transformed Hamiltonian
reads as:

Ha = ∑
k=1,2

Ωka†
k ak + λkσx(ak + a†

k) + ∑
j

εj

2
[
cos ∆jtσz + sin ∆jtσy

]
. (23)

The next step is to perform the transformation using the unitary operator T(α). As previously
mentioned, we consider that the first reaction coordinate is suitable for the quantum simulation of
multiphoton interaction terms, due to the form of its spectral density. This argument enables one to
choose α ≡ −λ1/Ω1, hence Hb ≡ T†(−λ1/Ω1)HaT(−λ1/Ω1). This transformation acts trivially on the
second reaction coordinate, but it does affect the coupling between the latter and the spin. Finally, if we
move to an interaction picture with respect to Hb,0 = (Ω1 − ν̃1)a†

1a1 − ω̃σz/2, we obtain the Hamiltonian
Hn,2 ≈ H I

b,1 ≡ U†
b,0Hb,1Ub,0,

Hn,2 =
ω̃

2
σz + ν̃a†

1a1 + Ω2a†
2a2 − λ2σz(a2 + a†

2) + ∑
j∈r

εj

2nj!

(
2λ1

Ω1

)nj [
σ+a

nj
1 + H.c.

]
+ ∑

j∈b

εj

2nj!

(
2λ1

Ω1

)nj [
σ+(−a†

1)
nj + H.c.

]
, (24)
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where we have considered ∆j = ±nj(ν̃ − Ω1) − ω̃ and assumed the Lamb-Dicke regime

|λ1/Ω1|
√
〈(a1 + a†

1)
2〉 � 1, and |Ω1 − ν̃| � εj/2 to perform a rotating-wave approximation. Note that,

while the multiphoton terms are identical to those of Hn in Equation (17), the second reaction coordinate
interacts with the spin degree of freedom. Indeed, depending on the parameters of Hn,2, the effect of such
an interaction may turn effectively into non-Markovian effects for the reduced state of the spin and first
reaction coordinate, ρn = Tr2[ρn,2]. The final master equation governing the dynamics of ρn,2 is:

ρ̇n,2(t) = −i[Hn,2, ρn,2(t)]− [x̃1, [χ̃1, ρn,2(t)]]− [x̃2, [χ̃2, ρn,2(t)]]

+
[
x̃1,
{

Θ̃1, ρn,2(t)
}]

+
[
x̃2,
{

Θ̃2, ρn,2(t)
}]

(25)

where the operators involved are defined as in the case involving a single reaction coordinate
(cf. Equation (19)). It is worth stressing that the relation between the states given in Equation (20) still
holds. From the previous derivation, one can observe that the extension to more collective coordinates
is straightforward.

4. Examples and Numerical Simulations

In this section, we provide examples of the previously-explained general theoretical framework
to investigate the performance of the quantum simulation of different multiphoton Hamiltonians Hn,
as well as to discuss the limitation in the parameter regime for their realization. In particular, in Section 4.1,
we first consider the case in which the original spin-boson model interacts just with a discrete number
of modes, which can be viewed as a limit of vanishing spectral broadening Γ → 0. This scenario
will allow us to examine the validity of the required approximations without the effect of dissipation.
Then, in Section 4.2, we will consider Γ 6= 0, where the reaction-coordinate mapping appears as a key
step to realize a desired multiphoton Jaynes-Cummings model. The dynamics of each model is obtained
by a standard numerical integration (fourth-order Runge-Kutta) of the corresponding master equation,
namely Equations (10) and (19) for the spin-boson and multiphoton Jaynes-Cummings model, respectively.
Note that for a structured environment, the master equations are given in Equations (22) and (25).

In all cases, we assess the performance of the realization of the targeted multiphoton Jaynes-Cummings
models by means of the fidelity F(t) between two states,

F(t) = Tr

[√√
ρ1(t)ρ2(t)

√
ρ1(t)

]2

. (26)

In particular, we will analyse to what extent is the relation given in Equation (20) satisfied. In other
words, we will compare the aimed state of a multiphoton Jaynes-Cummings model ρn(t) with the one
retrieved using the analogue simulator, ΦρS+RC(t)Φ†, that is ρ1(t) → ρn(t) and ρ2(t) → ΦρS+RC(t)Φ†

in Equation (26). We remark that when two reaction coordinates are included, the state ρn(t) obeys the
master equation given in Equation (25), whose Hamiltonian is Hn,2, Equation (24), while ρS+RC(t) must be
replaced by ρS′ , as explained in Section 3.2.

In addition, we will show that the theoretical framework allows us to realize non-Markovian
multiphoton Jaynes-Cummings models. Among the different measures for non-Markovianity [55],
we resort to the one based on the trace distance [56], defined as:

D(ρx, ρy) =
1
2

Tr
[∣∣ρx − ρy

∣∣] . (27)
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where |A| =
√

A† A. Then, non-Markovian evolutions can be characterized as those for which
D(ρx(t), ρy(t)) increases during certain time intervals, that is for those for which the time-derivative
of the trace distance for a pair of states ρx,y,

σ(t, ρx,y) =
d
dt
D(ρx(t), ρy(t)), (28)

is σ(t, ρx,y) > 0. In general, one has to maximize over all possible pairs of states ρx,y in order to find
a suitable non-Markovian measure [56]. For our purpose, however, it will be sufficient to show that
σ(t, ρx,y) > 0 for a certain pair of states in a multiphoton Jaynes-Cummings model and that it can
be retrieved using a spin-boson model. That is, we calculate σ(t, ρx,y) using two initial states ρx,y in
the multiphoton Jaynes-Cummings model and corroborate that σ(t, ρx,y) is obtained to a very good
approximation when the states ρx,y(t) are replaced by their simulated ones using the spin-boson model,
namely ρx(t)→ Φρx,S+RC(t)Φ† and ρy(t)→ Φρy,S+RC(t)Φ†. In this manner, we offer a proof-of-principle
that non-Markovian multiphoton models can be realized.

4.1. Dissipationless Multiphoton Jaynes-Cummings Models

We start considering the simplest case, namely when the spin-boson model simply involves the
interaction with a discrete number of modes. This corresponds to either considering Γ → 0 in the
underdamped spectral density JSB(ω) or, equivalently, assuming that dissipation effects are sufficiently
small so that they can be discarded. Note that for a single bosonic mode with Γ = 0, the spin-boson model
adopts the form of a generalized quantum Rabi model, which is indeed HS+RC, as given in Equation (7).
Recall that in this particular case, HSB ≡ HS+RC, as there are no further modes in the system. In particular,
we set nd = 0 in Equation (5) as we aim to realize a single multiphoton Jaynes-Cummings interaction.
The Hamiltonian for a nJCM can be written in general as:

HnJCM =
ω̃

2
σz + ν̃a†a + g̃n

(
σ+an + σ−(a†)n

)
. (29)

At resonant condition, ω̃ = nν̃, the coupling constant g̃n fixes the time required to transfer the
population from the state |e〉 |0〉 to |g〉 |n〉, denoted as τn = π/(2g̃n

√
n!). Both are related to the spin-boson

parameters as (cf. Equation (17)):

g̃n =
ε0

2 n!

(
2λ

Ω

)n
(30)

τn =

√
n!

ε0

(
Ω
2λ

)n
. (31)

Clearly, as 2λ/Ω must be small to lie within the Lamb-Dicke regime, the coupling g̃n decreases
considerably for increasing n, requiring longer evolution times under the spin-boson Hamiltonian to
observe a significant effect, that is an evolution time of the order of τn.

In Figure 2, we show the results for the realization of 2JCM and 3JCM models using a spin-boson
model interacting with a single bosonic mode. In order to observe the paradigmatic Rabi oscillations
between the states |e〉 |0〉 and |g〉 |n〉, we choose ρS+RC(0) = |−〉 〈−| ⊗ ρth

RC as an initial state for the
spin-boson model, where ρth

RC is a thermal state at temperature β−1 for the reaction coordinate mode,
containing nth = (eβΩ − 1)−1 bosons. Recall that, as we consider here a single spectral density with Γ = 0,
the reaction coordinate mode is simply the unique mode that interacts with the spin degree of freedom.
In this manner, the initial state for the simulated multiphoton models reads as ρnJCM(0) = T†ρS+RC(0)T,
which approximately amounts to ρnJCM(0) ≈ |e〉 〈e| ⊗ |0〉 〈0| for sufficiently low temperature and small
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2λ/Ω. The chosen parameters for the simulation of the 2JCM, plotted in Figure 2a,b, are πα = ε0 = 0.02ω0;
recalling that Ω = ω0, it results in 2λ/Ω = 0.2. Choosing ν̃ = 10−3Ω and ω̃ = 2ν̃, the coupling in 2JCM
amounts to g̃2 = 0.2ν̃. The initial reaction-coordinate thermal state, ρth

RC, contains nth = 10−3 bosons.
In Figure 2b, we show how the quantum simulation of the 2JCM model deteriorates for increasing number
of bosons, as a large nth will eventually break down the Lamb-Dicke regime.

Figure 2. Dynamics of the simulated multiphoton Jaynes-Cummings models, n = 2 (top) and n = 3
(bottom). In Panels (a) and (c), we show the targeted dynamics (solid lines) and the one obtained using
the spin-boson Hamiltonian (points) for

〈
a†a
〉

and 〈σz〉, as indicated in the plots and as a function of
the time rescaled by τn (Equation (31)). In Panels (b) and (d), we plot the infidelity 1− F(t) between
the ideal ρnJCM(t) state and its approximated one ΦρS+RC(t)Φ† for different conditions, namely in
(b) for different temperatures (or mean occupation number nth) and in (d) for different values of ε0/Ω.
See Section 4.1 for further details regarding the parameters and states considered in the simulation. JCM,
Jaynes-Cummings model.

For the 3JCM, we choose again πα = 0.02ω0, which leads to 2λ/Ω = 0.2. Then, we select the aimed
coupling strength of the multiphoton interaction to be g̃3 = 0.1ν̃ with ω̃ = 3ν̃, while we vary ε0/ω0.
The temperature is set to βΩ ≈ 100 so that ρth

RC ≈ |0〉 〈0|. As in the previous case, the dynamics are well
retrieved; see Figure 2c, where we have set ε0/ω0 = 2 · 10−3. Note however that, as a consequence of
the rotating-wave approximation performed to achieve a resonant third order (see Appendix B and cf.
Equation (17)) and due to the longer times required to simulate a 3JCM compared to the 2JCM, the condition
|Ω− ν̃| � ε0 must be better satisfied. Indeed, for ε0/ω0 = 10−2, we already see a clear departure from
the targeted dynamics, as indicated by a large infidelity 1− F(t) & 10−1, as shown in Figure 2d.

In the following, we consider a spin interacting with two bosonic modes, again with Γ1,2 = 0.
As explained in Section 3.2, we perform the map onto the first bosonic mode to attain a multiphoton
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interaction. Upon suitable transformations and approximations, the spin-boson model will take the form of
a multiphoton Jaynes-Cummings model HnJCM,2, where the subscript 2 indicates the presence of a second
reaction coordinate in the system. The Hamiltonian HnJCM,2 reads as:

HnJCM,2 =
ω̃

2
σz + ν̃a†

1a1 + Ω2a†
2a2 + g̃n

(
σ+an

1 + σ−(a†
1)

n
)
− λ2σz(a2 + a†

2). (32)

In this manner, the spin exchanges n quanta with the first bosonic mode as in HnJCM, while the
last term effectively shifts the spin frequency depending on the state of the second mode. The reduced
state for the spin and first bosonic mode is given then by ρnJCM(t) = Tr2[ρnJCM,2(t)]. Indeed, due to
the interaction with the second bosonic mode, the multiphoton Jaynes-Cummings model may exhibit
non-Markovian features. For that, we consider the spin-boson Hamiltonian HS′ given in Equation (21),
which then approximately realizes HnJCM,2. In particular, we select ∆0 = −2Ω1, so that the simulated
model involves two-photon interaction terms, i.e., a 2JCM. The results are plotted in Figure 3, while the
parameters are παi = 0.02Ωi such that 2λi/Ωi = 0.2 for i = 1, 2, ε0/Ω1 = 10−2. The coupling strength
in H2JCM,2 is given by g̃2 = 0.2ν̃ with ν̃ = Ω2. As in the single-mode case, Rabi oscillations will be
clearly visible selecting ρS′(0) = |−〉 〈−| ⊗ ρth

RC1
⊗ ρth

RC2
. After its transformation, this state corresponds

approximately to an initial spin state |e〉 in the nJCM frame. In the same manner, in order to analyse the
emergence of non-Markovian behaviour, we consider the initial states |g〉 〈g| and |e〉 〈e| for the spin in HS′ .
This implies initial spin states |±〉 in the nJCM frame, which for pure dephasing noise, it has been shown to
be the pair of states maximizing σ(t) [56]. The results plotted in Figure 3 have been performed considering
a sufficiently low temperature such that ρth

RC1,2
≈ |0〉 〈0|. We then compute the trace distance D(ρx, ρy)

using the states ρx,y(t) resulting in tracing out the second mode, Tr2[ρ2JCM,2(t)], for the two different initial
states ρ2JCM,2(0) ≈ |±〉 〈±| ⊗ ρth

RC1
⊗ ρth

RC2
. As shown in Figure 3b, the time-derivative of the trace distance,

σ(t), becomes positive during certain intervals, a clear indication of the non-Markovian behaviour of the
simulated multiphoton Jaynes-Cummings model. In addition, we also calculate the non-trivial evolution
of the purity for the states ρS+RC1(t) and ρS(t) = TrRC1 [ρS+RC1(t)], which is shown in Figure 3c. According
to our theoretical framework, their purity is approximately equal to that of ρ2JCM(t) and the reduced
spin state upon tracing both bosonic degree of freedom in the 2JCM, Tr[ρ2JCM(t)], respectively. Finally,
the infidelity 1− F(t) between the targeted state ρ2JCM,2(t) and its reconstructed one ΦρS+RC1+RC2(t)Φ

†

in Figure 3d.

Figure 3. Cont.
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Figure 3. Non-Markovian dynamics for a 2JCM and its simulation using a spin-boson model HS′ . In Panel
(a), we show the dynamics for the expectation values 〈a†

i ai〉 with i = 1, 2 and 〈σz〉 for the target 2JCM
model (solid lines) and its reconstructed values using HS′ (points). The considered initial state reads as
ρS′ (0) = |−〉 〈−| ⊗ ρth

RC1
⊗ ρth

RC2
, with β very large such that ρth ≈ |0〉 〈0|. In (b), we plot the time-derivative

of the trace distance, σ(t), after tracing out the second bosonic mode and considering the initial states
|e〉 and |g〉 for the spin in HS′ , while both reaction coordinates find themselves in their vacuum. Clearly,
σ(t) > 0 during certain intervals, revealing the non-Markovianity introduced due to the interaction with
the second mode. Panel (c) shows the evolution of purity for the state upon tracing the second mode,
Tr[ρ2

S+RC1
(t)] and for the reduced state of the spin, Tr[ρ2

S(t)], for the same case shown in (a). In Panel (d),
we compare the infidelity 1− F(t) between the ideal state and the simulated one using HS′ for the three
different initial states employed here. We refer to Section 4.1 for further details regarding the parameters
and states considered in the simulation.

4.2. Dissipative Multiphoton Jaynes-Cummings Models

We now consider a more realistic scenario in which the spin-boson model interacts with an
environment whose spectral density has an underdamped shape, i.e., JSB(ω) has the form of Equation (8)
with Γ 6= 0. In this manner, we extend the theoretical framework beyond the standard local master
equation description [44]. As explained in Section 3.1, this situation can be mapped using a reaction
coordinate, which now in turn interacts with a Markovian residual environment. The evolution of the state
of the augmented system, spin and reaction coordinate, evolves according to the master equation given in
Equation (10). Indeed, the effect of spectral broadening, Γ 6= 0, introduces dissipation into the simulated
multiphoton Jaynes-Cummings model, whose state now obeys the master Equation (19). We remark
that the performance of the simulated dissipative model is not altered when the effect of dissipation is
taken into account correctly. Nevertheless, whenever Γ� ν̃, dissipation dominates the dynamics, and the
paradigmatic Rabi oscillations will eventually fade away. In Figure 4, we show the results of numerical
simulations aimed to retrieve a 2JCM with different Γ/ν̃ values and for different quantities. As for Figure 2,
we used πα = ε0 = 0.02ω0, so that 2λ/Ω = 0.2. We chose again ν̃ = 10−3Ω and ω̃ = 2ν̃, and therefore,
the coupling in 2JCM amounts to g̃2 = 0.2ν̃, while the temperature is such that ρth

RC contains nth = 10−3

bosons. The spin is initialized in the |−〉 state, so that ρS+RC(0) = |−〉 〈−| ⊗ ρth
RC. In particular, the value

Γ/ν̃ = 2 · 10−1 considered in Figure 4a already produces a significant departure from the Rabi oscillation
between the states |e〉 |0〉 and |g〉 |2〉 in the dissipationless 2JCM (cf. Figure 2a for Γ = 0). Note that
the results plotted in Figure 4a correspond to a critically-damped 2JCM since Γ = g̃2. As plotted in
Figure 4b, the effect of the dissipation is clearly visible in the evolution of the purity for both the total state
(spin plus bosonic mode) and the reduced spin state, namely Tr[ρ2

S+RC(t)] and Tr[ρ2
S(t)]. As in previous

cases, the purity of these states is directly related to those of the simulated model as a consequence of
the relation ρ2JCM(t) ≈ ΦρS+RC(t)Φ†. Furthermore, Rabi oscillations or population revivals appear in
the evolution of von Neumann entropy, SvN(ρ) = −ρ log2 ρ for the reduced spin state. In particular,
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for an initial state ρnJCM(0) ≈ |e〉 〈e| ⊗ |0〉 〈0| and due to the n-photon interaction with a bosonic degree
of freedom, the spin state oscillates between a pure (SvN = 0) and a maximally-mixed state (SvN = 1)
in a time τn/2. This further corroborates that one can witness the multiphoton transitions of the aimed
multiphoton Jaynes-Cummings model monitoring the spin even without access or control on the bosonic
environment. This is plotted in Figure 4c for different Γ/ν̃ values. Finally, we note that the performance of
the quantum simulation is independent of the dissipation as demonstrated by the good fidelities attained
in these cases (cf. Figure 4d), allowing for the simulation of different parameter regimes in a nJCM.

Figure 4. Dynamics of a dissipative 2JCM using a spin-boson model. In Panel (a), we show the dynamics
of the expectation values of

〈
a†a
〉

and 〈σz〉, as in Figure 2, for the dissipative 2JCM (solid lines) and its
simulation using the spin-boson model (points), for Γ/ν̃ = 2 · 10−1 and ρS+RC(0) = |−〉 〈−| ⊗ ρth

RC with
nth = 10−3. For the same case, we also show in (b) the evolution of the purities for the spin state Tr[ρ2

S(t)]
and for the total state Tr[ρ2

S+RC(t)]. In (c), we compare the different behaviour as Γ/ν̃ varies for the von
Neumann entropy of the reduced spin state, SvN(ρS(t)). The values of Γ/ν̃ are indicated close to each
curve. Finally, the state infidelity 1− F(t) between the targeted ρ2JCM and its approximate simulation,
ΦρS+RC(t)Φ†, is plotted in Panel (d) for different Γ/ν̃. See the main text for further details on the parameters
employed for the simulation.

5. Conclusions

We have proposed a theoretical scheme to realize multiphoton Jaynes-Cummings models using the
paradigmatic spin-boson model, which contains a continuum of bosonic modes, as an analogue quantum
simulator. While the spin-boson model naturally lacks these multiphoton interaction terms, we make use
of a suitable transformation that approximately maps the spin-boson model into a dissipative multiphoton
Jaynes-Cummings model. Importantly, the parameters of the multiphoton model, as well as the order
of the interaction can be controlled by tuning the frequency splitting and bias parameter of the spin in
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the original spin-boson model. In order to bring the spin-boson model, typically interacting with an
infinite number of bosonic modes, into the form of the aimed multiphoton model, we first rearrange the
environment degrees of freedom using the so-called reaction-coordinate method [22–28]. This method
allows us to include a set of collective bosonic modes into the coherent description of the problem,
which then in turn interact with the residual environment. For certain types of interactions between
the spin and the environment, characterized by the spectral density, the reaction coordinate mapping
emerges as a powerful tool to reduce the complexity of the problem. In particular, for an underdamped
spectral density, the reaction coordinate takes a simple form as it interacts with the residual environment
in a Markovian fashion. The resulting Hamiltonian is then used to generate multiphoton interaction
terms, following the theory explained in [43,44], while the dissipation effects must be transformed
accordingly. Furthermore, we extend the scheme to spin-boson models with structured environments.
In these cases, the original spin-boson Hamiltonian can be mapped onto the one of a spin interacting
with more reaction coordinates. In this manner, we show how to extend the theoretical framework to
account for these additional modes. In particular, due to the presence of two or more reaction coordinates,
the attained multiphoton Jaynes-Cummings model can exhibit non-Markovian features. We perform
numerical simulations starting from the spin plus reaction-coordinate Hamiltonians and aiming to realize
different multiphoton Jaynes-Cummings models. We first perform simulations considering one reaction
coordinate without dissipation to better illustrate the performance of the required approximations to
achieve two- and three-photon Jaynes-Cummings models. We then demonstrate that non-Markovian
multiphoton Jaynes-Cummings models can be indeed attained when a second reaction coordinate is
included, as unveiled by the standard trace distance measure [56]. Finally, we provide numerical
simulations investigating the interplay between spectral broadening, dissipation and the decoherence in
the targeted multiphoton models.
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Appendix A. Reaction Coordinate Mapping

In this Appendix, we provide the necessary steps for the reaction coordinate mapping, as well as
for the derivation of the master equation given in Equation (10), following closely [24]. As outlined in
Section 3.1, given the Hamiltonian of the spin-boson system HSB = ε0

2 σz +
∆0
2 σx + σx ∑k fk(ck + c†

k) +

∑k ωkc†
k ck, one can achieve the RC mapping by defining a collective coordinate such that λ(a + a†) =

∑k fk(ck + c†
k), where a and a† are respectively the annihilation and creation operators of the RC. This

transformation leads to a new Hamiltonian where the original system interacts with the residual
environment only through the RC,

H = HS+RC + HRC−E′ + HE′ , (A1)
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where HS+RC is given by Equation (7), while HRC−E′ = (a + a†)∑k gk(bk + b†
k ) + (a + a†)2 ∑k

g2
k

ωk
,

HE′ = ∑k ωkb†
k bk.

The crucial point of this procedure is to find an explicit relation between the spectral density of
the original configuration, i.e. JSB(ω) = ∑k f 2

k δ(ω −ωk), and the analogue quantity of the transformed
system JRC(ω) = ∑k g2

kδ(ω−ωk). In order to obtain this relation, one can rephrase the problem classically.
Indeed, since the spectral density only depends on the interaction between the system and the environment,
one can momentarily regard the spin as a continuous coordinate q subject to a potential V(q). After solving
the corresponding Hamilton equations of motion in the Fourier space, one obtains an equation of the form
L̂SB(z)q̂(z) = −V̂′(z), where L̂SB(z) = −z2

(
1 +

∫ +∞
0 dω

2JSB(ω)
ω(ω2−z2)

)
. Therefore, using the so-called Leggett

prescription, one gets:

JSB(ω) =
1
π

lim
ε→0+

Im
[
L̂SB(ω− iε)

]
. (A2)

One can reproduce the same calculation also after performing the RC mapping and express JRC(ω)

in terms of the corresponding kernel L̂0(z). However, since at this stage, we are just rearranging the
environment in a more convenient way by using a suitable normal mode transformation, the integral
kernel must be the same before and after the mapping; hence, one can use L̂0(z) instead of L̂SB(z) in
Equation (A2). By considering the Ohmic spectral density JRC(ω) = γωe−ω/Λ, one obtains:

JSB(ω) =
4γΩ2λ2ω

(Ω2 −ω2)2 + (2πγΩω)2 . (A3)

It is easy to see that one exactly recovers the underdamped spectral density given by Equation (8)
by simply requiring that γ = Γ/(2πω0), Ω = ω0, and λ =

√
παω0/2. Furthermore, one also needs

to solve the dynamics, i.e., writing down the corresponding master equation for the mapped system,
system plus reaction coordinate. The guiding idea is to treat exactly the coupling between the spin and
the RC, while the interaction between the latter and the residual environment is treated perturbatively
up to the second order. This enables us to rely on the standard Born-Markov approximation, provided
that either the coupling between the augmented system and the residual environment is weak or the
residual environment correlation time is short compared to the relevant time scale of the system. Within
this approximation, one can work out a master equation that, in the Schrödinger picture, reads as:

ρ̇(t) = −i [HS+RC, ρ(t)]−
∞∫

0

dτ

∞∫
0

dω JRC(ω) cos ωτ coth
(

βω

2

)
[A, [A(−τ), ρ(t)]]

−
∞∫

0

dτ

∞∫
0

dω JRC(ω)
cos ωτ

ω
[A, {[A(−τ), HS+RC] , ρ(t)}] ,

where ρ ≡ ρS+RC, A = a + a†, and the residual environment is assumed to be in a thermal state, i.e., ρE′ =

e−βHE′/TrE′{e−βHE′ }.
In order to obtain an expression for the interaction picture operators, one can proceed by truncating

the space of the augmented system up to n basis states and numerically diagonalising the Hamiltonian
HS+RC. To this end, let |φn〉 be an eigenstate of HS+RC, i.e., HS+RC

∣∣φj
〉
= ϕj

∣∣φj
〉
; therefore, the operator A

can be expanded as A = ∑jk Ajk
∣∣φj
〉
〈φk|, while in the interaction picture, one has:

A(t) = ∑
jk

Ajkeiξ jkt ∣∣φj
〉
〈φk| , (A4)
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where Ajk =
〈
φj
∣∣ A |φk〉, and ξ jk = ϕj − ϕk. Finally, by plugging Equation (A4) into Equation (A4) and

assuming the imaginary parts to be negligible, one gets the final form of the master equation given
by Equation (10).

Appendix B. Derivation of Hb and Hn

In this Appendix, we show how to obtain the Hamiltonians Hb and Hn, given in Equations (16)
and (17), respectively. In particular, for Hb, the following expressions are needed:

T†(α)a†aT(α) = a†a + |α|2 − σz(aα∗ + a†α),

T†(α)σxT(α) = −σz,

T†(α)σyT(α) = −iD(2α)σ+ + H.c.,

T†(α)σzT(α) = D(2α)σ+ + H.c.,

T†(α)σx(a + a†)T(α) = −σz(a + a†) + 2Re[α].

Thus, the resulting Hamiltonian Hb = T† HaT, with Ha = Ωa†a + λσx(a + a†) + ∑j εj/2(cos ∆jtσz +

sin ∆jtσy), reads:

Hb = = Ωa†a−Ωσz(aα + a†α∗)− λσz(a + a†) +
nd

∑
j=0

εj

2

[
σ+D(2α)e−i∆jt + H.c.

]
, (A5)

where we have neglected a constant energy shift. Therefore, by selecting α = −λ/Ω, we obtain a simple
Hamiltonian to pursue multiphoton interactions, namely:

Hb = Ωa†a + ∑
j

εj

2

[
σ+e2λ(a−a†)/Ωe−i∆jt + H.c.

]
, (A6)

which is indeed Equation (16). Moving now to an interaction picture w.r.t. Hb,0 = (Ω− ν̃)a†a− ω̃σz/2,
we obtain:

H I
b,1 = ν̃a†a +

ω̃

2
σz + ∑

j

εj

2

[
σ+e−i(∆j+ω̃)te2λ(a(t)−a†(t))/Ω + H.c.

]
(A7)

with a(t) = ae−i(Ω−ν̃)t. Requiring |2λ/Ω|
√
〈(a + a†)2〉 � 1 and selecting ∆j = ∆±n ≡ ±n(ν̃−Ω)− ω̃,

we resonantly drive multiphoton Jaynes-Cummings interaction terms, while the rest of the terms in the
expansion of the exponential term are off-resonant and rotating with a large frequency compared to its
amplitude, i.e., n|Ω− ν̃| � εj/2 (for zeroth order) where n is the selected order of the interaction σ±an.
In this manner, performing these two approximations, one obtains:

Hn =
ω̃

2
σz + ν̃a†a + ∑

j∈r

εj(2λ)nj

2Ωnj nj!
[
σ+anj + H.c.

]
+ ∑

j∈b

εj(2λ)nj

2Ωnj nj!

[
σ+(−a†)nj + H.c.

]
, (A8)

where ∆j∈r = nj(ν̃−Ω)− ω̃ and ∆j∈b = −nj(ν̃−Ω)− ω̃, which corresponds to Equation (17). The largest
error committed in the previous approximation stems from the zeroth order in the expansion of the
exponential. These contributions are of the form εj/2(σ+einj(Ω−ν̃)t +H.c.), which will produce a significant
effect after a time t ≈ nj(Ω− ν̃)/ε2

j . For a single n-photon interaction term, population transfer occurs in

a characteristic time τn =
√

n!(Ω/2λ)n/ε0 (see Section 4.1). Hence, we can provide a rough estimate for
the duration of a correct simulation of the desired multiphoton Jaynes-Cummings model to be t = kτn

with k ≈ (2λ/Ω)nn(Ω− ν̃)/(ε0
√

n!).
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