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Abstract: In this article, a general contractive mapping is presented and some fixed point results
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1. Introduction

Fixed point theory plays an important role in applications of many branches of mathematics.
Within the past thirty years several generalizations of a metric space have been made.

Problems in nonlinear analysis are solved by a popular tool called the Banach contraction principle.
A lot of publications are devoted to the study and solutions of many practical and theoretical problems
by using this principle [1–6]. One of the interesting generalizations of this basic principle was given by
Bakhtin [7] (and also Czerwik [8]) by introducing the concept of b-metric spaces. Following the initial
paper of Czerwik [8], a number of researchers in nonlinear analysis investigated the topology of the
paper and proved several fixed point theorems in the context of complete b-metric spaces, (for example,
see [9–15]).

The notion of a b-metric-like presented by Alghamdi et al. [16] as a generalization of
a b-metric. They discussed some related fixed point consequences concerning with this space.
Recently, Hussain et al. [17] examined topological structure of this space and presented some fixed
point results in b-metric-like space. A lot of results on fixed points of mappings via certain contractive
conditions in mention spaces have been done (for example, see [18–24]).

Many authors generalized fixed point theory in various directions either by using generalized
contractions or by using more general spaces. Via these directions, in this article, we introduce
generalized contractive mappings (so-called β

s,ψ
q,φ-contraction mappings) and prove some new results

on common fixed points. The obtained results generalize some classical common fixed point theorems
in the literature. Finally, some common fixed point results for ps, qq-graphic contraction mappings,
illustrative examples and an application to nonlinear integral equation are presented to justify the
obtained results.
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2. Preliminaries

This part is devoted to present some definitions and basic notions of metric-like and
b-metric-like spaces.

Definition 1 ([17]). Let Ω be a nonempty set. A mapping ω : ΩˆΩ Ñ r0,`8q is said to be a metric-like if
the following three conditions hold for all κ, τ, µ P Ω :
pω1q ωpκ, τq “ 0 ñ κ “ τ;
pω2q ωpκ, τq “ ωpτ, κq;
pω3q ωpκ, µq ď ωpκ, τq `ωpτ, µq.

In this case, the pair pΩ, ωq is called a metric-like space.

Definition 2 ([25]). A b-metric-like on a nonempty set Ω is a function ω : ΩˆΩ Ñ r0,`8q such that for
all κ, τ, µ P Ω, the following three conditions hold:
pω1q ωbpκ, τq “ 0 ñ κ “ τ;
pω2q ωbpκ, τq “ ωbpτ, κq;
pω3q ωpκ, µq ď srωbpκ, τq `ωbpτ, µqs.

In this case, the pair pΩ, ωbq is called a b-metric-like space (with a constant s ě 1).

In a b´metric-like space pΩ, ωbq, if κ, τ P Ω and ωbpκ, τq “ 0, then κ “ τ, and the converse is not
true in general.

Example 1. Let Ω “ t0, 1, 2u and let

ωbpκ, τq “

#

3, κ “ τ “ 0,
1
3 , otherwise.

Then pΩ, ωbq is a b-metric-like space with the constant s “ 3.

Example 2. If Ω “ R, then ωbpκ, τq “ |κ| ` |τ| defines a metric-like on Ω.

Example 3. Let Ω “ r0,`8q, q ą 1 be a constant, and ωb : ΩˆΩ Ñ r0,`8q be defined by

ωbpκ, τq “ pκ` τqq, @κ, τ P Ω.

Then pΩ, ωbq is a b´metric-like space with coefficient s “ 2q´1.

Example 4. Let pΩ, ωbq be a metric-like space and ωbpκ, τq “ pωpκ, τqqq , where q ą 1 is a real number,
then pΩ, ωbq is a b´metric-like space with coefficient s “ 2q´1, this follows immediately by the fact that
pa` bqq ď 2q´1paq ` bqq.

By Example 4, we can get:

Example 5. Let Ω “ r0, 1s. Then the mapping ωb1 : ΩˆΩ Ñ r0,`8q defined by ωb1pκ, τq “ pκ` τ´ κτqq

is b-metric-like on Ω with coefficient s “ 2q´1, where q ą 1 is a real number.

Example 6. Let Ω “ R. Then the mappings ωi : ΩˆΩ Ñ r0,`8q pi P t2, 3, 4uq, defined by

ωb2pκ, τq “ p|κ| ` |τ| ` aqq ,

ωb3pκ, τq “ p|κ´ b| ` |τ´ b|qq ,

ωb4pκ, τq “

´

κ2 ` τ2
¯q

.
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are b-metric-like on Ω, where q ą 1, a ě 0 and b P R.

Definition 3 ([25]). Let txnu be a sequence on a metric-like space pΩ, ωbq with coefficient s.

(i) If limm,nÑ8 ωbpκn, κq “ ωbpκ, κq, then the sequence tκnu is said to be convergent to κ;
(ii) The sequence tκnu is said to be a Cauchy sequence in pΩ, ωbq If limm,nÑ8 ωpκm, κnq exists and is finite;
(iii) pκ, ωbq is said to be a complete b-metric-like space if for every Cauchy sequence tκnu in Ω, there exists an

κ P Ω, such that limm,nÑ8 ωbpκm, κnq “ ωbpκ, κq “ limnÑ8 ωbpκn, κq.

Remark 1. In a b-metric-like space the limit of a sequence need not be unique and a convergent sequence need
not be a Cauchy sequence.

To show this remark, we give the following example

Example 7. Let Ω “ r0,`8q. Define a function ωb : Ω ˆ Ω Ñ Ω by ωbpκ, τq “ pmaxtκ, τuq2.
Then pΩ, ωbq is a b-metric-like space with a coefficient s “ 2. Suppose that

tκnu “

#

0 when n is odd
1 when n is even

.

For κ ě 1, limnÑ8 ωbpκn, κq “ limnÑ8 pmaxtκn, κuq2 “ κ2 “ ωbpκ, κq. Therefore, it is a convergent
sequence and κn Ñ κ for all κ ě 1. That is, limit of the sequence is not unique. Also, limm,nÑ8 ωpκm, κnq does
not exist. Thus, it is not a Cauchy sequence.

Lemma 1 ([26]). Let T : Ω Ñ Ω be a nonlinear self-mapping on a b-metric-like space pΩ, ωbq with coefficient s.
Consider T is continuous at η P Ω. Then for all sequences tκnu in Ω such that κn Ñ η, we get Tκn Ñ Tη

that is
lim

nÑ8
ωbpTκn, Tηq “ ωbpTη, Tηq.

The proof of the following lemma is obvious.

Lemma 2. Suppose that pΩ, ωbq be a b-metric-like space with coefficient s ě 1. Then

(i) If ωbpκ, τq “ 0, then ωbpκ, κq “ ωbpκ, τq “ 0;
(ii) If tκnu is a sequence such that limnÑ8 ωbpκn, κn`1q “ 0 then, we can write

lim
nÑ8

ωbpκn, κnq “ lim
nÑ8

ωbpκn`1, κn`1q “ 0;

(iii) if κ ‰ τ, then ωbpκ, τq ą 0.

Lemma 3 ([27]). Let tτnu be a sequence on a complete b-metric-like space pΩ, ωbq with parameter s ě 1
such that

lim
nÑ8

ωbpτn, τn`1q “ 0. (1)

If limn,mÑ8 ωbpτn, τmq ‰ 0, there exists an ε ą 0 and sequences tmp`qu8`“1 and tnp`qu8`“1 of positive
integers with n` ą m` ą ` such that

ωbpτn`
, τm`

q ě ε, ωbpτm`
, τn`´1q ă ε,

ε

s2 ď lim sup
nÑ8

ωbpτn`´1, τm`´1q ď εs,

ε

s
ď lim sup

nÑ8
ωbpτn`´1, τm`

q ď ε,
ε

s
ď lim sup

nÑ8
ωbpτn`

, τm`´1q ď εs2.
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Definition 4 ([28]). The nonlinear self-mappings T, S : Ω Ñ Ω are weakly compatible if TSκ “ STκ,
whenever Sκ “ Tκ.

Proposition 1 ([29]). Let T and S be weakly compatible self-maps of a nonempty set Ω. If T and S have a
unique point of coincidence η “ Sξ “ Tξ, then η is the unique common fixed point of T and S.

3. An β
s,ψ
q,φ-Contraction Mapping

This section is prepared to introduce β
s,ψ
q,φ-contraction mappings and obtained some common

fixed point results for such class of contractions in the framework of b-metric-like spaces.
Let Ψ, Φ denote the class of functions ψ, φ : r0,8q Ñ r0,8q (respectively) satisfying the

following conditions:
§ ψ is non-decreasing, continuous function and ψptq “ 0, if t “ 0;
§ φ is a lower semi-continuous and φptq “ 0, if t “ 0.

Definition 5. Let pΩ, ωbq be a b-metric-like space with parameter s ě 1. Let the constants q ě 2 and β P r0, 1q.
The nonlinear self-mappings T, S : Ω Ñ Ω are called β

s,ψ
q,φ-contraction mappings if for all κ, τ P Ω

ψ p2sqωbpTκ, Tτqq ď β
“

ψ
`

Mωbpκ, τq
˘

´ φ
`

Mωbpκ, τq
˘‰

, (2)

where ψ P Ψ, φ P Φ and

Mωbpκ, τq “ max
"

ωbpSκ, Sτq, ωbpSκ, Tτq, ωbpSτ, Tκq,
ωbpSκ, Tκq `ωbpTτ, Sτq

4s

*

.

Now we begin with our first result.

Theorem 1. Let pΩ, ωbq be a complete b-metric-like space with the constant s ě 1, and T, S : Ω Ñ Ω be
mappings satisfy the following conditions:

(i) TpΩq Ă SpΩq;
(ii) the pair pS, Tq is an β

s,ψ
q,φ-contraction;

then, T and S have a point of coincidence in Ω.
(iii) Moreover, if T and S are weakly compatible, then T and S have a unique common fixed point in Ω.

Proof. Let κ˝be an arbitrary point in Ω. Since TpΩq Ă SpΩq, there exists κ1 P Ω such that Tκ˝ “ Sκ1.
By continuing this process inductively, we get a sequence tκnu in Ω such that

τn “ Tκn “ Sκn`1.

If ωbpτn˝ , τn˝`1q “ 0 for some n˝ P N, then we have τn˝ “ τn˝`1 i.e., τn˝ is a common fixed point
of the pair pT, Sq and the proof is finished.

Now, let for all n˝ P N, ωbpτn`1, τnq ą 0.
By (2), one can get
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ψ p2sωbpτn`1, τnqq ď ψ p2sqωbpτn`1, τnqq

“ ψ p2sqωbpTκn`1, Tκnqq

ď βψ
`

Mωbpκn`1, κnq
˘

´ βφ
`

Mωbpκn`1, κnq
˘

“ βψ

˜

max

#

ωbpSκn`1, Sκnq, ωbpSκn`1, Tκnq, ωbpSκn, Tκn`1q

, ωbpSκn`1,Tκn`1q`ωbpTκn ,Sκnq
4s

+¸

´βφ

˜

max

#

ωbpSκn`1, Sκnq, ωbpSκn`1, Tκnq, ωbpSκn, Tκn`1q

, ωbpSκn`1,Tκn`1q`ωbpTκn ,Sκnq
4s

+¸

“ βψ
´

max
!

ωbpτn, τn´1q, ωbpτn, τnq, ωbpτn´1, τn`1q,
ωbpτn ,τn`1q`ωbpτn ,τn´1q

4s

)¯

´βφ
´

max
!

ωbpτn, τn´1q, ωbpτn, τnq, ωbpτn´1, τn`1q,
ωbpτn ,τn`1q`ωbpτn ,τn´1q

4s

)¯

ď βψ

˜

max

#

ωbpτn, τn´1q, 2sωbpτn, τn´1q, srωbpτn´1, τnq `ωbpτn, τn`1qs,
ωbpτn ,τn`1q`ωbpτn´1,τnq

4s

+¸

´βφ

˜

max

#

ωbpτn, τn´1q, 2sωbpτn, τn´1q, srωbpτn´1, τnq `ωbpτn, τn`1qs,
ωbpτn ,τn`1q`ωbpτn´1,τnq

4s

+¸

.

(3)

If ωbpτn, τn´1q ď ωbpτn, τn`1q for some n P N, then by (3), we can get

ψ p2sωbpτn`1, τnqq ď βψ p2sωbpτn`1, τnqq ´ βφ p2sωbpτn`1, τnqq

ă ψ p2sωbpτn`1, τnqq ´ φ p2sωbpτn`1, τnqq .

According to definition of ψ and φ, the above inequality gives ωbpτn`1, τnq “ 0, which is a
contradiction, since we have supposed ωbpτn`1, τnq ą 0. Hence, for all n P N

ψ p2sωbpτn`1, τnqq ď ψ p2sqωbpτn`1, τnqq ď βψ p2sωbpτn, τn´1qq ´ βφ p2sωbpτn, τn´1qq . (4)

Hence,
ωbpτn`1, τnq ă ωbpτn, τn´1q,

that is, a sequence tωbpτn`1, τnqu is decreasing and bounded below. Thus there exists r ě 0 such that

lim
nÑ8

ωbpτn`1, τnq “ r. (5)

Now, we proof r “ 0 by a contradiction. Assume that r ą 0. Taking limit as n Ñ8 in (4), using (5),
since β P r0, 1q and by the properties of ψ and φ, we have

ψ p2srq ď βpψ p2srq ´ φ p2srqq ă ψ p2srq ´ φ p2srq .

This is a contradiction. Hence
lim

nÑ8
ωbpτn`1, τnq “ 0. (6)

In the next step, we claim that
lim

n,mÑ8
ωbpτn, τmq “ 0.

Let if possible, limn,mÑ8 ωbpτn, τmq ‰ 0, then by Lemma 3, there exist ε ą 0 and sequences tmp`qu
and tnp`qu of positive integers with n` ą m` ą ` such that ωbpκn`

, κm`
q ě ε, ωbpκn`´1, κm`

q ă ε and

ε
s2 ď lim supnÑ8 ωbpτm`´1, τn`´1q ď εs,
ε
s ď lim supnÑ8 ωbpτn`´1, τm`

q ď ε,
ε
s ď lim supnÑ8 ωbpτn`

, τm`´1q ď εs2.
(7)
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By the contractive condition (2), we obtain

ψ
`

2s2ωbpτm`
, τn`

q
˘

“ ψ
`

2sqωbpτm`
, τn`

q
˘

“ ψ
`

2sqωbpTκm`
, Tκn`

q
˘

ď βrψ
`

Mωbpκm`
, κn`

q
˘

´ φ
`

Mωbpκm`
, κn`

q
˘

s,
(8)

where

Mωbpκm`
, κn`

q “ max

#

ωbpSκm`
, Sκn`

q, ωbpSκm`
, Tκn`

q, ωbpSκn`
, Tκm`

q,
ωbpSκm`

,Tκm`
q`ωbpTκn` ,Sκn` q

4s

+

“ max

#

ωbpτm`´1, τn`´1q, ωbpτm`´1, τn`
q, ωbpτn`´1, τm`

q,
ωbpτm`´1,τm`

q`ωbpτn`´1,τn` q

4s

+

.
(9)

Passing the upper limit as k Ñ8 in (9) and using (6) and (7), we can get

lim sup
nÑ8

Mωbpκm`
, κn`

q “ maxtεs, εs2, ε, 0u. (10)

Again, passing the upper limit as k Ñ8 in (8) and applying (10), we have

ψ
´

2s2ε
¯

ď βrψ
´

εs2
¯

´ φ
´

εs2
¯

s.

By properties of ψ, φ and the assumption ε ą 0 leads to a contradiction. Hence the sequence tτnu

is a Cauchy sequence in the complete b-metric-like space pΩ, ωbq. By completeness, there is a point
η P Ω such that

lim
nÑ8

ωbpτn, ηq “ lim
nÑ8

ωbpTκn, ηq “ lim
nÑ8

ωbpSκn`1, ηq “ 0. (11)

Since TpΩq Ă SpΩq, there exists ξ P Ω such that Sξ “ η. Now, we shall prove that Tξ “ Sξ,
then by (11)

ψ
`

2s2ωbpη, Tξq
˘

“ ψ p2sqωbpη, Tξqq “ ψ p2sqωbpTκn, Tξqq

ď βψ

˜

max

#

ωbpSκn, Sξq, ωbpSκn, Tξq, ωbpSξ, Tκnq,
ωbpSκn ,Tκnq`ωbpTξ,Sξq

4s

+¸

´βφ

˜

max

#

ωbpSκn, Sξq, ωbpSκn, Tξq, ωbpSξ, Tκnq,
ωbpSκn ,Tκnq`ωbpTξ,Sξq

4s

+¸

“ βψ

˜

max

#

ωbpτn´1, Sξq, ωbpτn´1, Tξq, ωbpSξ, τnq,
ωbpτn´1,τnq`ωbpTξ,Sξq

4s

+¸

´βφ

˜

max

#

ωbpτn´1, Sξq, ωbpτn´1, Tξq, ωbpSξ, τnq,
ωbpτn´1,τnq`ωbpTξ,Sξq

4s

+¸

.

(12)

By taking the limit as n Ñ8 in (12) and using (6) and (11), we can write

ψ p2sωbpη, Tξqq ď ψ
´

2s2ωbpη, Tξq
¯

ď βψ

ˆ

max
"

ωbpη, Sξq, ωbpη, Tξq, ωbpSξ, ηq,
ωbpTξ, ηq `ωbpSξ, ηq

4

*˙

´βφ

ˆ

max
"

ωbpη, Sξq, ωbpη, Tξq, ωbpSξ, ηq,
ωbpTξ, ηq `ωbpSξ, ηq

4

*˙

“ β tψp2sωbpη, Tξqq ´ φpωbpη, Tξqqu

ă ψp2sωbpη, Tξqq ´ φpωbpη, Tξqq.

By the definition of ψ and φ, we have a contradiction. Hence ωbpη, Tξq “ 0, i.e.,

η “ Tξ “ Sξ.
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Then, T and S have a coincidence point η P Ω, then by Proposition 1, η is a unique common fixed
point of the pair pS, Tq, whenever, T and S are weakly compatible. This completes the proof.

As a consequence of Theorem 1, we obtain the following results.

Corollary 1. Let pΩ, ωbq be a complete b-metric-like space with parameter s ě 1. If the nonlinear mappings
T, S : Ω Ñ Ω are weakly compatible such that TpΩq Ă SpΩq. Assume that ψ P Ψ, φ P Φ, β P r0, 1

2 q and q ě 2
such that the condition

ψ p2sqωbpTκ, Tτqq ď β

˜

ψ
`

Mωbpκ, τq
˘

1` φ
`

Mωbpκ, τq
˘

¸

, (13)

holds for all κ, τ P Ω, where Mpκ, τq is referred to in Definition 5, therefore T and S have a unique common
fixed point in Ω.

Proof. The inequality (13) implies the inequality (2). So the proof finished by Theorem 1.

Corollary 2. Suppose that pΩ, ωbq is a complete b-metric-like space with coefficient s ě 1. If the nonlinear
mappings T, S : Ω Ñ Ω are weakly compatible such that TpΩq Ă SpΩq. Assume that ψ P Ψ, φ P Φ, β P r0, 1

2 q

and q ě 2 such that the condition

ψ p2sqωbpTκ, Tτqq ď β

˜

ψ
`

Mωbpκ, τq
˘

φ
`

Mωbpκ, τq
˘

1` φ
`

Mωbpκ, τq
˘

¸

, (14)

holds for all κ, τ P Ω, where Mpκ, τq is mentioned in Definition 5, therefore T and S have a unique common
fixed point in Ω.

Proof. The inequality (14) implies the inequality (2). Hence the conclusion follows from Theorem 1.

Corollary 3. Consider pΩ, ωbq is a complete b-metric-like space with coefficient s ě 1. If the nonlinear
mappings T, S : Ω Ñ Ω are weakly compatible such that TpΩq Ă SpΩq. Assume that ψ P Ψ, φ P Φ, β P r0, 1

2 q

and q ě 2 such that the condition

ψ p2sqωbpTκ, Tτqq ď β

˜

ψ
`

Mωbpκ, τq
˘

´ φ
`

Mωbpκ, τq
˘

1` φ
`

Mωbpκ, τq
˘

¸

, (15)

holds for all κ, τ P Ω, where Mpκ, τq is defined as in Definition 5, therefore T and S have a unique common fixed
point in Ω.

Proof. Taking into account that φ is a lower semi-continuous function with φptq “ 0 ô t “ 0, we have

β

˜

ψ
`

Mωbpκ, τq
˘

´ φ
`

Mωbpκ, τq
˘

1` φ
`

Mωbpκ, τq
˘

¸

ď β

˜

ψ
`

Mωbpκ, τq
˘

1` φ
`

Mωbpκ, τq
˘

¸

,

for all κ, τ P Ω and β P r0, 1
2 q. Hence inequality (15) implies inequality (13). Hence the conclusion

follows from Theorem 1.

In particular, by taking ψptq “ t and S “ T in Theorem 1, we have the following result.

Corollary 4. Let pΩ, ωbq be a complete b-metric-like space with parameter s ě 1, and T : Ω Ñ Ω be a given
self-mapping that satisfies

sqωbpTκ, Tτq ď β
`

Mωbpκ, τq ´ φ
`

Mωbpκ, τq
˘˘

, (16)
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where

Mωbpκ, τq “ max
"

ωbpκ, τq, ωbpκ, Tτq, ωbpτ, Tκq,
ωbpκ, Tκq `ωbpτ, Tτq

4s

*

,

for some constants β P r0, 1q, q ě 2 and for all κ, τ P Ω. Then T has a unique fixed point.

Putting ψptq “ t and φptq “ 1
2 t in the above theorem, we can get the following result.

Corollary 5. Let pΩ, ωbq be a complete b-metric-like space with parameter s ě 1, and T, S : Ω Ñ Ω be given
self-mappings satisfies

sqωbpTκ, Tτq ď β max
"

ωbpSκ, Sτq, ωbpSκ, Tτq, ωbpSτ, Tτq,
ωbpSκ, Tκq `ωbpTτ, Sτq

4s

*

,

for some constants β P r0, 1
2 q, q ě 2 and for all κ, τ P Ω. Then T, S have a unique common fixed point, provided

that the pair pS, Tq is weakly compatible.

By the relation a` b ď maxta, bu, we obtain the following result.

Corollary 6. Let pΩ, ωbq be a complete b-metric-like space with parameter s ě 1. If T, S : Ω Ñ Ω be
self-mappings and there exists q ě 2 and constants ci ě 0, i “ 1, .., 5 with c1 ` c2 ` c3 ` c4 ` c5 ă 1 such that

sqωbpTκ, Tτq ď c1ωbpSκ, Sτq ` c2ωbpSκ, Tτq ` c3ωbpSτ, Tτq ` c4ωbpSκ, Tκq ` c5ωbpTτ, Sτq, (17)

for all κ, τ P Ω. Then T and S have a unique common fixed point, provided that the pair pS, Tq is
weakly compatible.

The following examples illustrates the above results.

Example 8. Let Ω “ r0,`8q and ωbpκ, τq “ κ2 ` τ2 ` |κ´ τ|2 for all κ, τ P Ω. It’s obvious that ωb
is a b-metric like on Ω, with coefficient s “ 2 and pΩ, ωbq is a complete. Define nonlinear self-mappings
T, S : Ω Ñ Ω by Tκ “ 1

16 lnp1` κ
4 q, Sκ “ 1

4 lnp1` κ
2 q for all κ, τ P Ω, and the functions ψptq “ t, φptq “ t

4
and constant q “ 2. It is clear that TpΩq Ă SpΩq. Since t ě lnp1` tq for each t P r0,8q, for all κ, τ P Ω,
we have

2s2ωbpTκ, Tτq “ 2s2
´

T2κ` T2τ´ |Tκ´ Tτ|2
¯

“ 8
ˆ

´

lnp1` κ
4 q

16

¯2
`

´

lnp1` τ
4 q

16

¯2
`

ˇ

ˇ

ˇ

lnp1` κ
4 q

16 ´
lnp1` τ

4 q

16

ˇ

ˇ

ˇ

2
˙

ď 8
´

κ2

162 `
τ2

162 `
ˇ

ˇ

κ
16 ´

τ
16

ˇ

ˇ

2
¯

“ 1
32

´

κ2 ` τ2 ` |κ´ τ|2
¯

“ 1
32 ωbpκ, τq.

(18)

By the same method, we have ωbpSκ, Sτq ď 1
16 ωbpκ, τq, again

ωbpSκ, Tτq “
κ2

16
`

τ2

162 `
ˇ

ˇ

ˇ

κ

4
´

τ

16

ˇ

ˇ

ˇ

2

ď
κ2

16
`

τ2

16
`

ˇ

ˇ

ˇ

κ

4
´

τ

4

ˇ

ˇ

ˇ

2
“

1
16

´

κ2 ` τ2 ` |κ´ τ|2
¯

“
1

16
ωbpκ, τq.

Similarly, ωbpSτ, Tκq “ 1
16 ωbpκ, τq. On the other hand
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ωbpSκ, Tκq “

´

S2κ` S2κ
¯

“
κ2

16
`

κ2

162 ď
κ2

8
,

ωbpTτ, Sτq “

´

T2τ` S2τ
¯

“
τ2

162 `
τ2

16
ď

τ2

8
,

ωbpSκ, Tκq `ωbpTτ, Sτq

4s
ď

κ2

8 `
τ2

8
8

“
κ2 ` τ2

64

ď
1
64
pκ2 ` τ2 ` |κ´ τ|2q “

1
64

ωbpκ, τq.

From definition Mωbpκ, τq, we can write

Mωbpκ, τq “
1

16
ωbpκ, τq. (19)

Combining (18) and (19), we get

ψ p2sqωbpTκ, Tτqq “ 2s2ωbpTκ, Tτq “
1

32
ωbpκ, τq ď

2
3

3
64

ωbpκ, τq “
2
3

ˆ

1
16

ωbpκ, τq ´
1

64
ωbpκ, τq

˙

“
2
3

ˆ

Mωbpκ, τq ´
1
4

Mωbpκ, τq

˙

“ β
`

ψpMωbpκ, τqq ´ φpMωbpκ, τqq
˘

.

Therefore, the pair pS, Tq is β
s,ψ
q,φ-contraction with β “ 2

3 ă 1.

Moreover, the mappings T and S are weakly compatible, since 1
16 lnp1` κ

4 q “
1
4 lnp1` κ

2 q only at κ “ 0
and T0 “ S0 “ 0, also, TS0 “ T0 “ 0 “ ST0. All of the axioms of Theorem 1 are satisfied and clearly κ “ 0 is
a unique common fixed point of T and S.

Example 9. Let Ω “ t0, 1, 2u. Define ωb : Ω ˆΩ Ñ r0,`8q as follows: ωbp0, 0q “ 0, ωbp1, 1q “ 3,
ωbp2, 2q “ 1, ωbp0, 1q “ ωbp1, 0q “ 8, ωbp0, 2q “ ωbp2, 0q “ 1 and ωbp1, 2q “ ωbp2, 1q “ 4.
Define φptq “ t

1`t , and define the mapping T : Ω Ñ Ω by T0 “ 0, T1 “ 2, and T2 “ 0. It is obvious
that pΩ, ωbq is a complete b-metric-like space with the constant s “ 8

5 . Let q “ 2, we show that the condition
(16) is true. Since

sqωbpT0, T0q “ 0 “ β
`

Mωbp0, 0q ´ φ
`

Mωbp0, 0q
˘˘

, β “ 0;

sqωbpT0, T1q “
64
25
ď

9
25
p8´

8
9
q “ β

`

Mωbp0, 1q ´ φ
`

Mωbp0, 1q
˘˘

, β “
9

25
ă 1;

sqωbpT0, T2q “ 0 “ βp
32
5
´

32
37
q “ β

`

Mωbp0, 2q ´ φ
`

Mωbp0, 2q
˘˘

, β “ 0;

sqωbpT1, T1q “
64
25
ď

4
5
p4´

4
5
q “ β

`

Mωbp1, 1q ´ φ
`

Mωbp1, 1q
˘˘

, β “
4
5
ă 1;

sqωbpT1, T2q “
64
25
ď

9
25
p8´

8
9
q “ β

`

Mωbp1, 2q ´ φ
`

Mωbp1, 2q
˘˘

, β “
9

25
ă 1;

sqωbpT2, T2q “ 0 “ βp1´
1
2
q “ β

`

Mωbp2, 2q ´ φ
`

Mωbp2, 2q
˘˘

, β “ 0,

So, for all κ, τ P Ω, we have sqωbpTκ, Tτq ď β
`

Mωbpκ, τq ´ φ
`

Mωbpκ, τq
˘˘

. Therefore all the required
hypotheses of Corollary 4 are satisfied, and thus we deduce the existence and uniqueness of the fixed point of T.
Here, 0 is the unique fixed point of T.

4. ps, qq-Graphic Contraction and Related Fixed Points

In this section we use the contractive condition (17) of Corollary 6 to discuss some common fixed
point results in the framework of b-metric-like spaces endowed with a graph.

In line with Jachymski [30], let pΩ, ωbq be a metric-like space and < denote the diagonal of the
Cartesian product ΩˆΩ. Consider a directed graph G such that the set ΘpGq of its vertices coincides
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with Ω, and the set ΞpGq of its edges contains all loops, i.e., ΞpGq Ě <. We assume that G has no parallel
edges, so we can identify G with the pair pΘpGq, ΞpGqq. Moreover, we may treat G as a weighted graph
(see, [30]) by assigning to each edge the distance between its vertices.

By G´1 we denote the conversion of a graph G, that is, the graph obtained from G by reversing
the direction of edges. Thus, we have

ΞpG´1q “ tpκ, τq P ΩˆΩ : pτ, κq P ΞpGqu.

The letter Ğ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat Ğ as a directed graph for which the set of its edges is
symmetric. Under this convention

ΞpĞq “ ΞpGq Y ΞpG´1q.

If κ and τ are vertices in a graph G, then a path in G from κ to τ of length NpN P N) is a sequence
tκiu

N
i “ 0 of N ` 1 vertices such that κ˝ “ κ, κN “ τ and pκn´1, κnq P ΞpGq for i “ 1, ..., N. A graph G

is connected if there is a path between any two vertices. G is weakly connected if Ğ is connected.
Recently, some results have appeared providing sufficient conditions for a self mapping of Ω to

be a Picard operator when pΩ, dq is endowed with a graph. The first result in this direction was given
by Jachymski [30].

Definition 6. A nonlinear mapping S : Ω Ñ Ω is a Banach G´contraction or simply G´contraction if S
preserves edges of G, i.e.,

@κ, τ P Ω : pκ, τq P ΞpGq ñ pSpκq, Spτqq P ΞpGq

and S decreases weights of edges of G as for all κ, τ P Ω, there exists c P p0, 1q, such that

pκ, τq P ΞpGq ñ dpSpκq, Spτqq ď cdpκ, τq.

Throughout this section, we consider self-mappings T, S : Ω Ñ Ω with TpΩq Ă SpΩq. Let κ˝ P Ω
be an arbitrary point, then there exists κ1 P Ω such that Tκ˝ “ Sκ1. By repeating this step we can build
a sequence pSκnq such that Sκn “ Tκn´1 and the following property:

The property GpT,Sκnq. If pSκnqnPN is a sequence in Ω such that Sκn Ñ κ and pSκn, Sκn`1q P EpĞq
for all n ě 1, then there is a subsequence pSκniqiPN of pSκnqnPN such that pSκni , κq P ΞpĞq for all i ě 1.
Here, we use the notion GST “ tκ˝ P Ω : pSκn, Sκmq P ΞpĞq, where m, n “ 1, 2, ...u.

Now, we present the results of this section.

Theorem 2. Let T, S : Ω Ñ Ω be self-mappings defined on a b-metric-like space pΩ, ωbq (with parameter
s ě 1q endowed with a graph G, and satisfy (15) for all κ, τ P Ω with pSκ, Sτq P ΞpĞq when either pc1 ` 2c2 `

2c3 ` c4 ` c5 ă
1
s and c3 ` c4 ă

1
s ) or (c1 ` c2 ` c3 ` 2c4 ` 2c5 ă

1
s and c1 ` c3 ă

1
s q.

Suppose that TpΩq Ă SpΩq and SpΩq is complete subspace of Ω. Then

(i) If the property GpT,Sκnq is satisfied and GST ‰ H, then T and S have a point of coincidence in Ω.
(ii) If κ and τ are points of coincidence of T and S, it implies pκ, τq P ΞpĞq, then the point is a unique in Ω,

moreover, if the pair pS, Tq is weakly compatible, then T and S have a unique common fixed point in Ω.

Proof. Assume that GST ‰ H, there exists κ˝ P GST . Since TpΩq Ă SpΩq, there exists κ1 P Ω such that
Tκ˝ “ Sκ1, again we can find κ2 P Ω such that Tκ1 “ Sκ2. Repeat this step, we can build a sequence
Sκn such that Sκn “ Tκn´1 for n “ 1, 2, .., and pSκn, Sκmq P ΞpĞq.
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Suppose that Sκn “ Sκn`1 for some n P N. Then Sκn “ Tκn, which leads to κn is a coincidence
point. So, we consider Sκn ‰ Sκn`1 for all n P N. By the condition (17), we can get

sωbpSκn, Sκn`1q

ď sqωbpSκn, Sκn`1q “ sqωbpTκn´1, Tκnq

ď c1ωbpSκn´1, Sκnq ` c2ωbpSκn´1, Tκnq ` c3ωbpSκn, Tκn´1q

`c4ωbpSκn´1, Tκn´1q ` c5ωbpTκn, Sκnq

ď c1ωbpSκn´1, Sκnq ` c2ωbpSκn´1, Sκn`1q ` c3ωbpSκn, Sκnq

`c4ωbpSκn´1, Sκnq ` c5ωbpSκn`1, Sκnq

ď c1ωbpSκn´1, Sκnq ` sc2rωbpSκn´1, Sκnq `ωbpSκn, Sκn`1qs ` 2sc3ωbpSκn´1, Sκnq

`c4ωbpSκn´1, Sκnq ` c5ωbpSκn`1, Sκnq.

Thus, we have

ωbpSκn, Sκn`1q ď

ˆ

c1 ` sc2 ` 2sc3 ` c4

1´ sc2 ´ c5

˙

ωbpSκn´1, Sκnq “ λωbpSκn´1, Sκnq.

where λ “ c1`sc2`2sc3`c4
1´sc2´c5

. Since c1 ` 2sc2 ` 2sc3 ` c4 ` c5 ă sc1 ` 2sc2 ` 2sc3 ` sc4 ` sc5 ă 1, we get
λ ă 1. Continuing this process, we can write,

ωbpSκn, Sκn`1q ď λωbpSκn´1, Sκnq

ď λ2ωbpSκn´2, Sκn´1q

...
ď λnωbpSκ˝, Sκ1q.

(20)

Now, if m ą n for m, n P N and by pω3q of b-metric like conditions, one can write

ωbpSκn, Sκmq ď sωbpSκn, Sκn`1q ` sωbpSκn`1, Sκmq

ď sωbpSκn, Sκn`1q ` s2ωbpSκn`1, Sκn`2q ` s2ωbpSκn`2, Sκmq

...
ď sωbpSκn, Sκn`1q ` s2ωbpSκn`1, Sκn`2q ` s3ωbpSκn`2, Sκn`3q ` ...

`sm´n´1ωbpSκm´2, Sκm´1q ` sm´nωbpSκm´1, Sκmq.

(21)

Hence, Equations (20) and (21) gives

ωbpSκn, Sκmq ď sλnωbpSκ˝, Sκ1q ` s2λn`1ωbpSκ˝, Sκ1q ` s3λn`2ωbpSκ˝, Sκ1q ` ...

`λm´1sm´nωbpSκ˝, Sκ1q

“ sλn
´

1` psλq ` psλq2 ` ...` psλqm´n´1
¯

ωbpSκ˝, Sκ1q

“ sλn
8
ÿ

j“0

psλqjωbpSκ˝, Sκ1q

“ sλn
ˆ

1
1´ sλ

˙

ωbpSκ˝, Sκ1q Ñ 0, as n Ñ8.

Therefore, pSκnq is a Cauchy sequence. The completeness of SpΩq leads to, there is η P SpΩq
such that pSκnq Ñ η “ Spξq for some ξ P Ω. As, κ˝ P GST , this implies that pSκn, Sκmq P ΞpĞq for
n, m “ 1, 2, ... and so, pSκn, Sκn`1q P EpĞq. By property GpT,Sκnq, there is a subsequence pSκniqiPN of
pSκnqnPN such that pSκni , ηq P ΞpĞq. Applying pω3q of b-metric like axioms, we can get

ωbpTξ, Sξq ď ωbpTξ, Tκniq `ωbpTκni , Sξq. (22)
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On the other hand, condition (17) gives

ωbpTξ, Tκniq ď sqωbpTξ, Tκniq

ď c1ωbpSξ, Sκniq ` c2ωbpSξ, Tκniq ` c3ωbpSκni , Tξq

`c4ωbpSξ, Tξq ` c5ωbpTκni , Sκniq.
(23)

Applying (23) in (22), we obtain that

ωbpTξ, Sξq ď c1ωbpSξ, Sκniq ` c2ωbpSξ, Tκniq ` c3ωbpSκni , Tξq ` c4ωbpSξ, Tξq

`c5ωbpTκni , Sκniq ` sωbpTκni , Sξq.
(24)

Replacing Tκni with Sκni`1 in (24), we get

ωbpTξ, Sξq ď c1ωbpSξ, Sκniq ` c2ωbpSξ, Sκni`1q ` c3ωbpSκni , Tξq ` c4ωbpSξ, Tξq

`c5ωbpSκni`1, Sκniq ` sωbpSκni`1, Sξq.

Hence

ωbpTξ, Sξq ď

´

c1
1´c4

¯

ωbpSξ, Sκniq `

´

c2`s
1´c4

¯

pSξ, Sκni`1q `
´

c3
1´c4

¯

ωbpSκni , Tξq

`

´

c5
1´c4

¯

ωbpSκni`1, Sκniq

ď

´

c1
1´c4

¯

ωbpSξ, Sκniq `

´

c2`s
1´c4

¯

pSξ, Sκni`1q `
´

sc3
1´c4

¯

ωbpSκni , Sξq

`

´

sc3
1´c4

¯

ωbpSξ, Tξq `
´

c5
1´c4

¯

λni ωbpSκ1, Sκ˝q.

(25)

Applying the limit of (25) as i Ñ8 and by limiÑ8 ωbpSκni , Sξq “ 0, we can get

ωbpTξ, Sξq ď

ˆ

sc3

1´ c4

˙

ωbpSξ, Tξq.

Since sc3
1´c4

ă 1, it implies that ωbpTξ, Sξq “ 0. Therefore, Tξ “ Sξ “ η, and so ξ is a coincidence
point of T and S, and η is a point of coincidence.

For uniqueness, suppose that the axiom (ii) of Theorem 2 is satisfied, i.e., there is η˚ P Ω such that
Tζ “ Sζ “ η˚ for some ζ P Ω and pη, η˚q P ΞpĞq. Now, the condition (17) gives

sωbpη, η˚q ď sqωbpη, η˚q “ sqωbpTξ, Tζq ď c1ωbpSξ, Sζq ` c2ωbpSξ, Tζq ` c3ωbpSζ, Tξq

`c4ωbpSξ, Tξq ` c5ωbpTζ, Sζq

“ c1ωbpη, η˚q ` c2ωbpη, η˚q ` c3ωbpη
˚, ηq ` c4ωbpη, ηq ` c5ωbpη, ηq

ď pc1 ` c2 ` c3 ` 2sc4 ` 2sc5qωbpη
˚, ηq.

(26)

Hence, Equation (26) becomes ωbpη, η˚q ď 1
s2 ωbpη, η˚q, which gives that η “ η˚, since c1 ` c2 `

c3 ` 2c4 ` 2c5 ă sc1 ` sc2 ` sc3 ` 2sc4 ` 2sc5 ă 1.
If T and S are weakly compatible, then by Proposition 1, T and S have a unique common

fixed point.

Now, By specifying some of the constants c1, c2, c3, c4 and c5 of Theorem 2, we conclude the
following results.

Corollary 7. Let T, S : Ω Ñ Ω be self-mappings defined on a b-metric-like space pΩ, ωbq (with parameter
s ě 1q endowed with a graph G, and satisfy one of the following
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sqωbpTκ, Tτq ď c1ωbpSκ, Sτq, c1 ă
1
s

,

sqωbpTκ, Tτq ď c4ωbpSκ, Tκq ` c5ωbpTτ, Sτq, c4 ` c5 ă
1
s

,

sqωbpTκ, Tτq ď c2ωbpSκ, Tτq ` c3ωbpSτ, Tκq ` c4ωbpSκ, Tκq, c2 ` c3 ` c4 ă
1
s

,

for all κ, τ P Ω with pSκ, Sτq P ΞpĞq. If the conditions of Theorem 2 hold, then T and S have a unique common
fixed point in Ω.

We can generalize Theorem 2 to integral and exponential type as follows.

Corollary 8. Let T, S : Ω Ñ Ω be self-mappings defined on a b-metric-like space pΩ, ωbq (with parameter
s ě 1q endowed with a graph G, and satisfy

sq

ωbpTκ,Tτq
ż

0

λpρqdρ ď c1

ωbpSκ,Sτq
ż

0

λpρqdρ` c2

ωbpSκ,Tτq
ż

0

λpρqdρ

`c3

ωbpSτ,Tκq
ż

0

λpρqdρ` c4

ωbpSκ,Tκq
ż

0

λpρqdρ` c5

ωbpTτ,Sτq,
ż

0

λpρqdρ,

for all κ, τ P Ω with pSκ, Sτq P ΞpĞq when either (c1 ` 2c2 ` 2c3 ` c4 ` c5 ă
1
s and c3 ` c4 ă

1
s ) or

pc1 ` c2 ` c3 ` 2c4 ` 2c5 ă
1
s and c1 ` c3 ă

1
s q, where λ : r0,8q Ñ r0,8q is a Lebesgue-integrable mapping

satisfying
ε
ş

0
λpρqdρ ą 0 for ε ą 0.

Suppose that TpΩq Ă SpΩq and SpΩq is complete subspace of Ω. If the conditions of Theorem 2 hold, then
T and S have a unique common fixed point in Ω.

Corollary 9. Let T, S : Ω Ñ Ω be self-mappings defined on a b-metric-like space pΩ, ωbq (with parameter
s ě 1q endowed with a graph G, and satisfy

sqeωbpTκ,Tτq ď c1eωbpSκ,Sτq ` c2eωbpSκ,Tτq ` c3eωbpSτ,Tκq ` c4eωbpSκ,Tτq ` c5eωbpTτ,Sτq,

for all κ, τ P Ω with pSκ, Sτq P ΞpĞq when either (c1 ` 2c2 ` 2c3 ` c4 ` c5 ă
1
s and c3 ` c4 ă

1
s ) or

pc1 ` c2 ` c3 ` 2c4 ` 2c5 ă
1
s and c1 ` c3 ă

1
s q, where e : r0,8q Ñ r0,8q is a Lebesgue-integrable mapping

satisfying eε ą 0 for ε ą 0. Then T and S have a unique common fixed point in Ω, whenever the conditions of
Theorem 2 are satisfied.

Note that, the mappings T and S satisfying condition (17) only on a graph G. To explain that, we
give the following example.

Example 10. Let Ω “ r0,`8q, q “ 2, s “ 2 and T, S : Ω Ñ Ω be nonlinear mappings such that

Tκ “

#

1
3 κ3, i f κ ‰

?
8

0, i f κ “
?

8
and Sκ “

#

κ3, i f κ ‰ 2
1, i f κ “ 2

.

Let pΩ, ωbq be a b-metric-like space under the distance ωbpκ, κq “ pκ ` τq2, G be the graph with
ΘpGq “ Ω and ΞpGq “ tpκ, κq : κ P Ωu Y tp0, 1

3n q : n P Nu and the constants c1 “
1
3 , c2 “ c4 “

1
128 , c3 “

1
9

and c5 “
1
64 such that c1 ` c2 ` c3 ` 2c4 ` 2c5 ă

1
s and c1 ` c3 ă

1
s .

Note that pSκ, Sτq P ΞpĞq only occurs in two cases:



Symmetry 2019, 11, 667 14 of 19

Case 1. κ “ τ;
Case 2. For some n P N, either κ “ τ “ 0 and the other one is 1?

3p
n
3 q

.

Now, if κ “ τ “ 0, then ωbpTκ, Tτq “ ωbp0, 0q “ 0 which satisfies condition (17). Next, for some n P N,
assume that κ “ 0 and τ “ 1?

3p
n
3 q

, without loss of generality, we can get

ωbpSκ, Sτq “ ωbp0,
1
?

3n
q “

9
3n`2 , ωbpSκ, Tτq “ ωbp0,

1
?

3n`2
q “

1
3n`2 ,

ωbpSτ, Tκq “ ωbp
1
?

3n
, 0q “

9
3n`2 , ωbpSκ, Tκq “ ωbp0, 0q “ 0,

ωbpTτ, Sτq “ ωbp
1

?
3n`2

,
1
?

3n
q “

16
3n`2 , ωbpTκ, Tτq “ ωbp0,

1
?

3n`2
q “

1
3n`2 .

Now,

c1ωbpSκ, Sτq ` c2ωbpSκ, Tτq ` c3ωbpSτ, Tκq ` c4ωbpSκ, Tκq ` c5ωbpTτ, Sτq

“
1
3
p

9
3n`2 q `

1
64
p

1
3n`2 q `

1
9
p

9
3n`2 q ` p

1
128

qp0q `
1

64
p

16
3n`2 q

“
1

3n`2 p3`
1

64
` 1`

1
4
q ą 22 1

27n`1 “ sqωbpTκ, Tτq.

Otherwise, let κ “ 0 and τ “ 2. Then pSκ, Sτq “ p0, 1q R ΞpĞq and

ωbpSκ, Sτq “ ωbp0, 1q “ 1, ωbpSκ, Tτq “ ωbp0,
8
3
q “

64
9

,

ωbpSτ, Tκq “ ωbp1, 0q “ 1, ωbpSκ, Tκq “ ωbp0, 0q “ 0,

ωbpTτ, Sτq “ ωbp
8
3

, 1q “
121

9
, ωbpTκ, Tτq “ ωbp0,

8
3
q “

64
9

.

Thus,

c1ωbpSκ, Sτq ` c2ωbpSκ, Tτq ` c3ωbpSτ, Tκq ` c4ωbpSκ, Tκq ` c5ωbpTτ, Sτq

“
1
3
p1q `

1
64
p

64
9
q `

1
9
p1q `

1
128

p0q `
1
64
p

121
9
q

“
49
64
ă 22 64

9
“ ωbpTκ, Tτq.

Hence, T and S satisfy our condition (17) on the graph G but do not on the whole space Ω.

To justify Theorem 2, we discuss the following example.

Example 11. Consider Ω “ r0,`8q, q “ 2 and nonlinear mappings T, S : Ω Ñ Ω, such that Tκ “ κ2

4 and
Sκ “ κ2. Assume that pΩ, ωbq is a b-metric-like space under the same distance of Example 10, G is a graph
with ΘpGq “ Ω, ΞpGq “ tpκ, κq : κ P Ωu Y tp0, 1

2n q : n P Nu, and the constants of (15) are c1 “ c3 “
1
8 and

c2 “ c4 “ c5 “
1

64 such that c1 ` c2 ` c3 ` 2c4 ` 2c5 ă
1
s and c1 ` c3 ă

1
s . It is obvious that TpΩq Ă SpΩq

and SpΩq is complete subspace of Ω. The pair pSκ, Sτq P ΞpĞq only occurs in two cases:
Case 1. κ “ τ;
§ for some n P N;
Case 2. Either κ “ τ “ 0 and the other one is 1

2p
n
2 q

.

Now, if κ “ τ “ 0, then ωbpTκ, Tτq “ ωbp0, 0q “ 0 which satisfies condition (17). Next, for some n P N,
assume that κ “ 0 and τ “ 1

2p
n
2 q

, then
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ωbpSκ, Sτq “ ωbp0,
1

2n`2 q “
16

4n`2 , ωbpSκ, Tτq “ ωbp0,
1

2n`2 q “
1

4n`2 ,

ωbpSτ, Tκq “ ωbp
1
2n , 0q “

16
4n`2 , ωbpSκ, Tκq “ ωbp0, 0q “ 0,

ωbpTτ, Sτq “ ωbp
1

2n`2 ,
1
2n q “

25
4n`2 , ωbpTκ, Tτq “ ωbp0,

1
2n`2 q “

1
4n`2 .

Now,

c1ωbpSκ, Sτq ` c2ωbpSκ, Tτq ` c3ωbpSτ, Tκq ` c4ωbpSκ, Tκq ` c5ωbpTτ, Sτq

“
1
8
p

16
4n`2 q `

1
64
p

1
4n`2 q `

1
8
p

16
4n`2 q ` p

1
64
qp0q `

1
64
p

25
4n`2 q

“
1

4n`2 p2`
1

64
` 2`

25
64
q ě 22 1

4n`2 “ sqωbpTκ, Tτq.

So, for all κ, τ P Ω with the pair pSκ, Sτq P ΞpĞq, the condition (17) of Corollary 6 is verified.
At the last, let κ˝ P Ω. If κ˝ “ 0, it is easy to show that the pair pSκn, Sκmq “ p0, 0q P ΞpĞq for m

n “ 1, 2, .. . GST ‰ H.
For κ˝ ‰ 0, there is κ1 P Ω such that Sκ1 “ Tκ˝ “

x2
˝

4. which implies κ1 “
κ˝
2 . Similarly, there is κ2 P Ω

such that Sκ2 “ Tκ1 “
κ2
˝

42 , hence κ2 “
κ˝
22 . Repeat these steps, we can built the sequence pSκnq such that

Sκn “ Tκn´1 “
κ2
˝

4n .

It is clear that pSκn, Sκmq “ p
κ2
˝

4n , κ2
˝

4m q R ΞpĞq. Thus, the constant sequence Sκn “ 0 is only convergent
sequence such that pSκn, Sκmq P EpĞq. So for every subsequence pSκniq of pSκnq, we have pSκni , 0q P EpĞq.

Also, the mappings T and S are weakly compatible at κ “ 0 and TS0 “ T0 “ 0 “ ST0, so all conditions
of Theorem 2 are satisfied and 0 is the unique common fixed point of T and S in Ω.

In order to clarify the importance of the property GpT,Sxn q
, we present an example as follows:

Example 12. Let Ω “ r0, 1s, s “ q “ 2 and S, T : Ω Ñ Ω, such that

Tx “

#

κ4

64 , i f x ‰ 0
1

16 , i f x “ 0
and Sx “

#

κ2

2 , i f x ‰ 0
1, i f x “ 0

.

Assume that pΩ, ωbq is a b-metric-like space under the same distance of Example 10, G be the graph with
ΘpGq “ Ω and ΞpGq “ tp0, 0qu Y tpκ, τq P p0, 1s ˆ p0, 1su, and the constants c1 “ c2 “ c3 “ c4 “ c5 “

1
64 .

It is obvious that TpΩq Ă SpΩq and SpΩq is complete subspace of Ω. The pair pSκ, Sτq P ΞpĞq only occurs in
two cases:
Case 1. κ “ τ “ 0;
Case 2. κ ‰ 0 ‰ τ.

If κ “ τ “ 0, then

sqωbpTκ, Tτq “
4
64
ď

1
64

ωbpSκ, Sτq “ c1ωbpSκ, Sτq

ď
1
64

ωbpSκ, Sτq `
1

64
ωbpSκ, Tτq `

1
64

ωbpSτ, Tκq `
1
64

ωbpSκ, Tκq `
1
64

ωbpTτ, Sτq.

If x ‰ 0 and y ‰ 0, then

sqωbpTκ, Tτq “ 4p
κ4

64
`

τ4

64
q2 “

1
1024

pκ4 ` τ4qpκ4 ` τ4q

ď
1

512
pκ4 ` τ4q ď

1
256

pκ4 ` τ4q ď
1

64
1
4
pκ4 ` τ4 ` 2κ2τ2q “ c1ωbpSκ, Sτq

ď
1
64

ωbpSκ, Sτq `
1

64
ωbpSκ, Tτq `

1
64

ωbpSτ, Tκq `
1
64

ωbpSκ, Tκq `
1
64

ωbpTτ, Sτq.
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Let κ˝ P p0, 1s, then Sκ1 “ Tκ˝ “
κ4
˝

64 ‰ 0, which leads to κ1 “
κ2
˝

4
?

2
P p0, 1s. By the same step, we can

find κ2 P p0, 1s such that Sκ2 “ Tκ1. Repeating the same steps, we can get Sκn “ Tκn´1 ‰ 0. Therefore
pSκn, Sκmq P ΞpĞq. As the above results κ˝ P GST , and so GST ‰ H.

Now, let κ˝ “ 1. We will obtain a sequence pSκnq by Sκn “ Tκn´1. So, Sκ1 “ Tκ˝ “
1

64 , hence κ1 “
?

2
8 .

Similarly, there is κ2 such that Sκ2 “ Tκ1 “
p
?

2q4

86 , thus κ2 “
p
?

2q3

83 . Repeating this process, we get

Sκn “ Tκn´1 “

`?
2
˘2n`1´4

82n`1´2
Ñ 0 as n Ñ8.

So, pSκn, Sκmq P EpĞq and Sκn Ñ 0 but pSκn, 0q R ΞpĞq. So there is no subsequence pSκniq of pSκnq

such that pSκni , 0q P ΞpĞq. Also, we can easily see that the mappings T and S have no coincidence point, so
there is no common fixed point.

5. An Application to Nonlinear Integral Equation

In this section, we will use Corollary 1 to find an analytical solution of the following nonlinear
integral equation:

ηpρq “

A
ż

0

Λpρ, θqσpθ, ηpθqqdθ; pρ, θq P r0, As2. (27)

Let Ω “ Cpr0, As,Rq be the set of real continuous functions defined on r0, As for A ą 0,
endowed with

ωbpκ, τq “ max
ρPr0,1s

p|κpρq| ` |τpρq|qm for all κ, τ P Ω,

where m ą 1. It is clear that pΩ, ωbq is a complete b-metric-like space with parameter s “ 2m´1.
Consider a nonlinear self-mapping T : Ω Ñ Ω given by

Tηpρq “

A
ż

0

Λpρ, θqσpθ, ηpθqqdθ.

Theorem 3. Suppose that Equation (27) with the following axioms:

(i) Λ : r0, As ˆ r0, As Ñ r0,8q is a continuous function;
(ii) σ : r0, As ˆRÑ R, where σpθ, .q is monotone nondecreasing mapping for all θ P r0, As;

(iii) supρ,θPr0,As

A
ş

0
Λpρ, θqdθ ď 1;

(iv) there exists a constant µ P p0, 1q such that for all pρ, θq P r0, As2 and κ, τ P R,

|σpθ, κpθqq ` σpθ, τpθq| ď p
µ

3s3 q
1
m Λpρ, θq p|κpθq| ` |τpθq|q .

Then a nonlinear integral Equation (27) has a unique solution κ P Ω.

Proof. For κ, τ P Ω, from conditions (iii) and (iv), for all θ and ρ, we get
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s2ωbpTκpρq, Tτpρqq “ s2 p|Tκpρq| ` |Tτpρq|qm

“ s2

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A
ż

0

Λpρ, θqσpθ, κpθqqdθ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A
ż

0

Λpρ, θqσpθ, τpθqqdθ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

m

ď s2

¨

˝

A
ż

0

|Λpρ, θqσpθ, κpθqq| dθ `

A
ż

0

|Λpρ, θqσpθ, τpθqq| dθ

˛

‚

m

ď s2

¨

˝

A
ż

0

p
µ

3s3 q
1
m Λpρ, θq

ˆ

`

p|κpθq| ` |τpθqq|qm
˘

1
m

˙

dθ

˛

‚

m

ď s2

¨

˝

A
ż

0

p
µ

3s3 q
1
m Λpρ, θq

ˆ

ω
1
m
b pκpθq, τpθqqq

˙

dθ

˛

‚

m

ď s2p
µ

3s3 qωb pκpθq, τpθqqq

¨

˝

A
ż

0

Λpρ, θqdθ

˛

‚

m

ď
µ

3s
ωb pκpθq, τpθqqq ď

µ

3s
Mωbpκ, τq “

1
3

´

Mωbpκ, τq ´ p1´
µ

s
qMωbpκ, τq

¯

“
1
3
`

Mωbpκ, τq ´ φMωbpκ, τq
˘

.

Therefore, all the axioms of Corollary 1 are satisfied by taking the coefficient q “ 2, and function
φpκq “ p1´ µ

s qκ, where µ
s P p0, 1q and β “ 1

3 . Hence the mapping T has a unique fixed point in X,
which is a solution of the integral equation in (27).

An example to illustrate the requirements of Theorem 3 is presented as follows.

Example 13. Consider the following nonlinear integral equation

ηpρq “
1

48s

1
ż

0

θ2ηpθqdθ, ρ P r0, 1s. (28)

Then it has a solution in Ω “ pCr0, 1s,Rq.

Proof. Let T : Ω Ñ Ω be defined as Tηpρq “ 1
48s

1
ş

0
θ2ηpθqdθ. By specifying Λpρ, θq “ θ

4 , f pθ, ηpθqq “

θηpθq
12s in Theorem 3, we can write

(i) the function Λpρ, θq is continuous on r0, 1s ˆ r0, 1s,
(ii) σpθ, ηpθqq is monotone increasing on r0, 1s ˆR for all θ P r0, 1s,
(iii)

sup
ρ,θPr0,As

A
ż

0

Λpη, θqdθ “ sup
ρPr0,1s

1
ż

0

θ

4
dθ ď sup

ρPr0,1s

1
8
“

1
8
ă 1,

(iv) By taking m “ 3, so there exists a constant µ “ 1
9 P p0, 1q such that for all pρ, θq P r0, 1s2 and

κ, τ P R, we have

|σpθ, κpθqq ` σpθ, τpθq| “
θ

12s
|κpθq ` τpθq| ď

1
12

ˆ

θ

s

˙

p|κpsq| ` |τpsq|q

“ p
µ

3s3 q
1
3

θ

4
p|κpsq| ` |τpsq|q “ p

µ

3s3 q
1
m Λpρ, θq p|κpθq| ` |τpθq|q .
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Therefore, the conditions of Theorem 3 are justified, hence a nonlinear mapping T has a fixed
point in Ω, which is a solution to Equation (28).

6. Conclusions

The analytical solution of nonlinear integral equations and graph theory are important
applications in fixed point theory, where they have attracted the interest of many authors in academic
research. Continuing in this direction, this article presents some common fixed point theorems for
a pair of β

s,ψ
q,φ-contractive mappings in b-metric-like spaces. Our results extend and generalize the

results of [27] in two mappings and [31] in b-metric-like spaces and other spaces. It can be pointed
out that the obtained results could be extended to some open mathematical problems in the fields of
convergence of trajectory solutions to the equilibrium points and stability of dynamic systems and to
those related ones formulated in the fractal space. It is also of interest to investigate the convergence
properties in problems described by operators firstly defined on infinite, dimensional Hilbert spaces
which are then represented in truncated finite dimensional ones. See, for instance, refs. [32–36] and
some references therein. Next, some common fixed point results in the framework of b-metric-like
spaces endowed with a graph have been discussed. Moreover, some important examples are given to
support our results and we showed the existence of a solution for a nonlinear integral equation.
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