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Abstract: We introduce an iterative algorithm which converges strongly to a common element
of fixed point sets of nonexpansive mappings and sets of zeros of maximal monotone mappings.
Our iterative method is quite general and includes a large number of iterative methods considered in
recent literature as special cases. In particular, we apply our algorithm to solve a general system of
variational inequalities, convex feasibility problem, zero point problem of inverse strongly monotone
and maximal monotone mappings, split common null point problem, split feasibility problem, split
monotone variational inclusion problem and split variational inequality problem. Under relaxed
conditions on the parameters, we derive some algorithms and strong convergence results to solve
these problems. Our results improve and generalize several known results in the recent literature.

Keywords: strongly nonexpansive sequence; zero point; fixed point; variational inequality; convex
feasibility problem; split feasibility problem

1. Introduction

Fixed point theory has been revealed as a very powerful and effective method for solving a
large number of problems which emerge from real world applications and can be translated into
equivalent fixed point problems. In order to obtain approximate solution of the fixed point problems
various iterative methods have been proposed (see, e.g., [1–10] and the reference therein). One of the
important instances of fixed point problems is the problem of solving zero point problem of nonlinear
operators. The most popular method for finding zeros of a maximal monotone operator is the proximal
point algorithm (PPA). Rockafellar [11] proved the weak convergence of PPA, but it fails to converge
strongly (see [12]). To obtain strong convergence, several authors proposed modification of PPA
(see: Kamimura and Takahashi [13], Iiduka-Takahashi [14] and reference therein). In [15], Lehdili and
Moudafi introduced the prox-Tikhonov regularization method which combined Tikhonov method
with PPA to obtain a strongly convergent sequence.

In 2012, Censor, Gibali and Reich [16] (see also [17,18]) introduced a new variational inequality
problem, called the common solutions to variational inequality problem (CSVIP) which comprises of
finding common solutions to unrelated variational inequalities. The significance of studying the CSVIP
lies in the fact that it includes the well-known convex feasibility problem (CFP) as its special case.
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The CFP which lies in center of many problems of physical sciences such as sensor networking [19],
radiation therapy treatment planning [20], computerized tomography [21], image restoration [22] is to
find a point in the intersection of a family of closed convex sets in a Hilbert space.

A special case of the CFP is the split feasibility problem (SFP). In 1994, Censor and Elfving [23]
introduced the SFP for modeling phase retrieval problems. This problem has large number of
applications in optimization problems, signal processing, image reconstruction, intensity-modulated
radiation therapy (IMRT). Starting from SFP, various important split type problems have been
introduced and studied in recent years, for example, the split common null point problem (SCNPP),
split monotone variational inclusion problem (SMVIP), split variational inequality problem (SVIP).

Motivated and inspired by the above work, we propose an iterative algorithm for finding common
element of fixed point sets of nonexpansive mappings and sets of zeros of maximal monotone mappings.
As applications, we solve all the problems discussed above under weaker conditions.

2. Preliminaries

Throughout the paper, we assume thatH is a Hilbert space with the inner product 〈., .〉 and the
norm ‖.‖ and let I be the identity mapping on H. We denote by Fix(T) the set of all fixed points
of a mapping T. A sequence {xn} in H converges to x ∈ H strongly if {‖xn − x‖} converges to 0
and weakly if {〈xn − x, y〉} converges to 0, for every y ∈ H . We shall use the notations xn → x and
xn ⇀ x to indicate the strong and weak convergence respectively. It is important to note that strong
convergence always implies weak convergence, but the converse is not true (see [24]). Let D be a
nonempty closed convex subset ofH and PD denotes the nearest point projection (metric projection)
from H onto D, that is, for each u ∈ H, ‖u − PDu‖ ≤ ‖u − v‖, for all v ∈ D. Furthermore, PD is
characterized by the fact that PDu ∈ D and

〈u− PDu, v− PDu〉 ≤ 0, ∀ v ∈ D. (1)

Next, we recall some definitions of well known operators, which we will use in our paper.

Definition 1. An operator S : H → H is said to be

1. Nonexpansive if ‖Su− Sv‖ ≤ ‖u− v‖, ∀ u, v ∈ H.
2. Contraction if there exists a constant k ∈ (0, 1) such that ‖Su− Sv‖ ≤ k‖u− v‖, ∀ u, v ∈ H.
3. α-averaged if there exists a constant α ∈ (0, 1) and a nonexpansive mapping V such that

S = (1− α)I + αV.
4. β-inverse strongly monotone (for short, β-ism) if there exists β > 0 such that

〈Su− Sv, u− v〉 ≥ β‖Su− Sv‖2, ∀ u, v ∈ H.
5. Firmly nonexpansive if 〈Su− Sv, u− v〉 ≥ ‖Su− Sv‖2, ∀ u, v ∈ H.

It is known that metric projection PD is firmly nonexpansive and every firmly nonexpansive is
(1/2)-averaged.

An operatorM : H → 2H is called maximal monotone onH, ifM is monotone, i.e., 〈u1 − v1, u−
v〉 ≥ 0 ∀u, v ∈ dom(M), u1 ∈ Mu and v1 ∈ Mv, and there is no other monotone operator whose
graph contains graph ofM. Further, a resolvent associated with a maximal monotone operatorM is a
single valued operator defined as:

JMλ = (I + λM)−1 : H → H.

It is well known [24] that ifM : H → 2H is a maximal monotone operator and λ > 0, then JMλ is
firmly nonexpansive and Fix(JMλ ) =M−10 = {u ∈ H : 0 ∈ Mu}.

A sequence {Tn} of mappings is said to be a strongly nonexpansive sequence [25] if each Tn is
nonexpansive and

xn − yn − (Tnxn − Tnyn)→ 0,
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whenever {xn}, {yn} ⊂ H such that {xn − yn} is bounded and ‖xn − yn‖ − ‖Tnxn − Tnyn‖ → 0. Note
that if we put Tn = T, for all n ∈ N, then we have definition of strongly nonexpansive mapping defined
in [26].

In order to establish our results, we collect several lemmas.

Lemma 1. Let F : H → H be a β-ism operator onH. Then I − 2βF is nonexpansive.

Proof.

‖u− v‖2 − ‖(I − 2βF )u− (I − 2βF )v‖2 = ‖u− v‖2 −
(
‖u− v‖2 + (2β)2‖F (u)−F (v)‖2

− 4β〈F (u)−F (v), u− v〉
)

= 4β〈F (u)−F (u), u− v〉 − 4β2‖F (u)−F (v)‖2

= 4β
(
〈F (u)−F (v), u− v〉 − β‖F (u)−F (v)‖2)

≥ 0.

Thus I − 2βF is nonexpansive.

Lemma 2. For all u, v ∈ H, the following inequality holds:

‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉.

Lemma 3 ([27]). Suppose {an} ⊂ [0, ∞), {γn} ⊂ [0, 1] and {bn} are three real number sequences satisfying

an+1 ≤ (1− γn)an + γnbn, ∀ n ≥ 0. Assume that
∞

∑
n=0

γn = ∞ and lim sup
n→∞

bn ≤ 0. Then lim
n→∞

an = 0.

Lemma 4 ([25]). Let {Vn} be a sequence of nonexpansive mappings ofD intoH, whereD is a nonempty subset
of a Hilbert spaceH. Assume that {γn} ⊂ [0, 1] satisfy the condition lim inf

n→∞
γn > 0. Then a sequence {Wn} of

mappings of D intoH defined by Wn = γn I + (1− γn)Vn, is a strongly nonexpansive sequence, where I is the
identity mapping on D.

Lemma 5 ([25]). Let {Sn} be a sequence of firmly nonexpansive mappings of D intoH, where D is a nonempty
subset ofH. Then {Sn} is a strongly nonexpansive sequence. In particular, {JMλn

= (I + λnM)−1}, resolvent
of a maximal monotone operatorM is a strongly nonexpansive sequence.

Lemma 6 ([25]). Let C and D be two nonempty subsets of a Hilbert space H. Let {Sn} be a sequence of
mappings of C into H and {Tn} a sequence of mappings of D into H. Suppose that both {Sn} and {Tn}
are strongly nonexpansive sequences such that Tn(D) ⊂ C, for each n ∈ N. Then {SnTn} is a strongly
nonexpansive sequence.

Lemma 7 ([26]). If {Ti : 1 ≤ i ≤ k} are strongly nonexpansive mappings and
k⋂

i=1

{Fix(Ti) : 1 ≤ i ≤ k} 6=

∅, then
k⋂

i=1

{Fix(Ti) : 1 ≤ i ≤ k} = Fix(T1T2 · · · Tk).

Lemma 8 ([28]). The composition of finitely many averaged mappings is averaged. That is, if {Ti : 1 ≤ i ≤ k}

are averaged mappings, then so is the composition T1T2 · · · Tk. Furthermore, if
k⋂

i=1

{Fix(Ti) : 1 ≤ i ≤ k} 6= ∅,

then
k⋂

i=1

{Fix(Ti) : 1 ≤ i ≤ k} = Fix(T1T2 · · · Tk).
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Lemma 9 ([29]). Let T be a firmly nonexpansive self-mapping onH with Fix(T) 6= ∅. Then, for any x ∈ H,
one has 〈x− Tx, w− Tx〉 ≤ 0, for all w ∈ Fix(T).

Lemma 10 ([30]). Let D ⊂ H be a nonempty closed convex set and V : D → D be a nonexpansive mapping.
Then I −V is demiclosed at 0, that is, if {xn} ⊆ D with xn ⇀ w and (I −V)xn → 0, then w ∈ Fix(V).

Lemma 11 (The Resolvent Identity; [31]). For each λ, µ > 0,

JA
λ x = JA

µ

(µ

λ
x +

(
1− µ

λ

)
JA
λ x
)

.

Lemma 12 ([32]). Let {cn} be a sequence of real numbers such that there exists a subsequence {ni} of {n}
such that cni < cni+1, for all i ∈ N. Then, there exists a nondecreasing sequence {mq} ⊂ N such that mq → ∞
and the following properties are satisfied by all (sufficiently large) numbers q ∈ N:

cmq ≤ cmq+1, cq ≤ cmq+1.

In fact,
mq = max{j ≤ q : cj < cj+1}.

3. Main Results

Theorem 1. Let H be a real Hilbert space. Let {Ti}m
i=1 and V be nonexpansive self-mappings on H and

B1, B2 : H → 2H be maximal monotone mappings such that

Γ :=
m⋂

i=1

Fix(Ti)
⋂

Fix(V)
⋂

B−1
1 0

⋂
B−1

2 0 6= ∅.

Let g : H → H be a contraction with coefficient k ∈ (0, 1) and {xn} a sequence defined by x0 ∈ H and{
yn = αng(xn) + (1− αn)JB2

µn Vnxn,

xn+1 = JB1
ρn Tn

mTn
m−1 . . . Tn

2 Tn
1 yn,

, (2)

for all n ≥ 0, where Vn = (1− βn)I + βnV and Tn
i = (1− γi

n)I + γi
nTi, for i = 1, 2, . . . , m. Suppose

that {αn}, {βn} and {γi
n} are sequences in (0, 1) and {ρn} and {µn} are sequences of positive real numbers

satisfying the following conditions:

1. lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞;

2. 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

3. 0 < lim inf
n→∞

γi
n ≤ lim sup

n→∞
γi

n < 1, for all i = 1, 2, . . . , m;

4. for all sufficiently large n, min{ρn, µn} > ε for some ε > 0.

Then the sequence {xn} converges strongly to x∗ ∈ Γ, where x∗ is the unique fixed point of the contraction PΓg.

Proof. Set Wn = JB1
ρn Tn

m · · · Tn
2 Tn

1 and Sn = JB2
µn Vn. Clearly, each Wn and Sn are nonexpansive mappings

for each n ≥ 0. By Lemmas 4 and 5, for each n ≥ 0, Wn and Sn are composition of strongly
nonexpansive mappings. Therefore, from Lemma 7, we get
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∅ 6= Γ =
m⋂

i=1

Fix(Ti)
⋂

Fix(V)
⋂

B−1
1 0

⋂
B−1

2 0

=
m⋂

i=1

Fix(Tn
i )
⋂

Fix(Vn)
⋂

Fix(JB1
ρn )

⋂
Fix(JB2

µn )

= Fix(Wn)
⋂

Fix(Sn).

First, we claim that {xn} is bounded. Take an arbitrary element x∗ ∈ Γ.

‖xn+1 − x∗‖ = ‖Wnyn − x∗‖ ≤ ‖yn − x∗‖
= ‖αn(g(xn)− g(x∗)) + αn(g(x∗)− x∗) + (1− αn)(Snxn − x∗)‖
≤ αn‖g(xn)− g(x∗)‖+ αn‖g(x∗)− x∗‖+ (1− αn)‖Snxn − x∗‖
≤ αnk‖xn − x∗‖+ αn‖g(x∗)− x∗‖+ (1− αn)‖xn − x∗‖
≤ (1− αn(1− k))‖xn − x∗‖+ αn‖g(x∗)− x∗‖

≤ max
{
‖xn − x∗‖, 1

1− k
‖g(x∗)− x∗‖

}
.

By induction, we have

‖xn+1 − x∗‖ ≤ max
{
‖x0 − x∗‖, 1

1− k
‖g(x∗)− x∗‖

}
,

which proves the boundedness of {xn} and so we have {g(xn)} and {yn}. It is well known that fixed
point set of nonexpansive mapping is closed and convex and so their intersection. Hence, the metric
projection PΓ is well defined. In addition, since PΓg : H → H is a contraction mapping, there exist
x∗ ∈ Γ such that x∗ = PΓg(x∗). In order to prove xn → x∗ as n→ ∞, we examine two possible cases:

Case I. Assume that there exists n0 ∈ N such that the real sequence {‖xn − x∗‖} is nonincreasing
for all n ≥ n0. Since {‖xn − x∗‖} is bounded, {‖xn − x∗‖} is convergent. We first show that yn −
Wnyn → 0. Using nonexpansivness of Wn and (2), we obtain

0 ≤ ‖yn − x∗‖ − ‖Wnyn − x∗‖
≤ αn‖g(xn)− x∗‖+ (1− αn)‖Snxn − x∗‖ − ‖xn+1 − x∗‖
≤ αn‖g(xn)− x∗‖+ ‖xn − x∗‖ − ‖xn+1 − x∗‖, (3)

since {g(xn)} is bounded, αn → 0 and {‖xn − x∗‖} is convergent, we obtain

‖yn − x∗‖ − ‖Wnyn − x∗‖ → 0 as n→ ∞.

Also {Wn} is strongly nonexpansive sequence so we conclude that

yn −Wnyn → 0 as n→ ∞. (4)

We next show that xn − Snxn → 0. From (2), we obtain

‖xn+1 − x∗‖ ≤ αn‖g(xn)− x∗‖+ (1− αn)‖Snxn − x∗‖
≤ αn‖g(xn)− x∗‖+ ‖Snxn − x∗‖, (5)
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Now, from the nonexpansiveness of Sn and (5), we observe

0 ≤ ‖xn − x∗‖ − ‖Snxn − x∗‖
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖+ αn‖g(xn)− x∗‖, (6)

since {g(xn)} is bounded, αn → 0 and {‖xn − x∗‖} is convergent, we obtain

‖xn − x∗‖ − ‖Snxn − x∗‖ → 0 as n→ ∞.

As {Sn} is strongly nonexpansive sequence, we have

xn − Snxn → 0 as n→ ∞. (7)

Again from (2), we observe

‖xn+1 − x∗‖ ≤ αn‖g(xn)− x∗‖+ (1− αn)‖JB2
µn Vnxn − x∗‖

≤ αn‖g(xn)− x∗‖+ ‖Vnxn − x∗‖. (8)

Using nonexpansiveness of Vn and (8), we observe

0 ≤ ‖xn − x∗‖ − ‖Vnxn − x∗‖
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖+ αn‖g(xn)− x∗‖, (9)

so that ‖xn − x∗‖ − ‖Vnxn − x∗‖ → 0 by boundedness of sequence {g(xn)}, αn → 0 and convergent
sequence {‖xn − x∗‖}. By Lemma 4, {Vn} is strongly nonexpansive sequence, so we have

xn −Vnxn → 0 as n→ ∞. (10)

Also, notice that xn −Vnxn = βn(xn −Vxn). Condition (ii) together with (10) implies that

xn −Vxn → 0 as n→ ∞. (11)

Now consider

‖xn − JB2
µn xn‖ ≤ ‖xn − JB2

µn Vnxn‖+ ‖JB2
µn Vnxn − JB2

µn xn‖
≤ ‖xn − Snxn‖+ ‖Vnxn − xn‖,

in view of (7) and (10), we deduce

xn − JB2
µn xn → 0 as n→ ∞. (12)

Notice that yn − xn = αn(g(xn)− xn) + (1− αn)(Snxn − xn). This together with given condition
αn → 0 and (7) implies that

yn − xn → 0 as n→ ∞. (13)

Next, we consider

‖xn −Wnxn‖ ≤ ‖xn − yn‖+ ‖yn −Wnyn‖+ ‖Wnyn −Wnxn‖
≤ 2‖xn − yn‖+ ‖yn −Wnyn‖,

it follows from (4) and (13) that
xn −Wnxn → 0 as n→ ∞. (14)
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On the other hand, we observe

‖xn+1 − x∗‖ = ‖Wnyn − x∗‖ ≤ ‖Wnyn −Wnxn‖+ ‖Wnxn − x∗‖
≤ ‖yn − xn‖+ ‖Wnxn − x∗‖. (15)

Using nonexpansiveness of Tn
i Tn

i−1 · · · Tn
1 for each i = 1, 2, . . . , m and (15), we obtain

0 ≤ ‖xn − x∗‖ − ‖Tn
i Tn

i−1 · · · Tn
1 xn − x∗‖

≤ ‖xn − x∗‖ − ‖Wnxn − x∗‖
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖+ ‖yn − xn‖, (16)

in view of the fact that {‖xn − x∗‖} is convergent and using (13), we obtain

‖xn − x∗‖ − ‖Tn
i Tn

i−1 · · · Tn
1 xn − x∗‖ → 0 as n→ ∞.

Also by using Lemma 6, {Tn
i Tn

i−1 · · · Tn
1 } is strongly nonexpansive sequence for each i =

1, 2, . . . , m. Therefore, we have

xn − Tn
i Tn

i−1 · · · Tn
1 xn → 0 as n→ ∞ for each i = 1, 2, . . . , m. (17)

Now consider

‖xn − JB1
ρn xn‖ ≤ ‖xn − JB1

ρn Tn
mTn

m−1 · · · Tn
1 xn‖+ ‖JB1

ρn Tn
mTm

m−1 · · · Tn
1 xn − JB1

ρn xn‖
≤ ‖xn −Wnxn‖+ ‖Tn

mTn
m−1 · · · Tn

1 xn − xn‖.

This together with (14) and (17) implies that

xn − JB1
ρn xn → 0 as n→ ∞. (18)

Choose a fixed number s such that ε > s > 0 and using Lemma 11, for all sufficiently large n,
we have

‖xn − JB1
s xn‖ ≤ ‖xn − JB1

ρn xn‖+ ‖JB1
ρn xn − JB1

s xn‖

= ‖xn − JB1
ρn xn‖+

∥∥∥∥JB1
s

(
s

ρn
xn +

(
1− s

ρn

)
JB1
ρn xn

)
− JB1

s xn

∥∥∥∥
≤ ‖xn − JB1

ρn xn‖+
∥∥∥∥ s

ρn
xn +

(
1− s

ρn

)
JB1
ρn xn − xn

∥∥∥∥
= ‖xn − JB1

ρn xn‖+
(

1− s
ρn

)
‖JB1

ρn xn − xn‖

≤ 2‖xn − JB1
ρn xn‖.

Using (18), we obtain
xn − JB1

s xn → 0 as n→ ∞. (19)

Similarly, using (12) and Lemma 11, we can obtain

xn − JB2
s xn → 0 as n→ ∞. (20)

Next, we show that

xn − Tn
i xn → 0 as n→ ∞ for each i = 1, 2, . . . , m. (21)
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Clearly, from (17) for i = 1, (21) holds. Now for i = 2, . . . , m, we see that

‖xn − Tn
i xn‖ ≤ ‖xn − Tn

i Tn
i−1 · · · Tn

1 xn‖+ ‖Tn
i Tn

i−1 · · · Tn
1 xn − Tn

i xn‖
≤ ‖xn − Tn

i Tn
i−1 · · · Tn

1 xn‖+ ‖Tn
i−1 · · · Tn

1 xn − xn‖.

Thus, in view of (17), (21) holds for all i = 1, 2, . . . , m.
Observe that xn − Tn

i xn = γi
n(xn − Tixn). Condition (iii) and (21) implies that

xn − Tixn → 0 as n→ ∞ for each i = 1, 2, . . . , m. (22)

Put U :=
1

m + 3

( m

∑
i=1

Ti + V + JB1
s + JB2

s

)
. Clearly, U is a convex combination of nonexpansive

mappings, so is itself nonexpansive and

Fix(U) =
m⋂

i=1

Fix(Ti)
⋂

Fix(V)
⋂

B−1
1 0

⋂
B−1

2 0 = Γ.

We observe

‖xn −Uxn‖ =
∥∥∥xn −

1
m + 3

( m

∑
i=1

Tixn + Vxn + JB1
s xn + JB2

s xn

)∥∥∥
=
∥∥∥ 1

m + 3

(
mxn −

m

∑
i=1

Tixn

)
+

1
m + 3

(xn −Vxn) +
1

m + 3
(xn − JB1

s xn)

+
1

m + 3
(xn − JB2

s xn)
∥∥∥

≤ 1
m + 3

m

∑
i=1
‖xn − Tixn‖+

1
m + 3

‖xn −Vxn‖+
1

m + 3
‖xn − JB1

s xn‖

+
1

m + 3
‖xn − JB2

s xn‖.

In view of (11), (19), (20) and (22), we obtain

xn −Uxn → 0 as n→ ∞. (23)

Observe that

‖yn −Uyn‖ ≤ ‖yn − xn‖+ ‖xn −Uxn‖+ ‖Uxn −Uyn‖ ≤ 2‖yn − xn‖+ ‖xn −Uxn‖.

This together with (13) and (23) implies that

yn −Uyn → 0 as n→ ∞. (24)

Since {yn} is bounded, it has a convergent subsequence {yni} such that {yni} converges weakly
to some z ∈ H. Further Lemma 10, and (24) implies that z ∈ Fix(U) = Γ, it follows that

lim sup
n→∞

〈g(x∗)− x∗, yn − x∗〉 = lim
i→∞
〈g(x∗)− x∗, yni − x∗〉 = 〈g(x∗)− x∗, z− x∗〉

= 〈g(x∗)− PΓg(x∗), z− PΓg(x∗)〉 ≤ 0, (25)

where the last inequality follows from (1).
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Using Lemma 2, we obtain

‖yn − x∗‖2 = ‖αn(g(xn)− x∗) + (1− αn)(Snxn − x∗)‖2

≤ (1− αn)
2‖Snxn − x∗‖2 + 2αn〈g(xn)− x∗, yn − x∗〉

≤ (1−αn)
2‖xn−x∗‖2+2αn〈g(xn)−g(x∗), yn−x∗〉+2αn〈g(x∗)−x∗, yn−x∗〉

≤ (1− αn)
2‖xn − x∗‖2 + 2αnk‖xn − x∗‖ · ‖yn − x∗‖+ En

≤ (1− αn)
2‖xn − x∗‖2 + αnk[‖xn − x∗‖2 + ‖yn − x∗‖2] + En,

where En = 2αn〈g(x∗)− x∗, yn − x∗〉.
It turns out that

(1− αnk)‖yn − x∗‖2 ≤ [(1− αn)
2 + αnk]‖xn − x∗‖2 + En,

‖yn − x∗‖2 ≤
[ (1− αn)2 + αnk

1− αnk

]
‖xn − x∗‖2 +

En

1− αnk
.

Next, we have

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2

≤
[ (1− αn)2 + αnk

1− αnk

]
‖xn − x∗‖2 +

En

1− αnk

≤
[
1− 2αn(1− k)

1− αnk

]
‖xn − x∗‖2 +

α2
n

1− αnk
‖xn − x∗‖2 +

En

1− αnk

=
[
1− 2αn(1− k)

1− αnk

]
‖xn − x∗‖2

+
2αn(1− k)

1− αnk

[ 1
1− k

〈g(x∗)− x∗, yn − x∗〉+ αn

2(1− k)
‖xn − x∗‖2

]
,

that is,
an+1 ≤ (1− γn)an + γnbn, (26)

where an = ‖xn − x∗‖2, γn =
2αn(1− k)

1− αnk
, bn =

1
1− k

〈g(x∗) − x∗, yn − x∗〉 + αn

2(1− k)
‖xn − x∗‖2.

Using (25), the condition αn → 0 and boundedness of {xn}, we obtain lim sup
n→∞

bn ≤ 0. Using condition

(i), it can be easily proven that
∞

∑
n=0

γn = ∞. Finally, we apply Lemma 3 to (26) to conclude that xn → x∗

as n→ ∞.

Case II. Assume that there exists a subsequence {xnj} of {xn} such that

‖xnj − x∗‖ < ‖xnj+1 − x∗‖, ∀j ∈ N.

Then, by Lemma 12, there exists a nondecreasing sequence of integers {mq} ⊂ N such that
mq → ∞ as q→ ∞ and

‖xmq − x∗‖ ≤ ‖xmq+1 − x∗‖ and ‖xq − x∗‖ ≤ ‖xmq+1 − x∗‖, ∀q ∈ N. (27)

Now, using (27) in (3), we have

0 ≤ ‖ymq − x∗‖ − ‖Wmq ymq − x∗‖ ≤ αmq‖g(xmq)− x∗‖+ ‖xmq − x∗‖ − ‖xmq+1 − x∗‖
≤ αmq‖g(xmq)− x∗‖,

since {g(xmq)} is bounded and αmq → 0, we obtain ‖ymq − x∗‖ − ‖Wmq ymq − x∗‖ → 0 as q→ ∞.
As {Wmq} is a strongly nonexpansive sequence, we have ymq −Wmq ymq → 0 as q→ ∞.
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Similarly, using (27) in (6) and (9), we obtain

xmq − Smq xmq → 0 and xmq −Vmq xmq → 0 as q→ ∞,

respectively. Arguing as in case I, we obtain

xmq −Vxmq → 0, xmq − JB2
µmq

xmq → 0,

ymq − xmq → 0, xmq −Wmq xmq → 0 as q→ ∞. (28)

Using (27) in (16), we have

0 ≤ ‖xmq − x∗‖ − ‖Tmq
i T

mq
i−1 · · · T

mq
1 xmq − x∗‖

≤ ‖xmq − x∗‖ − ‖xmq+1 − x∗‖+ ‖ymq − xmq‖
≤ ‖ymq − xmq‖,

it follows from (28) that

‖xmq − x∗‖ − ‖Tmq
i T

mq
i−1 · · · T

mq
1 xmq − x∗‖ → 0 as q→ ∞ for each i = 1, 2 . . . , m.

Following similar arguments as in Case I, we have

xmq − T
mq
i T

mq
i−1 · · · T

mq
1 xmq → 0, xmq − JB1

s xmq → 0, xmq − JB2
s xmq → 0,

xmq − T
mq
i xmq → 0, xmq − Tixmq → 0, xmq −Uxmq → 0,

ymq −Uymq → 0 as q→ ∞

lim sup
q→∞

〈g(x∗)− x∗, ymq − x∗〉 ≤ 0. (29)

Next, from (26), we have
amq+1 ≤ (1− γmq)amq + γmq bmq , (30)

where amq = ‖xmq − x∗‖2, bmq =
1

1− k
〈g(x∗) − x∗, ymq − x∗〉 +

αmq

2(1− k)
‖xmq − x∗‖2, γmq =

2αmq(1− k)
1− αmq k

. Thus, (30) and (27) implies that

γmq amq ≤ amq − amq+1 + γmq bmq ,

γmq amq ≤ γmq bmq .

Using the fact that γmq > 0, we obtain amq ≤ bmq , that is,

‖xmq − x∗‖2 ≤ 1
1− k

〈g(x∗)− x∗, ymq − x∗〉+
αmq

2(1− k)
‖xmq − x∗‖2.

Since {xmq} is bounded, αmq → 0, it follows from (29) that ‖xmq − x∗‖ → 0 as q→ ∞.
This together with (30) implies that ‖xmq+1 − x∗‖ → 0 as q→ ∞. But ‖xq − x∗‖ ≤ ‖xmq+1 − x∗‖,

for all q ∈ N, which gives that xq → x∗ as q→ ∞.

Remark 1. A similar approach has been adopted in the study of consensus problems (see the seminal work [33]).

4. Applications

In this section, we utilize the main result presented in this paper to study many problems in
Hilbert spaces.
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4.1. Application to a General System of Variational Inequalities

LetH be a real Hilbert space and let there be given for each i = 1, 2, . . . , N, an operator Ai : H → H
and a nonempty closed convex subset Ci ⊂ H. First, we introduce the following general system of
variational inequalities in Hilbert space, which aims to find (x∗1 , x∗2 , . . . , x∗N) ∈ C1 × C2 × · · · × CN
such that 

〈θ1 A1x∗2 + x∗1 − x∗2 , x− x∗1〉 ≥ 0, ∀x ∈ C1,

〈θ2 A2x∗3 + x∗2 − x∗3 , x− x∗2〉 ≥ 0, ∀x ∈ C2,
...
〈θN−1 AN−1x∗N + x∗N−1 − x∗N , x− x∗N−1〉 ≥ 0, ∀x ∈ CN−1,

〈θN AN x∗1 + x∗N − x∗1 , x− x∗N〉 ≥ 0, ∀x ∈ CN ,

(31)

where θi > 0 for all i ∈ {1, 2, . . . , N}. Here, Ω will be used to denote the solution set of (31).
In particular, if N = 2 and C1 = C2 = C, then problem (31) can be reduced to finding (x∗1 , x∗2) ∈ C× C
such that {

〈θ1 A1x∗2 + x∗1 − x∗2 , x− x∗1〉 ≥ 0, ∀x ∈ C,

〈θ2 A2x∗1 + x∗2 − x∗1 , x− x∗2〉 ≥ 0, ∀x ∈ C,
, (32)

which was considered and studied by Ceng et al. [34]. In particular, if A1 = A2 = A, θ1 = θ2 = θ and
x∗1 = x∗2 = x∗, then the problem (32) reduces to the variational inequality problem for finding x∗ ∈ C
such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (33)

Variational inequalities produce effective method to solve several important problems appearing
in finance, optimization theory, game theory, mechanics and economics.

Another motivation for introducing (31) is that if we choose x∗1 = x∗2 = · · · = x∗N = x∗ and θi = 1
for all i ∈ {1, 2, . . . , N}, then (31) reduces to an important problem, called the common solutions to
variational inequality problem (CSVIP) introduced by Censor, Gibali and Reich [16,17].

Lemma 13. Let {Ci}N
i=1 be a finite family of closed convex subsets of a real Hilbert spaceH. Let Ai : H → H be

nonlinear mappings, where i = 1, 2, . . . , N. For given x∗i ∈ Ci, i = 1, 2, . . . , N, (x∗1 , x∗2 , . . . , x∗N) is a solution
of problem (31) if and only if

x∗i = PCi (I − θi Ai)x∗i+1, x∗N = PCN (I − θN AN)x∗1 , i = 1, 2, . . . , N − 1.

That is

x∗1 = PC1(I − θ1 A1)PC2(I − θ2 A2) · · · PCN−1(I − θN−1 AN−1)PCN (I − θN AN)x∗1 .

Proof. We can rewrite (31) as

〈x∗1 − (x∗2 − θ1 A1x∗2), x− x∗1〉 ≥ 0, ∀x ∈ C1,

〈x∗2 − (x∗3 − θ2 A2x∗3), x− x∗2〉 ≥ 0, ∀x ∈ C2,
...
〈x∗N−1 − (x∗N − θN−1 AN−1x∗N), x− x∗N−1〉 ≥ 0, ∀x ∈ CN−1,

〈x∗N − (x∗1 − θN AN x∗1), x− x∗N〉 ≥ 0, ∀x ∈ CN .

(34)

From (1), we find (34) is equivalent to

x∗i = PCi (I − θi Ai)x∗i+1, x∗N = PCN (I − θN AN)x∗1 , i = 1, 2, . . . , N − 1.
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Therefore, we have

x∗1 = PC1(I − θ1 A1)PC2(I − θ2 A2) · · · PCN−1(I − θN−1 AN−1)PCN (I − θN AN)x∗1 .

Lemma 14. Let {Ci}N
i=1 be a finite family of closed convex subsets of a real Hilbert spaceH. Let Ai be ηi-ism

self-mappings onH, where i ∈ {1, 2, . . . , N}. Let T : H → H be a mapping defined by

T(x) = PC1(I − θ1 A1)PC2(I − θ2 A2) · · · PCN−1(I − θN−1 AN−1)PCN (I − θN AN)x, ∀x ∈ H.

If θi ∈ (0, 2ηi), i = 1, 2, . . . , N, then T is averaged.

Proof. We first prove that I − θi Ai is averaged for each i ∈ {1, 2, . . . , N}.
Note that I − θi Ai =

(
1− θi

2ηi

)
I +

θi
2ηi

(I − 2ηi Ai) and
θi

2ηi
∈ (0, 1). Thus, applying Lemma 1,

I − 2ηi Ai is nonexpansive and therefore, I − θi Ai is averaged for θi ∈ (0, 2ηi), i = 1, 2, . . . , N. Also,
it well known that PCi is averaged, so the composition PCi (I − θi Ai) (see Lemma 8). Hence again
applying Lemma 8, the mapping T is averaged.

Theorem 2. Let {Ci}N
i=1 be a finite family of closed convex subsets of a real Hilbert spaceH. Let Ai be ηi-ism

self-mappings onH, where i ∈ {1, 2, . . . , N}. Assume that Ω = Fix(T) 6= ∅, where T is defined in Lemma 14.
Let {xn} be a sequence defined by x0 ∈ H and{

yn = (1− αn)xn,
xn+1 = PC1(I − θ1 A1)PC2(I − θ2 A2) · · · PCN−1(I − θN−1 AN−1)PCN (I − θN AN)yn,

, (35)

where θi ∈ (0, 2ηi). Suppose {αn} ⊂ (0, 1) satisfying the conditions lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞. Then the

sequence {xn} converges strongly to a point x∗ ∈ Ω.

Proof. Applying Lemma 14, we have that T is an averaged mapping onH. Therefore, by definition,
T = (1− γ)I + γT1, for some γ ∈ (0, 1) and a nonexpansive mapping T1, where Fix(T1) = Fix(T).
Letting m = 1, B1 = B2 = g = 0, V = I and γ1

n = γ in Theorem 1, the conclusion of Theorem 2 is
obtained.

Remark 2. In [17], Censor, Gibali and Reich proved the weak convergence theorem for solving the CSVIP. If we
take x∗1 = x∗2 = · · · = x∗N = z and θi = 1, for all i ∈ {1, 2, ..., N} in (31), then problem (31) reduces to CSVIP
and through algorithm (35), we obtain modification of Algorithm 4.1 in [17] and obtain strong convergence,
which is often much more desirable than weak convergence.

4.2. Convex Feasibility Problem

Let Ci, i = 1, 2, . . . , m be nonempty closed convex subsets of a real Hilbert spaceHwith
m⋂

i=1

Ci 6= ∅,

the convex feasibility problem (CFP) is to find x∗ such that x∗ ∈
m⋂

i=1

Ci.

Most common methods to solving CFP are the projection and reflection methods which
comprise some well-known methods, such as the so-called alternating projection method [35–37],
the Douglas–Rachford (DR) algorithm [38–40] and many extensions [41–43]. Most projection and
reflection methods can be extended to solve the convex feasibility problem involving any finite number
of sets. An exception is the Douglas–Rachford method, for which only the theory of two set feasibility
problems has been investigated. Motivated by this fact, Borwein and Tam [43], introduced the following
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cyclic Douglas–Rachford method which can be applied directly to many-set convex feasibility problem
in a Hilbert space.

For any x0 ∈ H, the cyclic Douglas–Rachford method defines a sequence {xn} by setting

xn+1 = T[C1C2···Cm ]xn, ∀n ∈ N.

Here, T[C1C2···Cm ] is a m-set cyclic Douglas–Rachford operator defined as

T[C1C2···Cm ] = TCm ,C1 TCm−1,Cm · · · TC2,C3 TC1,C2

and each TCi ,Cj =
I + RCj RCi

2
is a two set Douglas-Rachford operator and RCi = 2PCi − I and RCj =

2PCj − I are the reflection operators into Ci and Cj respectively. However, it is known that cyclic
Douglas-Rachford method may fail to converge strongly (see [44]). We introduce a modification of
cyclic Douglas-Rachford method in which strong convergence is guaranteed.

Theorem 3. Let C1, C2, . . . Cm ⊆ H be closed and convex sets with nonempty intersection and let {xn} be a
sequence defined by x0 ∈ H and {

yn = (1− αn)xn

xn+1 = Tn
mTn

m−1 · · · Tn
2 Tn

1 yn,
,

where Tn
i = (1− γi

n)I + γi
nRCi+1 RCi , for i = 1, 2, . . . , m and Cm+1 := C1. Suppose {αn} and {γi

n} ⊂ (0, 1)
satisfying

(i) lim
n→∞

αn = 0,
∞

∑
n=0

= ∞;

(ii) 0 < lim inf
n→∞

γi
n ≤ lim sup

n→∞
γi

n < 1, for all i = 1, 2, . . . , m.

Then the sequence {xn} converges strongly to a point x∗ such that PCi x
∗ ∈

m⋂
i=1

Ci for i = 1, 2, . . . , m.

Proof. Set Ti = RCi+1 RCi , for i = 1, 2, . . . , m. By Proposition 4.2, in [24], RCi and RCi+1 are nonexpansive.
Therefore, their combination Ti is nonexpansive.

Further ∅ 6=
m⋂

i=1

Ci ⊆
m⋂

i=1

Fix(Ti). Put B1 = B2 = g = 0 and V = I in Theorem 1, the sequence

{xn} converges strongly to a point x∗ in
m⋂

i=1

Fix(Ti). By Corollary 4.3.17 (iii) in [45], PCi x
∗ ∈ Ci

⋂
Ci+1,

for each i = 1, 2, . . . , m. So, PCi x
∗ ∈ Ci+1 for each i = 1, 2, . . . , m. Further, using inequality (1), we have

0 ≥
m

∑
i=1
〈x∗ − PCi+1 x∗, PCi x

∗ − PCi+1 x∗〉

=
1
2

m

∑
i=1

(‖x∗ − PCi+1 x∗‖2 + ‖PCi x
∗ − PCi+1 x∗‖2 − ‖x∗ − PCi x

∗‖2)

=
1
2

m

∑
i=1
‖PCi x

∗ − PCi+1 x∗‖2 ≥ 0.

Thus, PCi x
∗ = PCi+1 x∗, for each i and therefore, PCi x

∗ ∈
m⋂

i=1

Ci for each i.

Remark 3. By taking γi
n =

1
2

, for all i = 1, 2, . . . , m in the operator Tn
mTn

m−1 · · · Tn
2 Tn

1 , we obtain the cyclic
Douglas–Rachford operator.
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4.3. Zeros of Ism and Maximal Monotone

Very recently, based on Yamada’s hybrid steepest descent method, Tian and Jiang [46] introduced
an iterative algorithm and proved a weak convergence theorem for zero points of ism and fixed points
of a nonexpansive mapping in Hilbert space. Moreover, using this algorithm, they also constructed
following algorithm to obtain weak convergence theorem for common zeros of ism and maximal
monotone mapping: {

zn = (1− λn)xn + λn JB1
r xn,

xn+1 = (I − µδnF)zn.
(36)

Now, we combine hybrid steepest descent method, proximal point algorithm and viscosity
approximation method to obtain following strong convergence result.

Theorem 4. Let M : H → 2H be a maximal monotone mapping and F be an θ-ism of H into itself such that
M−10

⋂
F−10 6= ∅. Let g : H → H be a contraction with coefficient k ∈ (0, 1) and let {xn} be a sequence

defined by x0 ∈ H and 
yn = αng(xn) + (1− αn)xn,

zn = (1− λn)yn + λn JM
r yn,

xn+1 = (I − ηδnF)zn,

∀n ≥ 0. (37)

Suppose that {λn} ⊂ (0, 2), {ηδn} ⊂ (0, 2θ) and {αn} ⊂ (0, 1) satisfying

(i) lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞;

(ii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2;

(iii) 0 < lim inf
n→∞

ηδn ≤ lim sup
n→∞

ηδn < 2θ.

Then the sequence {xn} converges strongly to a point x∗ ∈ M−10
⋂

F−10.

Proof. First, we rewrite I − ηδnF as

I − ηδnF =
(

1− ηδn

2θ

)
I +

ηδn

2θ
(I − 2θF).

Using Lemma 1, I − 2θF is nonexpansive. Also, it can be easily proven that Fix(I − 2θF) = F−10.
Further, we observe that

(1− λn)I + λn JM
r =

(
1− λn

2

)
I +

λn

2
(2JM

r − I).

By Proposition 4.2, in [24], 2JM
r − I is nonexpansive. Also note that Fix(2JM

r − I) = M−10. Now,

take m = 2, T1 = 2JM
r − I, T2 = I − 2θF, γ1

n =
λn

2
, γ2

n =
ηδn

2θ
, B1 = B2 = 0 and V = I in Theorem 1,

which yields the conclusion of Theorem 4.

Remark 4. Theorem 4 improves the Tian and Jiang’s result ([46] Theorem 4.4) from weak to strong convergence
theorem. Also {λn} is bounded in (0, 1) in ([46] Theorem 4.4), but in Theorem 4, we relax {λn} ⊂ (0, 1) to
{λn} ⊂ (0, 2).

Theorem 5. Let S be an θ-ism ofH into itself and let B1, B2 : H → 2H be maximal monotone mappings such
that S−10

⋂
B−1

1 0
⋂

B−1
2 0 6= ∅. Let g : H → H be a contraction with coefficient k ∈ (0, 1) and let {xn} be a

sequence defined by x0 ∈ H and

xn+1 = JB1
ρn

(
αng(xn) + (1− αn)JB2

µn (xn − λnSxn)
)
, ∀n ≥ 0. (38)



Symmetry 2019, 11, 655 15 of 23

Suppose that {αn} ⊂ (0, 1), {λn} ⊂ (0, 2θ) and {ρn}, {µn} ⊂ (0, ∞) satisfying

(i) lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞;

(ii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2θ;

(iii) for all sufficiently large n, min{ρn, µn} > ε for some ε > 0.

Then the sequence {xn} converges strongly to a point x∗ ∈ S−10
⋂

B−1
1 0

⋂
B−1

2 0.

Proof. First, we rewrite that

I − λnS =
(

1− λn

2θ

)
I +

λn

2θ
(I − 2θS).

By using Lemma 1, I − 2θS is nonexpansive and it can be easily proven that Fix(I − 2θS) = S−10.

Putting V = I− 2θS, βn =
λn

2θ
, Ti = I, for all i = 1, 2, . . . , m, in Theorem 1, the conclusion of Theorem 5

is obtained.

Remark 5.

1. Theorem 5 improves and extends Iiduka–Takahashi’s result ([14] Theorem 4.3). By taking B1 = 0,
B2 = B, µn = r, g = x0 in Theorem 5, we obtain ([14] Theorem 4.3) without assuming extra conditions
∞

∑
n=1
|αn+1 − αn| < ∞ and

∞

∑
n=1
|λn+1 − λn| < ∞ assumed in ([14] Theorem 4.3).

2. If we take B1 = S = 0, g = x0 in Theorem 5, we obtain Kamimura and Takahashi’s result ([13] Theorem
1). Also we remove the superfluous condition lim

n→∞
rn = ∞ assumed in ([13] Theorem 1). Hence our result

improves the result of Kamimura and Takahashi.
3. The alternating resolvent method studied in Bauschke et al. [47] deals essentially with a special case of the

algorithm (38). In fact, if we take g = S = 0, then (38) becomes

xn+1 = JB1
ρn

(
(1− αn)JB2

µn (xn)
)
, n ≥ 0. (39)

We can rewrite (39) as
xn+1 = JAn

γn JB2
µn xn, n ≥ 0, (40)

where γn =
ρn

1− αn
and An = B1 +

αn

ρn
I is the Tikhonov regularization of B1. Thus Theorem 5 extends

and improves the result of Bauschke et al. [47] from weak to strong convergence theorem by using
prox-Tikhonov method.

4. Theorem 5 also improves the convergence result studied in Lehdili and Moudafi [15]. In fact, if we take
B2 = 0 in (40), then (40) becomes

xn+1 = JAn
γn xn, n ≥ 0, (41)

which is prox-Tikhonov algorithm presented by Lehdili and Moudafi [15].

4.4. Split Common Null Point Problem

Let H1 and H2 be two real Hilbert spaces. Given two set-valued operators A1 : H1 → 2H1 and
A2 : H2 → 2H2 and a bounded linear operator U : H1 → H2, the split common null point problem
(SCNPP) is the problem of finding

x̂ ∈ H1 such that 0 ∈ A1(x̂) and 0 ∈ A2(Ux̂). (42)

In [48], Byrne et al. introduced this problem for finding such a solution x̂ when A1 and A2 are
maximal monotone.
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Using the fact 0 ∈ A(x) if and only if x ∈ Fix(JA
µ ), the problem (42) is equivalent to the problem

of finding
x̂ ∈ H1 such that x̂ ∈ Fix(JA1

µ ) and Ux̂ ∈ Fix(JA2
µ ),

where µ > 0. Here, Ψ will be used to denote the solution set of (42).

Lemma 15. Let H1 and H2 be two real Hilbert spaces. Let U : H1 → H2 be a bounded linear operator and
S : H2 → H2 be a firmly nonexpansive maping. Then U∗(I − S)U is 1/‖U‖2 -ism.

Proof. Since S is firmly nonexpansive, using Proposition 4.2, in [24], I − S is firmly nonexpansive.
Therefore, for all x, y ∈ H1, we obtain

〈U∗(I − S)Ux−U∗(I − S)Uy, x− y〉 = 〈U∗((I − S)Ux−(I − S)Uy), x− y〉
= 〈(I − S)Ux− (I − S)Uy, Ux−Uy〉
≥ ‖(I − S)Ux− (I − S)Uy‖2.

Also,

‖U∗(I−S)Ux−U∗(I−S)Uy‖2 = 〈U∗((I−S)Ux−(I−S)Uy), U∗((I − S)Ux−(I − S)Uy)〉
= 〈(I − S)Ux− (I − S)Uy, UU∗((1− S)Ux− (I − S)Uy)〉
≤ ‖U‖2‖(I − S)Ux− (I − S)Uy‖2.

Combining the above inequalities, we obtain

〈U∗(I − S)Ux−U∗(I − S)Uy, x− y〉 ≥ (1/‖U‖2)‖U∗(I − S)Ux−U∗(I − S)Uy‖2.

Thus U∗(I − S)U is 1/‖U‖2-ism.

Theorem 6. Let H1 and H2 be two real Hilbert spaces. Let A1 : H1 → 2H1 and A2 : H2 → 2H2 be two
set-valued maximal monotone operators. Let U : H1 → H2 be a bounded linear operator and g : H1 → H1 be a
contraction with coefficient k ∈ (0, 1). Let Ψ 6= ∅ and let {xn} be a sequence defined by x0 ∈ H1 and

xn+1 = αng(xn) + (1− αn)JA1
µ (I + λnU∗(JA2

µ − I)U)xn, ∀n ≥ 0.

Suppose that {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2/‖U‖2) satisfying

(i) lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞;

(ii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2/‖U‖2.

Then the sequence {xn} converges strongly to a point in Ψ.

Proof. Let x̂ solves SCNPP i.e. x̂ ∈ Ψ, then we have x̂ ∈ H1 such that 0 ∈ A1(x̂) and 0 ∈ A2(Ux̂).
Note that 0 ∈ A2(Ux̂) if and only if Ux̂ ∈ Fix(JA2

µ ).
Therefore, (I − JA2

µ )Ux̂ = 0 and so U∗(I − JA2
µ )Ux̂ = 0, means x̂ ∈ (U∗(I − JA2

µ )U)−10. Thus
Ψ ⊆ A−1

1 0
⋂
(U∗(I − JA2

µ )U)−10.
Now let x̂ ∈ A−1

1 0
⋂
(U∗(I − JA2

µ )U)−10, which implies

U∗(I − JA2
µ )Ux̂ = 0. (43)

Choose z ∈ Ψ. Therefore, Uz ∈ Fix(JA2
µ ). An application of Lemma 9, yields

〈(I − JA2
µ )Ux̂, Uz− JA2

µ Ux̂〉 ≤ 0. (44)
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Using (43) and (44), we have

‖(I − JA2
µ )Ux̂‖2 = 〈(I − JA2

µ )Ux̂, Ux̂−Uz〉+ 〈(I − JA2
µ )Ux̂, Uz− JA2

µ Ux̂〉

≤ 〈(I − JA2
µ )Ux̂, Ux̂−Uz〉

= 〈U∗(I − JA2
µ )Ux̂, x̂− z〉 = 0.

Therefore, Ux̂ ∈ Fix(JA2
µ ) i.e., 0 ∈ A2(Ux̂). Thus x̂ ∈ Ψ. Hence Ψ = A−1

1 0
⋂
(U∗(I − JA2

µ )U)−10.
Also, using Lemma 15, U∗(I − JA2

µ )U is 1/‖U‖2-ism.
Now, putting B1 = 0, B2 = A1, S = U∗(I − JA2

µ )U and µn = µ in Theorem 5, the conclusion of
Theorem 6 is obtained.

Remark 6.

1. Theorem 6 generalizes and improves the result in ([49] Theorem 5.1). Indeed, the result in ([49] Theorem
5.1) considers the special case λn = γ, for all n. Moreover, we assume that λn ∈ (0, 2/‖U‖2), while in
([49], Theorem 5.1) γ was assumed to be in (0, 1/‖U‖2), which is a more restrictive condition.

2. If we take g = x0 and λn = γ in Theorem 6, we obtain the result of Byrne et al. ([48] Theorem 4.5).

4.5. Split Feasibility Problem

Let C and Q be nonempty closed convex subsets of real Hilbert spacesH1 andH2 respectively.
The split feasibility problem (SFP) [23] is defined as finding a point x̂ satisfying:

x̂ ∈ C and Ux̂ ∈ Q, (45)

where U : H1 → H2 is a bounded linear operator. In [50], Byrne gave the following algorithm called
CQ algorithm for solving the SFP (45):

xn+1 = PC(I − γU∗(I − PQ)U)xn,

where γ ∈ (0, 2/‖U‖2). Let h : H → (−∞, ∞] be a proper lower semicontinuous convex function.
Then subdifferential of h can be defined as

∂h(x) = {y ∈ H : h(x) + 〈z− x, y〉 ≤ h(z), ∀z ∈ H}, ∀x ∈ H.

By Rockafellar Theorem [51], ∂h is a maximal monotone operator of H into itself. For a closed
convex subset C ofH, the indicator function iC can be defined as

iCx =

{
0, x ∈ C,
∞, x /∈ C.

Also recall, the normal cone of C at a point x ∈ C can be defined as

NC(x) = {y ∈ H : 〈y, z− x〉 ≤ 0, ∀ z ∈ C}.

Since iC : H → (−∞, ∞] is a proper lower semicontinuous convex function, ∂iC is a maximal
monotone operator. Also it is known that ∂iC = NC (see [24] Ex. 16.12). Using Theorem 1 and
the equality

(I + r∂iC)−1 = (I + rNC)
−1 = PC,

for all closed convex subset C inH and for all r > 0, we solve the SFP as follows:
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Theorem 7. Let the solution set of SFP (45) is nonempty. Let g : H1 → H1 be a contraction with coefficient
k ∈ (0, 1) and let {xn} be a sequence defined by xo ∈ H1 and

xn+1 = αng(xn) + (1− αn)PC(I − λnU∗(I − PQ)U)xn, ∀n ≥ 0.

Suppose that {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2/‖U‖2) satisfying

(i) lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞;

(ii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 2/‖U‖2.

Then the sequence {xn} converges strongly to a point in the solution set of SFP (45).

Proof. Put A1 = NC and A2 = NQ in Theorem 6, which yields the conclusion of Theorem 7.

Remark 7.

1. Theorem 7 extends and improves the result in ([52] Corollary 3.7). In fact, in Theorem 7 taking g = u
(constant) and λn = γ, for all n, we obtain the result in ([52] Corollary 3.7) without assuming an extra

condition
∞

∑
n=1
|αn+1 − αn| < ∞ which was assumed in ([52] Corollary 3.7).

2. Theorem 7 also improves the result in ([53], Theorem 1).

4.6. Split Monotone Variational Inclusion Problem and Fixed Point Problem for Strictly
Pseudocontractive Maps

Let H1 and H2 be two real Hilbert spaces and let M1 : H1 → 2H1 and M2 : H2 → 2H2 be two
set-valued maximal monotone operators.

Let U : H1 → H2 be a bounded linear operator and f1 : H1 → H1 and f2 : H2 → H2 be two ism
mappings. The split monotone variational inclusion problem (SMVIP) is to find x̂ ∈ H1 such that

0 ∈ f1(x̂) + M1(x̂) (46)

and
ŷ = Ux̂ ∈ H2 such that 0 ∈ f2(ŷ) + M2(ŷ). (47)

Also, it can be easily proven that (see, e.g., Moudafi [54])

0 ∈ f1(x̂) + M1(x̂)⇔ x̂ = JM1
λ (I − λ f1)x̂

and
0 ∈ f2(ŷ) + M2(x̂)⇔ ŷ = JM2

λ (I − λ f2)ŷ.

Let K be a nonempty closed convex subset of a Hilbert spaceH. A mapping S : K → K is said to
be θ-strictly pseudocontractive if there exist θ with 0 ≤ θ < 1 such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + θ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ K.

It can be observed that I − S is
1− θ

2
-ism. In fact, in a Hilbert space, we have

‖Sx− Sy‖2 = ‖(x− y)− ((I − S)x− (I − S)y)‖2

= ‖x− y‖2 + ‖(I − S)x− (I − S)y‖2 − 2〈x− y, (I − S)x− (I − S)y〉.
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Hence, we have

〈x− y, (I − S)x− (I − S)y〉 ≥ 1− θ

2
‖(I − S)x− (I − S)y‖2.

Moudafi [54] introduced the SMVIP (46) and (47) and gave an iterative algorithm for solving this
problem. Very recently, Shehu and Ogbuisi [55] proposed an iterative algorithm for solving SMVIP
which also solves a fixed point problem for strictly pseudocontractive maps in a real Hilbert space.

The following result of Shehu and Ogbuisi [55] is a consequence of our Theorem 1.

Theorem 8. Let H1 and H2 be two real Hilbert spaces and let M1 : H1 → 2H1 and M2 : H2 → 2H2 be two
set-valued maximal monotone operators. Let U : H1 → H1 be a bounded linear operator. Let f1 : H1 → H1

be ν1-ism and f2 : H2 → H2 be ν2-ism. Let S : H1 → H1 be a θ-strictly pseudocontractive mapping and
Fix(S)

⋂
Λ 6= ∅, where Λ is a solution set of (46) and (47). Let {xn} be a sequence defined by xo ∈ H1 and

zn = (1− αn)xn,

yn = JM1
λ (I − λ f1)(zn + ηU∗(JM2

λ (I − λ f2)− I)Uzn),

xn+1 = (1− δn)yn + δnSyn,

∀n ≥ 0, ,

where λ ∈ (0, 2ν), ν = min{ν1, ν2} and η ∈
(

0,
1
L

)
with L being the spectral radius of the operator U∗U and

U∗ is the adjoint of U. Suppose {αn} ⊂ (0, 1) and {δn} ⊂ (0, 1− θ) satisfying

(i) lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞;

(ii) 0 < lim inf
n→∞

δn ≤ lim sup
n→∞

δn < 1− θ.

Then the sequence {xn} converges strongly to point in Fix(S)
⋂

Λ.

Proof. With similar arguments as in the proof of Lemma 14, we can easily show that I − λ f1 and
I − λ f2 are averaged mappings on H1 and H2 respectively. Further, in view of Lemma 3.3 in [56],
(I + ηU∗(JM2

λ (I − λ f2)− I)U) is averaged mapping on H1. Also, applying Lemma 8, the operator
JM1
λ (I − λ f1) is averaged. Therefore, the composition R is averaged, where R := JM1

λ (I − λ f1)(I +
ηU∗(JM2

λ (I − λ f2) − I)U). Thus, by definition, R = (1 − γ1)I + γ1T1 for some γ1 ∈ (0, 1) and a
nonexpansive mapping T1, where Fix(T1) = Fix(R).

Also, we note that
(1− δn)I + δnS = (1− γ2

n)I + γ2
nT2,

where γ2
n =

δn

1− θ
and T2 = I − (1− θ)(I − S).

Note that I − S is
1− θ

2
-ism. Therefore, using Lemma 1, T2 is nonexpansive. Also, it can be easily

proven that Fix(T2) = Fix(S).
Now let x̂ ∈ Λ, then we have x̂ ∈ Fix(JM1

λ (I − λ f1)) and Ux̂ ∈ Fix(JM2
λ (I − λ f2)).

It is obvious that Ux̂ ∈ Fix(JM2
λ (I − λ f2)) implies x̂ ∈ Fix(I + ηU∗(JM2

λ (I − λ f2) − I)U).
Therefore, x̂ ∈ Fix(JM1

λ (I − λ f1))
⋂

Fix(I + ηU∗(JM2
λ (I − λ f2)− I)U). Using Lemma 8, x̂ ∈ Fix(R).

Thus Λ ⊆ Fix(R).
Now let x̂ ∈ Fix(R). Using Lemma 8, x̂ ∈ Fix(JM1

λ (I − λ f1))
⋂

Fix(I + ηU∗(JM2
λ (I − λ f2)− I)U).

It follows from Lemma 3.3 in [57] that

x̂ ∈ Fix(JM1
λ (I − λ f1)) and Ux̂ ∈ Fix(JM2

λ (I − λ f2)).

Therefore, x̂ ∈ Λ. Hence Λ = Fix(R). Thus ∅ 6= Fix(S)
⋂

Λ = Fix(S)
⋂

Fix(R) = Fix(T2)
⋂

Fix(T1).
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Now taking B1 = B2 = g = 0, V = I, m = 2, γ1
n = γ1 and γ2

n =
δn

1− θ
in Theorem 1, which yields

the desired result.

4.7. Split Variational Inequality Problem (SVIP)

The SVIP [16] can be formulated as follows:

find a point x̂ ∈ C such that 〈 f1(x̂), x− x̂〉 ≥ 0, for all x ∈ C, (48)

and such that
ŷ = Ux̂ ∈ Q solves 〈 f2(ŷ), y− ŷ〉 ≥ 0, for all y ∈ Q, (49)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2 respectively
and U : H1 → H2 is a bounded linear operator and f1 : H1 → H1 and f2 : H2 → H2 are two given
operators. If we denote the solution sets of VIPs in (48) and (49) by SOL( f1, C) and SOL( f2, Q)

respectively, then the solution set of SVIP can be written as:

Φ = {x̂ ∈ SOL( f1, C) such that Ux̂ ∈ SOL( f2, Q)}. (50)

As mentioned in [54], if we choose M1 = NC and M2 = NQ in SMVIP (46) and (47), respectively,
then we recover SVIP (48,49), where NC and NQ are normal cones of closed and convex sets C and
Q respectively.

Theorem 9. LetH1 andH2 be two real Hilbert spaces and let U : H1 → H2 be a bounded linear operator. Let
f1 : H1 → H1 be ν1-ism and f2 : H2 → H2 be ν2-ism. Assume that Φ 6= ∅ and let {xn} be a sequence defined
by xo ∈ H1 and {

yn = (1− αn)xn,

xn+1 = PC(I − λ f1)(yn + ηU∗(PQ(I − λ f2)− I)Uyn),
∀n ≥ 0,

where λ ∈ (0, 2ν), ν = min{ν1, ν2} and η ∈
(

0,
1
L

)
with L being the spectral radius of the operator U∗U and

U∗ is the adjoint of U. Suppose {αn} is a real sequence in (0, 1) satisfying the conditions lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞. Then the sequence {xn} converges strongly to a point in Φ.

Proof. Put M1 = NC, M2 = NQ and S = I in Theorem 8, which yields the desired result.

Remark 8. Theorem 9 improves and extends the Censor et al.’s result ([16] Theorem 6.3), where it was assumed
that for all x̂ ∈ SOL( f1, C),

〈 f1(x), PC(I − λ f1)(x)− x̂〉 ≥ 0, ∀x ∈ H1.

We drop this assumption in our result. Furthermore, our result extends Censor et al.’s result ([16] Theorem 6.3)
from weak to strong convergence.

5. Concluding Remarks

In this article, we present a new iterative algorithm for finding a common point of fixed point sets
of nonexpansive mappings and sets of zeros of maximal monotone mappings. Further, we introduced
a new general system of variational inequalities which comprises some existing general system of
variational inequalities and it is shown that our algorithm converges strongly to a solution of this
variational inequality problem. Also, we give modification of cyclic Douglas–Rachford method to
solve convex feasibility problem in such a way that strong convergence is guaranteed. In addition,
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we combine hybrid steepest descent method, proximal point algorithm and viscosity approximation
method to obtain a common zero point of maximal monotone and inverse strongly monotone mappings.
Further, we improve and extend many results related to different split type problems like split common
null point problem, split feasibility problem, split monotone variational inclusion problem and split
variational inequality problem. Applicability of our algorithm is not limited to the problems discussed
above, it can be further used to solve many important problems, for instance, quasi variational inclusion
problem, convex minimization problem, lasso problem, equilibrium problem and many more. Since in
this paper, we have worked in a Hilbert space, it should be a natural question for the next research to
extend our result in Banach spaces.
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