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Abstract: The four most important and well-studied phenomena of mirror symmetry breaking of
molecules were analyzed for the first time in terms of available common features and regularities.
Mirror symmetry breaking of the primary origin of biological homochirality requires the involvement
of an external chiral inductor (environmental chirality). All reviewed mirror symmetry breaking
phenomena were considered from that standpoint. A concept of chiral and racemic fields was highly
helpful in this analysis. A chiral gravitational field in combination with a static magnetic field
(Earth’s environmental conditions) may be regarded as a hypothetical long-term chiral inductor.
Experimental evidences suggest a possible effect of the environmental chiral inductor as a chiral
trigger on the mirror symmetry breaking effect. Also, this effect explains a conformational transition
of the right-handed double DNA helix to the left-handed double DNA helix (B-Z DNA transition) as
possible DNA damage.

Keywords: environmental chirality; C1- and C2-symmetric catalysts; chiral field (memory); racemic
field; Viedma ripening effect; Wallach’s rule

1. Introduction

Curie [1] was convinced that “without asymmetric physical impact no asymmetric chemical
effect arises”. Modern experimental data support this criterion: asymmetric induction in asymmetric
catalysis is only implemented through the asymmetric (C1 symmetry axis) key intermediate [2].

If a substrate has two or three functional groups which can be coordinated in that intermediate,
chiral C2-symmetric catalyst loses C2 symmetry in the substrate coordination stage. Nature has chosen
such substrates (amino acids and sugars) as components of important macromolecules. However, the
only variant of configuration ratios (L–D) of amino acids and sugars has been selected from the four
possible: D–D, L–L, D–L, and L–D (Figure 1).
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Figure 1. Schematic corridor of amino acid and sugar configurations of life support processes. 

A reason for this choice has not received a generally recognized explanation up to now [3–17]. 
These references indicate a variety of scenarios for the emergence of homochirality and therefore 
origin of life [16]. Various scenarios are explained by external and internal reasons existing on the 
primary Earth. Possible scenarios of homochirality origin include Earth and exoterrestrial origins, 
mirror-symmetrical and non-mirror symmetrical forces, different ampllification mechanisms leading 
to L- or D-amino acids and sugars, and L-amino acids excess during meteorite impact. 

We believe [3,4] that a possible basis for such a ratio of configurations is the right-handed helix 
(P) conformation of important biomacromolecules formed from amino acids and monosaccharides. 
(Scheme 1). 
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Scheme 1. The triad of right-handed important biomacromolicules. 

The L–D ratio of amino acid and sugar monomer configurations may merely occur  where there 
is a right-handed helix conformation. Mutual relations of single, double and triple right-handed (P) 
helixes are also not accidental. The single helix (α-polypeptide) protects amino acids from 
racemization by hydrogen bonds between helical turns. 

Contradictory situation arises during the single helix formation from monocaccharide hexose. 
Indeed, α-(1→2)-D-mannan and β-(1→3)-D-glucan generate M- and P-helices, corresponddingly, in the 
same conditions [18]. A helical configuration of amylose relies on the crystallization conditions (Table 1). 
A possible stabilizing factor of the P-helix formation is the double helix (Table 1, items 1 and 2). 

Figure 1. Schematic corridor of amino acid and sugar configurations of life support processes.

A reason for this choice has not received a generally recognized explanation up to now [3–17].
These references indicate a variety of scenarios for the emergence of homochirality and therefore
origin of life [16]. Various scenarios are explained by external and internal reasons existing on the
primary Earth. Possible scenarios of homochirality origin include Earth and exoterrestrial origins,
mirror-symmetrical and non-mirror symmetrical forces, different ampllification mechanisms leading
to L- or D-amino acids and sugars, and L-amino acids excess during meteorite impact.

We believe [3,4] that a possible basis for such a ratio of configurations is the right-handed helix
(P) conformation of important biomacromolecules formed from amino acids and monosaccharides.
(Scheme 1).
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Scheme 1. The triad of right-handed important biomacromolicules.

The L–D ratio of amino acid and sugar monomer configurations may merely occur where there
is a right-handed helix conformation. Mutual relations of single, double and triple right-handed (P)
helixes are also not accidental. The single helix (α-polypeptide) protects amino acids from racemization
by hydrogen bonds between helical turns.

Contradictory situation arises during the single helix formation from monocaccharide hexose.
Indeed, α-(1→2)-D-mannan and β-(1→3)-D-glucan generate M- and P-helices, corresponddingly, in
the same conditions [18]. A helical configuration of amylose relies on the crystallization conditions
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(Table 1). A possible stabilizing factor of the P-helix formation is the double helix (Table 1, items 1
and 2).

Table 1. Structures of linear polysaccharide amylose as function of the solvent used for crystallization.

No Amylose Solvent Helix Reference

1 Amylose A 1 water P [19]
2 Amylose B 1 water P [20]
3 Amylose V – M [21]
4 KOH-Amylose water, KOH M [22]
5 Amylose Vpropan-2-ol propan-2-ol, water M [23]
6 Amylose water M [24]

1 Double helix.

Indeed, linear polysaccharides, viz. i-carrageenan [25] and xanthan [26], form double helices with
the P-structure as well. Schisofillan, a nonlinear polysaccharide, also gives a double P-helix [27–29].

Thus, it is not by chance that nature has chosen the double helix structure to stabilize the
right-handed conformation of DNA. In this case, the configuration error reducing factor is also
important [27]. There is directionality to a right-handed helix in triple helical structures such as in
fungi, mushrooms, and so on. For example, the simplest β-(1→3)-D-glucans, namely curdlan [27],
lentinan [30], scleroglucan [31], xylan [32], etc., with side chains [33–38] form triple P-helices with
the right-handed helical conformation. Hence, there is a triad pronounced in Scheme 1. That is why
right-handed helix structures of important biomacromolecules are representatives of the regular trend
in nature.

Since all natural processes occur in the open system, in previous work [39], we attemted to assess
the external chiral effect on the homochirality origin on the early Earth. A possible influence of an
external asymmetric inductor was analyzed for metastable (stochastic and spontaneous) reactions [39].
In this review, we continue the search for traces of the external chiral inductor, such as the chiral
gravitational field, in the most studied reactions with mirror symmetry breaking.

2. Gravity as a Chirality Inductor

Davankov [40] suggested chirality to be an indispensable feature of different levels of matter.
While evolving this idea, we [39] considered a possibility of chiral effects of various physical phenomena
on chemical reactions (electric field [41], electric field (propeller effect) [42], a combination of electric
and magnetic fields [4,43], magnetic field [4,39,44], circularly polarized light [45], plasma torch of
meteorite impact [46,47], solar irradiation [48,49], parity violation energy difference [29], and similar
effects [39]). Gravity is among such physical phenomena as asymmetric factors [39]. Basing on Barron’s
concept [50] of true and false chirality, we can assume that the mutual gravitational influence of a space
object and its satellites is a chiral factor. In the schematic diagram (Figure 2), we tried to summarize
information on mutual gravitational impact (moving in space) of Sun, Earth, Moon, and Venus. Their
mutual movements create a combination of trajectories in the form of virtual chiral helices. The image
below gives a view of the chiral gravitational environment that is probably strictly individual for
Earth (The Earth–Moon (ratio of masses 81/1) is a double planet system unlike other planets and
satellites of the Solar system, for example, Jupiter–Europe (4·104/1), Mars–Phobos (6·107/1), and so
on). A hypothesis about the formal similarity and possible effect of the Earth’s right-handed (spin)
rotation near the Moon, alongside with the right-handed Earth’s orbital motion around moving Sun
and right-handed helix symmetry of biomacromolecules, was published earlier [3,29,39,51].
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Figure 2. Schematic image of right-handed helices created by the orbital and spin rotation of moving
Sun – Earth (a, c), Earth – Moon (b), and the left-handed helix as a result of the orbital rotation of Venus
around Sun (d). Pitches (P) of the helices: PE

spin =1 day, PE
orbit =1 year, PM

spin =PM
orbit = 1 lunar

(sunderic) month, Ps
spin(N) = Ps

spin(S) =~ 38 Earth’s days (near polar caps). The rotation of Sun around
the axis tilted 82◦45’ to the plane of the Earth’s orbit occurs in the same direction as the spin rotation of
Earth (counterclockwise).

Perhaps, all spiral movments shown in Figure 2 should be considered as a manifestation of the
unified structure of the gravitational field of our Galaxy. The Milky Way Galaxy is a double snail of flat
structure (Figure 3a,b) [52–55]. A symmetry plane virtually divides the Galaxy into a mirror symmetric
left-handed snail – “bottom” (Figure 4c), and a right-handed snail – “top” (Figure 3d). Hence, the
Milky Way may be presented as a mesostructure (an inner racemate).
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Figure 4. Motions of the the solar system in the Milky Way [51].

In terms of symmetry, the Galaxy bears a similarity to inner racemate (for example, meso–tartaric
acid. It is conceivable that this mesostructure is confirmed by the anomalous rotation (counterclockwise)
of Venus in the Solar system. This movement does not contradict with the complexity of the Galaxy
structure. Indeed, the mirror symmetry plane divides “clockwise” and “counterclockwise” fields
(Mirror reflection effect or a positive–negative photoeffect.) of the galactic space (P- and M-snails).
Because the Solar system spins and moves along the right-handed trajectory [52–55] (Figure 4) in the
P-snail field, Earth and other planets move identically (clockwise) with the exception of Venus.

An example of the chiral environment’s (chiral gravitational field?) influence is found in
configurational stability (mirror symmetry breaking) of sea snail shells [56,57] (Figure 5). All collectors
of sea shells (conchiologists) evidence that the opposite left-handed structure is an extreme rarity [58].
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How does gravity affect symmetry of molecules? In contrast to the influence of the electromagnetic
field [59], the effect of gravity on chemical reactions is difficult to verify experimentally. It was previously
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believed that this effect was absent or very insignificant. Another point of view appeared possible with
the beginning of the space flight era.

3. Gravitational Field Impact on Chemical Reactions

Analyzing an open system, we have to evaluate all possible physical inductors which may affect
the system. Among the non-obvious physical factors that may affect chemical reactions is gravity. After
the discovery of gravitational waves (Gravitational waves discovery (Abbott B.P. et. al. Observation of
Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 2016. 116. 061102) suggests
the complex structure of the gravitational field.) the influence of this factor, especially in unstable
asymmetric reactions, became more obvious. A nuclear decay has a reputation of a stable process that
does not depend on external physical inductors. If an external inductor such as a gravitational field can
alter the radioactive decay rate it is bound to affect the nucleus mass. Therefore, if such effect occurs, this
phenomenon may be called a “mass resonator” or “mass resonance”. Fischbach et al. [60–62] analyzed
a 137Cs decay sample onboard the Messenger spacecraft during its mission to Mercury and 54Mn
decay data during the solar flare on December 13 2006. The goal was to show the limits of a possible
correlation between nuclear decay rates and solar activity. Such correlation was suggested not only on
the basis of the 54Mn decay during the solar flare but also by indications of annual and other periodic
variations in the decay rates of 32Si, 36Cl and 226Ra. Data from five measurements of the 137Cs count rate
over a period of approximately 5.4 years was fit to a formula which accounts for a typical exponential
decrease in the count rate over time, alongside with the addition of a theoretical solar contribution
varying with the Messinger—Sun distance [61]. These controversial data on nonexponential periodic
decay rates drew attention and gave rise to discussion [63–65].

Ivanova et al. [48] observed North–South solar asymmetry and anisotropy of cosmic rays over
solar polar caps. The measurements were taken onboard the Kosmos-480 satellite on 18 April 1972 over
a 10-h period. In particular, the flow above the south pole was an order of magnitude higher than that
above the north pole. Svirzhevsky et al. [49] examined N–S solar poles asymmetry relative to the solar
wind speed, plasma density, and some other solar parameters. Asymmetry between the north and
south solar fields was observed in the plasma density, solar radio flux, and geomagnetic indices [66].
Consequently, N–S solar asymmetry (Figure 3a) is an additional chirality trigger alongside with chirality
of the right-handed helix orbital trajectory of Earth revolving around Sun (Figure 3c). Indeed, N–S solar
asymmetric poles during the Sun’s movement form a virtual double right-handed helix (Figure 3a).
Gravitation field asymmetry throughout the entire life time of the Solar system can culminate in the
chiral biomacromolecules origin as well as in biological objects (Figure 6). Nevertheless, the question of
the noticeable effect of asymmetric gravity on symmetry of molecules remains unanswered. However,
asymmetric gravity could affect metastable chiral reactions if assume the gravitational field affects the
radioactive decay.
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4. Stirring (Helical Flux) of the Reaction Mass as a Chirality Trigger

The formation of a conglomerate (50/50% l- and d-crystals) during crystallization of NaClO3 from
a saturated aqueous solution proceeds over a short time interval. However, stirring of the NaClO3

solution (for appreciable time) leads to mirror symmetry breaking (Scheme 2). The enantiomeric
direction of crystallization during stirring was ascribed to the primary crystal as a crystallization germ
(‘secondary’ crystal nuclei) [67,68].
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solar polar caps. The measurements were taken onboard the Kosmos-480 satellite on April 18 1972 
over a 10-h period. In particular, the flow above the south pole was an order of magnitude higher 
than that above the north pole. Svirzhevsky et al. [49] examined N–S solar poles asymmetry relative 
to the solar wind speed, plasma density, and some other solar parameters. Asymmetry between the 
north and south solar fields was observed in the plasma density, solar radio flux, and geomagnetic 
indices [66]. Consequently, N–S solar asymmetry (Figure 3a) is an additional chirality trigger 
alongside with chirality of the right-handed helix orbital trajectory of Earth revolving around Sun 
(Figure 3c). Indeed, N–S solar asymmetric poles during the Sun’s movement form a virtual double 
right-handed helix (Figure 3a]. Gravitation field asymmetry throughout the entire life time of the 
Solar system can culminate in the chiral biomacromolecules origin as well as in biological objects 
(Figure 6). Nevertheless, the question of the noticeable effect of asymmetric gravity on symmetry of 
molecules remains unanswered. However, asymmetric gravity could affect metastable chiral 
reactions if assume the gravitational field affects the radioactive decay. 

4. Stirring (Helical Flux) of the Reaction Mass as a Chirality Trigger 

The formation of a conglomerate (50/50% l- and d-crystals) during crystallization of NaClO3 from 
a saturated aqueous solution proceeds over a short time interval. However, stirring of the NaClO3 
solution (for appreciable time) leads to mirror symmetry breaking (Scheme 2). The enantiomeric 
direction of crystallization during stirring was ascribed to the primary crystal as a crystallization 
germ (‘secondary’ crystal nuclei) [67,68]. 

 

H2O

H2O

+
d-NaClO3 50% l-NaClO3 50%

d-NaClO3 >90% l-NaClO3 >90%

NaClO3

stirring

Scheme 2. Influence of solution helical flux.

Similar enantiomeric and racemic conglomerate crystallization was observed in stirred and
unstirred 1,1´-binaphthyl melts [69,70]. The enantiomeric excess (ee up to 80%) in each stirred
crystallization test varied randomly as well.

Stirring of l- and d-crystals mixture of NaClO3 (50/50%) with glass beads led to 100% l- or d-crystals,
randomly, whereas stirring without glass beads left the mixture unchanged [71] (Figure 7a,c). It is
interesting to note that the “stirring time to achieve 100% ee depends on the number of glass beads and
the stirring rate” [72]. In attempt to explain NaClO3 crystallization data, Kondepudi et al. [66–70,73,74]
and other researchers [75–78] attached importance to the experimental fact of stirring. To explain
enantioselectivity of NaClO3 l- and d-crystals stirring with and without glass beads (Figure 6a,c) many
researchers [71,79–87] argued that attrition/grinding was the key factor.
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There are data that argue against the role of stirring. In boiling solutions of the racemic
mixture of NaClO3 crystals, stirring (without abrasion) did not bring mirror symmetry breaking [88]
(Figure 6b). However, the temperature gradient (120 ◦C lower layer–106 C upper layer of colution in
the reaction vessel) [88] led to the formation of spiral flows inb the oiling solution (Figure 6d) (shown
by the snail-shaped arrows). These flows could appear destroyed while stirring, which is why the
enantioenrichment did not occur (Figure 6b).

Even more obvious evidence of the effect of temperature flows of the reaction mixture on
enantioselectivity is sublimation. For example, valine, racemic amino acid, was converted via
sublimation into a conglomerate [89]. During continued heating, the crystals underwent substantial
chirality amplification (increase of initial ee). This phenomenon occurred both in the closed and in
the open system [89]. The authors observed the appearance of three sublimation regions depending
on their location in the form of rings on the conical flask walls. The most enantioselective region
corresponded to the enantioenrichment of the valine sublimate with ee 80% (the closed system) and
ee 70% (the open system). In our opinion, the intervention of the external chiral inductor in this
experiment is reasonably evident.

We believe that the rotation of the flow energy (stirring) or temperature convectional flow of the
helical structure can be a reason for the emergence of enantioselectivity. This scenario can also be
triggered by an external chiral field.

The possible existence of this field is evidenced by statistical experiments while studying the
Viedma ripening procedure (VRP). Viedma [90] discarded any explanation of VRP by the parity
violation energy difference (PVED) effect (Table 2).
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Table 2. The number of VRP experiments for NaClO3 or NaBrO3 with the initial racemic population of
l- and d-crysals and their final chiral purity [90].

Starting Racemate
in VPR

Number of VPR
Experiments

Final Chirality Purity

l-Crystals d-Crystals % of l-Crystals

NaClO3

200 160 40 79.5
240 236 4 98.3
200 102 98 51.0
100 83 17 83.0
100 49 51 49.0
100 73 27 73.0

NaBrO3

260 258 2 99.2
280 274 6 97.8
200 89 111 44.5
100 80 20 80.0
100 52 48 52.0
100 68 32 68.0

“The experiments were performed with racemic mixtures obtained spontaneously from the
same solutions and in the same competing conditions between l- and d-crystals” (“natural” or true
population) [90]. Those data support Viedma’s opinion that the handedness of chiral crystals remaining
in the solution (Table 2) is not random. As seen from Table 2, there is a predominance of l-crystals (in
some cases up to 99.5%), alongside with a few exceptions (l-crystals 49% and 44.5%). Thus, there is
quite a definite trend expressed in the predominant formation of l-crystals. According to Viedma [90]
these experimental results may be explained by the “cryptochiral environment in control”.

To our knowledge, a thorough statistical analysis of changes in left-handed or right-handed
chirality of reaction products, depending on the direction of reaction mixture stirring (clockwise
or counterclockwise), has not been undertaken (there is an opinion that the stirring direction is
not important in VRP expirements [76]). In addition, the nature and origin of this cryptochiral
environment’s effect have not been discussed [81–89,91]. About the same statistical likelihood of
random (stochastic) signs of chirality is observed even with the same rotation direction (also, stochastic
distribution of the enantiomer outcome was observed in crystallization under cooling [92]).

NaClO3 crystallization and similar dissolution–crystallizations are metastable processes [93,94].
Therefore, even a small energy of the spiral flow during mixing can affect chirality as an inductor or
trigger. It explains well the influence of product enantiopurity on the number of glass beads and the
stirring rate [72]. It resembles a search of resonance such as the action of the ultrasonic radiation field
(20 KHz) on enantiopurity of the product during threonine crystallization (5(D)→70–87(D)%ee) [95].

Indeed, Figure 7 shows that the maximal enantioenrichment of NaClO3 crystallization occurs in
the time corridor of 20–24 h of stirring at a speed of 600 rpm (rotation per minute) and with 4 g of glass
balls (data from Reference [72]). This result is likely to be a reflection of a search of resonance with
some external chiral inductor. The shaded area in this figure is the possible resonance region.

Moreover, chiral enrichment vectors are the same in time but are manifested as stochastically
(random) reactions, while enantioselectivity vectors are not the same for different enantiomers (Figure 8).
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Figure 8. Stirring of 50/50% l- and d-crystals mixture of NaClO3 and 4g of balls lead to 100% chiral
purity after 24 h (600 rpm) randomly.

The results given in Table 2 also testify to the vector of predominant “natural” enantioselectivity.
A striking case of a literally “mechanistic” embodiment of stirring in the chiral effect can

be demonstrated by the example of antracene polymerization into a chiral nanofiber structure
(Figure 9) [96].
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Figure 9. Schematic illustration of the formation of supermolecular polyantracene with left-handed
helical nanoarchitectures.

An average diameter of the rotational helix flux of the reaction solution as a result of stirring and the
supermolecular polyantracene helix cannot be directrly interdependent because of the incompatibility
of helix sizes (the ratio of the diameter of the helices is ~5·109–1 nm). Therefore, chirality of the reaction
product could appear apparently only due to an external chiral inductor as a resonator or the rotation
flux of the reaction mixture as a trigger.

Low temperature can also be a stabilization factor of chirality. Mirror symmetry breaking
occurred upon low temperature spontaneous crystallization of achiral macrocyclic imines [97]. An
absolute asymmetric synthesis was also carried out with a chiral reagent from chiral crystals with
axial chirality [98]. Crystalline 1 was melted at 120 ◦C and then gradually solidified by lowering the
temperature to 110 ◦C with vigorous stirring. Reactions (1) and (2) proceeded as ‘frozen chirality’ [98]
at a low temperature (“frozen chirality”) [92]. Low temperature monitoring data for the reaction (2)
are given in Table 3.

Table 3. Cyclopropanation of 1 using sulfur ylide.

Entry Temp./◦C Conv. of 1/% Yield of 2/% ee of 2/%

1 20 69 37 0
2 0 38 53 50
3 −20 27 65 67
4 −40 16 93 97
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Reactions (3) and (4) resulted in helical products with different signs. When analyzing the
differences in the energy of these product conformations, it was shown that small amount of
energy (~1/600 of the ambient energy) is only distinguished P- and M-helices in these deuterated
polyisocyanates [108–111]. Therefore, it is quite possible that even a weak external inductor may be
capable of affecting the chiral conformation of helical nanostructures. This assumption should be

verified with special care, for example, in the case of the P
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A possible existence of the chiral environmental inductor is also evidenced by asymmetric
reactions of achiral molecules adsorbed on the surface of metals [112–115]. Ernst rightly noted that
product’s chirality depends not only on the surface structure but also on the molecules orientation
(Figure 10) [116]. Chirality in this case can occur, apart from under the action of the chiral surface
structure, under the impact of the adsorbing molecule orientation. The environmental chiral inductor
in turn can contribute to this chiral orientation. Problematical chirality of metal surfaces suggests that
the chiral orientation is the main factor that provides enantioselectivity of the reaction of adsorbed
achiral molecules.
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5. Chiral and Racemic Field in Asymmetric Catalysis and Nonlinear Effects

Racemic compounds can also exist in solution, e.g., in ongoing reactions. The formation of racemic
intermediates of a reaction is observed in catalytic asymmetric reactions. The use of non-enantiopure
chiral auxiliaries as asymmetric catalysts sometimes causes a deviation from the proportional linearity
to ee of a catalytic reaction product (nonlinear effect NLE) in asymmetric catalysis [117] (Figure 11).
Scheme 4 shows two models for explaining nonlinear еffects: Kagan’s and Noyori’s models [118].
According to both models racemates and homochiral dimers function as real actors of the reaction
mechanism. However, both schemes do not take into account the specifics of the reaction and substrate
to predict the NLE occurance.
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Steigelmann et al. [119] observed remarkable (–)-NLE in diethylzinc addition to benzaldehyde in
the presence of (S)– and (R)–fenchols (5). Methylzinc dimeric C2-symmetrical complexes (R,R-4) and
(S,S-4) were formed in this reaction (Scheme 5).
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Scheme 6. Racemic complex formation with linear relationship at X = SMe3 or t-Bu.

The use of fenchols with X = H and X = CH3 in the reaction (5) resulted in (–)-NLE while fenchols
with X = SMe3 and X-t-Bu catalyzed this reaction with a linear relationship. Thus, the emergence or
absence of (–)-NLE in the reaction (5) depends only on the structure of ligands. Therefore, in this case,
the (–)-NLE emergence is formally defined by Kagan-Noyori models.

Chen et al. [120] discovered a substrate dependence of the nonlinear effect in diethylzinc addition
to aromatic aldehydes over chiral auxiliary 5.

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 53 

 

The use of fenchols with X = H and X = CH3 in the reaction (5) resulted in (–)-NLE while fenchols 

with X = SMe3 and X-t-Bu catalyzed this reaction with a linear relationship. Thus, the emergence or 

absence of (–)-NLE in the reaction (5) depends only on the structure of ligands. Therefore, in this case, 

the (–)-NLE emergence is formally defined by Kagan-Noyori models. 

Chen et al. [120] discovered a substrate dependence of the nonlinear effect in diethylzinc 

addition to aromatic aldehydes over chiral auxiliary 5. 

OH

N
O

Zn

O

Zn

O

N
R

R
N

O

O

*

*

R,R-6, S,S-6, R,S-6

5

 
Reactions with electron-donating substituents on the aromatic ring of aldehyde exhibited a 

greater (+)–NLE than those with electron-withdrawing substituents. These data contradict with the 

Noyori-Kagan models. The observed substrate dependence can be explained by a reaction of 

aldehydes with diastereomeric homo- and hetero-chiral dimers of 6 via different pathways. 

Dimethylzinc addition to aromatic aldehydes (6) using BINOLate–titanium complexes 7 as 

catalysts produced weak (–)-NLE [121].  

H

O

Ar

BINOL (10–20 mol%)

CH2Cl2/hexanes
+ ZnMe2 + Ti(O-i-Pr4)

H

OH

Ar *  

(6) 

Several BINOLate–titanium complexes (e.g., 7 – reaction (7)) were synthesized at a low 

temperature and characterized by crystallography X-ray crystallography. It was shown that (–)–NLE 

was only observed in stoichiometric experiments (Figure 12). Catalytic experiments replicated the 

proportional linearity of the ee product and the ee catalyst [122]. 

Ti (O-i-Pr)4

+

OH

O
R

CH2Cl2/hexanes

– HO-i-Pr
O

Ti O

Ti

OiPr

O

OiPr

OR
O

RO

iPr

iPr

OiPr
OiPr

R = Me, t-Bu (R,R-7)  

(7) 

 

 

Figure 12. and stoichiometric experimental data (Ti/ non-enantiopure BINOL ligand). 

Reactions with electron-donating substituents on the aromatic ring of aldehyde exhibited a
greater (+)–NLE than those with electron-withdrawing substituents. These data contradict with the
Noyori-Kagan models. The observed substrate dependence can be explained by a reaction of aldehydes
with diastereomeric homo- and hetero-chiral dimers of 6 via different pathways.

Dimethylzinc addition to aromatic aldehydes (6) using BINOLate–titanium complexes 7 as
catalysts produced weak (–)-NLE [121].
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(6)

Several BINOLate–titanium complexes (e.g., 7—reaction (7)) were synthesized at a low temperature
and characterized by crystallography X-ray crystallography. It was shown that (–)–NLE was only
observed in stoichiometric experiments (Figure 12). Catalytic experiments replicated the proportional
linearity of the ee product and the ee catalyst [122].
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Catalytic reactions were run with 20 mol% of (BINOLate)Ti(O-i-Pr)2 and 80 mol% of
titanium tetraisopropoxide. The stoichiometric reaction were performed using 100 mol% of
(BINOLate)Ti(O-i-Pr)2.

Such a difference between the stoichiometric and catalytic experiments is true if homochiral dimers
catalyze the reaction path to enantiomerically pure products (no NLE). The stoichiometric reaction
results in non-enantiomerically pure products. Given the observed difference the NLE formation
mechanism remains unclear. The heterochiral dimer was shown to be significantly more stable than
homochiral dimers [123]. It is safe to assume that the concentration of homochiral dimers is higher in
the stochiometric experiments than in the catalytic ones. On the basis of this ratio, we may hypothesize
a more pronounced role of homochiral dimers (C2-symmetrical) in the occurance of (–)-NLE during
the stochiometric experiments.

The assumption about the leading role of C2–symmetric homochiral dimers in the appearance
of (–)-NLE gained experimental justification in other reactions. For example, pronounced (–)-NLE
was observed in Friedel–Crafts alkylation of pyrrole with chalcones (8) catalyzed by C2-symmetric
chiral dinuclear zinc catalyst 8 [124] and in the hetero-Diels–Alder reaction of Danishefsky’s diene and
aromatic aldehydes (9) over BINOLate–Zn complex 9 [125].

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 53 

 

Catalytic reactions were run with 20 mol% of (BINOLate)Ti(O-i-Pr)2 and 80 mol% of titanium 

tetraisopropoxide. The stoichiometric reaction were performed using 100 mol% of (BINOLate)Ti(O-i-Pr)2. 

Such a difference between the stoichiometric and catalytic experiments is true if homochiral 

dimers catalyze the reaction path to enantiomerically pure products (no NLE). The stoichiometric 

reaction results in non-enantiomerically pure products. Given the observed difference the NLE 

formation mechanism remains unclear. The heterochiral dimer was shown to be significantly more 

stable than homochiral dimers [123]. It is safe to assume that the concentration of homochiral dimers 

is higher in the stochiometric experiments than in the catalytic ones. On the basis of this ratio, we 

may hypothesize a more pronounced role of homochiral dimers (C2-symmetrical) in the occurance of 

(–)-NLE during the stochiometric experiments. 

The assumption about the leading role of C2 –symmetric homochiral dimers in the appearance 

of (–)-NLE gained experimental justification in other reactions. For example, pronounced (–)-NLE 

was observed in Friedel–Crafts alkylation of pyrrole with chalcones (8) catalyzed by C2-symmetric 

chiral dinuclear zinc catalyst 8 [124] and in the hetero-Diels–Alder reaction of Danishefsky’s diene 

and aromatic aldehydes (9) over BINOLate–Zn complex 9 [125]. 

H
N

+

O

R1R2

(S,S)-8/ZnEt2 (1/2),15 mol%

THF, 20 °C, 24 h O

R1R2

NH

 

(8) 

+

O

H

1) (R)-9/ZnEt2 (10 mol%), 
toluene, –25°C

2) CF3CO2H

OMe

MTSO

O

PhO  

(9) 

OH N

PhHO

Ph
N

Ph OH

Ph

(S,S)-8

Br

OH

OH

Br

(S,S)-9  

 

Thus, the deviation from the linearity in favor of the racemic product ((–)-NLE) occurs in case 

aromatic substrates in reactions catalyzed by homochiral C2–symmetric dimeres in situ formed from 

dialkylzinc. This observation resembles catalytic reactions of aromatic substrates under the action of 

C2–symmetric chiral catalysts that occur with anomalous low ee, i.e., an almost racemic product. 

Addition of diethylzinc to trifluoromethyl ketones (aromatic) over С2-symmetric chiral auxiliaries 

(10) pertains to such reactions (Table 4) [126]. 

ZnEt2 (1/2 equiv.)

ligand (10 mol%)

CF3

O

Et

CF3HO

 

(10) 

Table 4. Results of chiral ligand 10–15 screening in the reaction (10). 

Ligand ee %  
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N N
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11 8 
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(8)
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The catalytic cycle of this reaction in the presence of asymmetric (C1) ligands 16–18 was 

suggested on the basis of a calorimetric study of kinetics [133]. The decrease in enantioselectivity in 

the reaction (11) over C2-symmetric chiral auxiliaries can be explained on the grounds of a similar 

catalytic cycle (Scheme 7) [134]. 
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It can be seen that all complexes with C2-symmetric ligands in the reaction (10) lead to
racemate-like products.

Addition of diethylzinc to aromatic aldehydes (11) in the presence of chiral auxiliaries manifests
other interesting features: differences in enantioselectivity of C2– and C1-symmetric chiral auxiliaries
of similar structures are sometimes greater than an order of magnitude (Table 5).
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Table 5. Results of chiral ligand 16–23 screening in the reaction (11).

L ee % Config Product Ref.

16 97 R [127]
17 100 R [128]
18 99 R [129]
19 8 S [130]
21 26 S [130]
20 8 R [131]
22 20 R [130]
23 4 S [132]
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The catalytic cycle of this reaction in the presence of asymmetric (C1) ligands 16–18 was 

suggested on the basis of a calorimetric study of kinetics [133]. The decrease in enantioselectivity in 

the reaction (11) over C2-symmetric chiral auxiliaries can be explained on the grounds of a similar 

catalytic cycle (Scheme 7) [134]. 
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Key intermediate A in this scheme is also C2-symmetric. Both intermediate C and B are racemic
dimers. A possible π→π* conjugation (shown by the arrow in intermediate C) reduces the energy
barrier and facilitates this reaction path. Therefore, the reaction (11), in accordance with the mechanism,
can proceed with the formation of a product of low optical purity, in accordance to the experiment.

The deviation from the linearity to a racemic product ((–)-NLE) was observed not only in the
reactions of dialkylzinc addition to aromatic substrates catalyzed by homochiral dimers on the basis of
zinc. Remarkable (–)-NLEs were observed in reactions (12) and (13) [135,136] and similar reactions [137]
of aromatic substrates over C2-symmetric chiral catalysts:

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 53 

 

OZnEt

Ph Et
*

Zn Et
N

N*

PhCHO
+

Et2Zn

A

N
Zn

O
Zn

EtN

*

EtH

Ph

Et

N
Zn

O
Zn

EtN*

EtH

Ph

Et

N
Zn

O

EtN

*

ZnEt2 Ph

N
Zn

O

EtN*

ZnEt2 Ph

C2 –

N

N* =  19, 20

C B

 

Scheme 7. Possible catalytic cycle of the reaction (11) in the presence of C2-symmetric ligands 19, 20. 

Key intermediate A in this scheme is also C2-symmetric. Both intermediate C and B are racemic 

dimers. A possible π→π* conjugation (shown by the arrow in intermediate C) reduces the energy 

barrier and facilitates this reaction path. Therefore, the reaction (11), in accordance with the 

mechanism, can proceed with the formation of a product of low optical purity, in accordance to the 

experiment. 

The deviation from the linearity to a racemic product ((–)-NLE) was observed not only in the 

reactions of dialkylzinc addition to aromatic substrates catalyzed by homochiral dimers on the basis 

of zinc. Remarkable (–)-NLEs were observed in reactions (12) and (13) [135,136] and similar reactions 

[137] of aromatic substrates over C2-symmetric chiral catalysts: 

O

Ph H
+

O

NC OEt

24 (5 mol%)

i-PrOH/CHCl3

O

Ph CN

OEt

O

*

N

N

O

O
Ti

t-Bu

t-Bu

t-Bu

N

N

O

O
Ti

t-Bu

t-Bu

t-Bu

t-Bu t-Bu

O
O

24  

(12) 

O

Ph H
+

[Cr(salen)](10 mol%)

1. Me3SiCl, Mn, (25)
2. H+

Ph

Br
OH

t-Bu

t-Bu

N N

t-Bu

t-Bu

HOOH

N

N

OH

OH
salen

N

Cr(II)

N

O

O

N

Cr(II)

N

O

O

[Mn]

25  

(13) 

Thus, all reactions with (–)-NLE occur on the basis of aromatic substrates under the action of C2-

symmetric chiral complexes. A similar effect was mentioned above for the reactions over in situ 

formed catalysts with the dialkylzinc participation. The deviation from the linearity with the 

formation of the low ee product in asymmetric catalytic reactions occurs where there is an abnormally 

low ee product in the presence of C2-symmetric chiral complexes as compared to C1 complexes of 

similar structure [2]. 

Noticeable distinctions between enantioselectivities of identical catalysts with ligands having a 

similar structure but different symmetry (C2-21,26,27 and C1-28) were observed in reactions (14) and 

(15) [138–141] (Scheme 8) where aromatic prochiral compounds were used as substrates. 

 

(12)

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 53 

 

OZnEt

Ph Et
*

Zn Et
N

N*

PhCHO
+

Et2Zn

A

N
Zn

O
Zn

EtN

*

EtH

Ph

Et

N
Zn

O
Zn

EtN*

EtH

Ph

Et

N
Zn

O

EtN

*

ZnEt2 Ph

N
Zn

O

EtN*

ZnEt2 Ph

C2 –

N

N* =  19, 20

C B

 

Scheme 7. Possible catalytic cycle of the reaction (11) in the presence of C2-symmetric ligands 19, 20. 

Key intermediate A in this scheme is also C2-symmetric. Both intermediate C and B are racemic 

dimers. A possible π→π* conjugation (shown by the arrow in intermediate C) reduces the energy 

barrier and facilitates this reaction path. Therefore, the reaction (11), in accordance with the 

mechanism, can proceed with the formation of a product of low optical purity, in accordance to the 

experiment. 

The deviation from the linearity to a racemic product ((–)-NLE) was observed not only in the 

reactions of dialkylzinc addition to aromatic substrates catalyzed by homochiral dimers on the basis 

of zinc. Remarkable (–)-NLEs were observed in reactions (12) and (13) [135,136] and similar reactions 

[137] of aromatic substrates over C2-symmetric chiral catalysts: 

O

Ph H
+

O

NC OEt

24 (5 mol%)

i-PrOH/CHCl3

O

Ph CN

OEt

O

*

N

N

O

O
Ti

t-Bu

t-Bu

t-Bu

N

N

O

O
Ti

t-Bu

t-Bu

t-Bu

t-Bu t-Bu

O
O

24  

(12) 

O

Ph H
+

[Cr(salen)](10 mol%)

1. Me3SiCl, Mn, (25)
2. H+

Ph

Br
OH

t-Bu

t-Bu

N N

t-Bu

t-Bu

HOOH

N

N

OH

OH
salen

N

Cr(II)

N

O

O

N

Cr(II)

N

O

O

[Mn]

25  

(13) 

Thus, all reactions with (–)-NLE occur on the basis of aromatic substrates under the action of C2-

symmetric chiral complexes. A similar effect was mentioned above for the reactions over in situ 

formed catalysts with the dialkylzinc participation. The deviation from the linearity with the 

formation of the low ee product in asymmetric catalytic reactions occurs where there is an abnormally 

low ee product in the presence of C2-symmetric chiral complexes as compared to C1 complexes of 

similar structure [2]. 

Noticeable distinctions between enantioselectivities of identical catalysts with ligands having a 

similar structure but different symmetry (C2-21,26,27 and C1-28) were observed in reactions (14) and 

(15) [138–141] (Scheme 8) where aromatic prochiral compounds were used as substrates. 

 

(13)

Thus, all reactions with (–)-NLE occur on the basis of aromatic substrates under the action of
C2-symmetric chiral complexes. A similar effect was mentioned above for the reactions over in situ
formed catalysts with the dialkylzinc participation. The deviation from the linearity with the formation
of the low ee product in asymmetric catalytic reactions occurs where there is an abnormally low ee
product in the presence of C2-symmetric chiral complexes as compared to C1 complexes of similar
structure [2].

Noticeable distinctions between enantioselectivities of identical catalysts with ligands having a
similar structure but different symmetry (C2-21,26,27 and C1-28) were observed in reactions (14) and
(15) [138–141] (Scheme 8) where aromatic prochiral compounds were used as substrates.



Symmetry 2019, 11, 649 19 of 56

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 53 

 

Noticeable distinctions between enantioselectivities of identical catalysts with ligands having a 
similar structure but different symmetry (C2-21,26,27 and C1-28) were observed in reactions (14) and 
(15) [138–141] (Scheme 8) where aromatic prochiral compounds were used as substrates. 

H

O

Ar
BINOL (10–20 mol%)
CH2Cl2/hexanes

+ ZnMe2 + Ti(O-i-Pr4)
H

OH

Ar *  
(14) 

L= 

NH2H2N  
NH2

Ph

H2N

Ph

 NHRH2N  

 26 C2 21 C2 27, 28 

 ee = 0% (C2) ee = 17% (C2) R = H, ee = 12% (C2) 
R = Ts, ee = 97% (C1) 

CH2Cl2 / H2O, 23°C
29, AAL, Phl(OAc)2

OH OH

+

O

 
(15) 

NN

OO
Mg

Cl
t-Bu

t-Bu

t-Bu

t-Bu  

AAL ee (%) 

KBr >99 (S) 

KCl <2 (S) 

29   

Mn
OO

N N

*

29
 

Mn
OO

N N

*

Cl

Cl Cl-

C2

+

 

Mn
OO

N N

*

Cl

Br Br-

C1

 30 31 

Scheme 8. Dependence of the reaction (14) and (15) enantioselectivity upon C1 and C2 symmetry of 
the ligand 21, 26–29. 

Thus, simple aromatic substrates (acetophenone, etc.) exhibit similar behavior with respect to C2 
or C2 inductor (catalysts). These monofunctional substrates which coordinate with a catalyst by the 
reacting group (single–point coordination) only receive stereospecific information directly from the 
asymmetric catalyst. A racemic field formed by the π→π* coordination of aromatic substrates 
(Scheme 7) can induce a decrease in enantioselectivity. A stage of intermediate complexing with C2-
symmetric ligand may be responsible for the product ee reduction. This mechanism, perhaps, is 
similar to the mechanism of the (–)-NLE occurrence established for aromatic substrates. 

Since asymmetric induction occurs at the catalyst–substrate stage, symmetry of this intermediate 
determines enantioselectivity. If the substrate has two or three functional groups, the chiral C2-
symmetric catalyst loses C2 symmetry at the stage of coordination with such substrate. Indeed, 
hydrogenation of amino acid precursors on C2-symmetric chiral complexes (three–point 
coordination) involves the formation of the C1 (asymmetric) intermediate [2]. 

All asymmetric reactions on chiral metal complexes as catalysts support this concept [2]. The 
experimental data are entirely consistent with Curie–Pasteur’s doctrine: only asymmetric factors are 
responsible for products with asymmetric carbon atoms [1]. 

A similar situation is observed in asymmetric reactions over chiral organocatalysts. A typical 
example of such reactions is two-component reactions such as aldol reactions of acetone with α-
ketoesters, reactions of cyclohexanone derivatives and β-nitrostyrenes (Michael reactions), nitroaldol 
(Henry) reactions [39,142–148], etc. Two plausible transition states TS-R and TS-S (Figure 13) reflect 
the structure and bonds of the key intermediate of the reaction (16) over C2 organocatalyst 32 [149]. 
As seen from the figure, each of the possible transition states (key intermediates) do already not have 

Scheme 8. Dependence of the reaction (14) and (15) enantioselectivity upon C1 and C2 symmetry of the
ligand 21, 26–29.

Thus, simple aromatic substrates (acetophenone, etc.) exhibit similar behavior with respect to
C2 or C2 inductor (catalysts). These monofunctional substrates which coordinate with a catalyst by
the reacting group (single–point coordination) only receive stereospecific information directly from
the asymmetric catalyst. A racemic field formed by the π→π* coordination of aromatic substrates
(Scheme 7) can induce a decrease in enantioselectivity. A stage of intermediate complexing with
C2-symmetric ligand may be responsible for the product ee reduction. This mechanism, perhaps, is
similar to the mechanism of the (–)-NLE occurrence established for aromatic substrates.

Since asymmetric induction occurs at the catalyst–substrate stage, symmetry of this intermediate
determines enantioselectivity. If the substrate has two or three functional groups, the chiral
C2-symmetric catalyst loses C2 symmetry at the stage of coordination with such substrate. Indeed,
hydrogenation of amino acid precursors on C2-symmetric chiral complexes (three–point coordination)
involves the formation of the C1 (asymmetric) intermediate [2].

All asymmetric reactions on chiral metal complexes as catalysts support this concept [2]. The
experimental data are entirely consistent with Curie–Pasteur’s doctrine: only asymmetric factors are
responsible for products with asymmetric carbon atoms [1].

A similar situation is observed in asymmetric reactions over chiral organocatalysts. A typical
example of such reactions is two-component reactions such as aldol reactions of acetone with
α-ketoesters, reactions of cyclohexanone derivatives and β-nitrostyrenes (Michael reactions), nitroaldol
(Henry) reactions [39,142–148], etc. Two plausible transition states TS-R and TS-S (Figure 13) reflect
the structure and bonds of the key intermediate of the reaction (16) over C2 organocatalyst 32 [149]. As
seen from the figure, each of the possible transition states (key intermediates) do already not have
C2 symmetry like the basiсorganocatalyst. These key intermediates are asymmetric structures in the
reaction (16).
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Figure 14 shows two possible favoured and two disfavoured intermediates which are different
from the viewpoint of an approach of the reagents to C2 33 (a front or rear approach). Both favoured-1
and favoured-2 intermediates, alongside with those disfavoured-1 and disfavoured-2, are formed as a
result of the reactants coordination with different side nitrogen atoms of C2- symmetrical 33. Therefore,



Symmetry 2019, 11, 649 21 of 56

they are similar in terms of the structure and symmetry of both 1 and 2 favoured or disfavoured 1 and
2 key intermediates (C2 symmetry of 33 and C1 symmetry of key intermediates).
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A similar loss of C2 symmetry of an organocatalyst was observed at the key intermediate stage
in the aldol reaction (18) of β-carbonyl acids with trifluoroacetalaldehyde over the C2-symmetric
bisoxazoline catalyst [151] and analogou reactions [151–156].

Nonetheless, the C2 symmetry loss by the key intermediate does not guarantee high
enantioselectivity. An example is a Henry two-component reaction catalyzed by Cu(OAc)2 complexes
with C2 ligands 34–36 and 37–39 (Table 6) [157]. Supposedly, the proposed structure of key intermediate
disfavoured and favoured mechanisms of the reaction (19) on complexes with 35 (34,36) only
corresponds to high enantioselectivity (Scheme 9).
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Table 6. Henry reaction of p-nitrobenzaldehyde with nitromethane in the presence of different ligands.

Ligand Product ee%

34
35
36
37
38
39

69
71
67
0
2
0
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34 R1 = Et, R = Bn
35 R1 = Et, R = Ph

36 R1 = Me, R = iPr
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37 X = N, R = H
38 X = N, R = Ph
39 X = C, R = iPr
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Scheme 9. Key intermediate strctures of reaction (19).

Symmetry 2019, 11, x FOR PEER REVIEW 20 of 53 

 

O
H

OH

F3C OR

+
O

R
'

O

OH

O

N N

O

PhPh

chiral bisoxaziline 
as hydrogen-bond 
acceptor catalyst (5 mol%)

Me Me

N

OO

N

CF3

O

O H

OH

HO
H

R
CO2

ROH

O

R

OH

CF3

H

up to 98%, 95% ee

 

(18) 

+

L*, Cu(OAc)2,
MeOH, 25°CCHO

O2N

CH3NO2

O2N

OH

NO2
(S)

 

(19) 

Table 6. Henry reaction of p-nitrobenzaldehyde with nitromethane in the presence of different 

ligands. 

Ligand 
Product 

ee% 

 

34 

35 

36 

37 

38 

39 

69 

71 

67 

0 

2 

0 

O

N N

O

RR

R1 R1

 
 34 R1 = Et, R = Bn 

 35 R1 = Et, R = Ph 

 36 R1 = Me, R = iPr 

O

N N

O
X R

R

R

R

 
 37 X = N, R = H 

 38 X = N, R = Ph 

 39 X = C, R = iPr 

O

N
N

O

Ph

Ph

Cu

AcO
O

R

H

O
N

H

HO

OH

R
NO2

(R)

O

N
N

O

Ph

Ph

Cu

AcO
O

H

R

O
N

H

HO

OH

R
NO2

(S)

Disfavoured Favoured

N
H

HO

OH

R
NO2

(R)

OH

R
NO2

(S)

"Disfavoured" "Favoured"

O

N N

O

Ph

Ph

N

AcO O R

H

O

Cu

N
H

HO

O

N N

O

Ph

Ph

N

AcO O H

R

O

Cu



 

(18)



Symmetry 2019, 11, 649 23 of 56

Symmetry 2019, 11, x FOR PEER REVIEW 20 of 53 

 

O
H

OH

F3C OR

+
O

R
'

O

OH

O

N N

O

PhPh

chiral bisoxaziline 
as hydrogen-bond 
acceptor catalyst (5 mol%)

Me Me

N

OO

N

CF3

O

O H

OH

HO
H

R
CO2

ROH

O

R

OH

CF3

H

up to 98%, 95% ee

 

(18) 

+

L*, Cu(OAc)2,
MeOH, 25°CCHO

O2N

CH3NO2

O2N

OH

NO2
(S)

 

(19) 

Table 6. Henry reaction of p-nitrobenzaldehyde with nitromethane in the presence of different 

ligands. 

Ligand 
Product 

ee% 

 

34 

35 

36 

37 

38 

39 

69 

71 

67 

0 

2 

0 

O

N N

O

RR

R1 R1

 
 34 R1 = Et, R = Bn 

 35 R1 = Et, R = Ph 

 36 R1 = Me, R = iPr 

O

N N

O
X R

R

R

R

 
 37 X = N, R = H 

 38 X = N, R = Ph 

 39 X = C, R = iPr 

O

N
N

O

Ph

Ph

Cu

AcO
O

R

H

O
N

H

HO

OH

R
NO2

(R)

O

N
N

O

Ph

Ph

Cu

AcO
O

H

R

O
N

H

HO

OH

R
NO2

(S)

Disfavoured Favoured

N
H

HO

OH

R
NO2

(R)

OH

R
NO2

(S)

"Disfavoured" "Favoured"

O

N N

O

Ph

Ph

N

AcO O R

H

O

Cu

N
H

HO

O

N N

O

Ph

Ph

N

AcO O H

R

O

Cu



 

(19)

Favoured and disfavoured routes of the reaction pathway are equally likely (low enantioselectivity)
in the caseof the reaction (19) on Cu(OAc)2/37 (38,39). Therefore, this mechanism is in agreement with
the experiment.

Thus, all the above-mentioned reactions of asymmetric catalysis proceed by the standard scheme:
asymmetric catalyst (an asymmetry inductor) – asymmetric product. C2 chiral catalysts (a C2 chiral
metallocomplex and a C2 chiral organocatalyst) lose C2 symmetry of the key intermediate that
determines asymmetric induction. Therefore, asymmetric catalytic reactions run in the asymmetric
field and do not occur in the chiral field (asymmetry-(C1), chirality-(C1, C2, Cn, D2).

6. Spontaneous Chiral Ordering of Achiral Molecules in Liquid Crystals

A common feature of achiral molecules involved in chiral ordering is the ability to bind to each
other due to π – π* staking, hydrogen bonds or hydrophobic interactions. Linked by those bonds, they
shift relative to each other around the central axis on the right or left screw. This synchronization of
achiral molecules in chiral superstructures occurs in smectic (lamellar) or nematic liquid crystal (LC)
phases. Numerous studies [158–165] of these nanostructures with a “banana”, “hat” or crown–like
shape show that a ratio of layers with chiral superstructures of different signs in the LC phase is
50:50% or so. It is viewed in photomicrographs as chiral domains (dark/bright spots of equal areas)
between slightly uncrossed polarizers. Therefore, the definition of such spontaneous crystallization of
achiral molecules as “mirror symmetry breaking” [158–165] can only refer to one individual domain or
monolayer with superstructures of similar chirality. Since the ratio of domains of different signs is
close to racemic, this definition is not correct for crystallization of the entire mass of molecules.

Thus, the formation of chiral superstructures from achiral molecules in LC and distribution of
these chiral structures of different signs in the LC matrix is strikingly similar to the formation of chiral
crystals from achiral inorganic compounds/salt molecules (Section 4). For example, a similar pattern
of the equal ratio (l/d = 1:1) of chiral inorganic crystals is observed in deposits of quartz [166–169]
(Figure 15) as well as in the formation of a conglomerate (a mixture of l- and d–crystals) during NaClO3

crystallization (Scheme 2).
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Figure 15. Natural quartz (a) left-handed crystals versus (b) right-handed ones [167].

Powdering of natural chiral quartz crystals blends left- and right-handed domains [166–169].
Chiral surfaces of centric calcite (CaCO3,) were observed as well [170–172]. Asymmetric crystals of
gypsum (CaSO4·2H2O) were also found [173] and used for asymmetric adsorption [174]. It is believed
that natural processes of nucleation and growth of these crystals last for a very long time under the
influence of the chiral environment.
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Crystallization of achiral molecules in LC and crystallization of quartz and other minerals and
salts (see Scheme 8) in nature are likely to proceed according to the laws same as of chirality occurrence.
This regularity was also confirmed in the conditions of a standard organic reaction (20) [175].
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Achiral molecules crystallize in the LC matrix with an approximately equal area of domains
of chiral superstructures with different chirality signs. It is difficult to measure the exact ratio of
superstructures with different signs of chirality using a polarizing microscope technique (domains) or
scanning electron microscopy (twisted ribbons). Therefore, the (1:1) ratio (a racemic mixture) can be
assumed valid on the grounds of many publications [158–165].

Spontaneous formation of chiral nanostructures from achiral molecules in the LC matrix has
a high inertia depending on heating or cooling to reach a certain temperature. For example, a
paradoxal situation may arise when chiral domains of different chirality signs can be formed at the
same temperature depending on its achievement by heating or cooling (Figures 16 and 17) [57,176].
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Similar effects were observed in the ongoing formation of other chiral superstructures from
achiral molecules [57,177–180]. The dependence of chiral nanostructures from various mesophase
temperatures of LC (maximal order) suggests that this regularity is of general nature. The temperature
inertia of the formation of chiral superstructures is comparable with the time inertia of crystallization
of calcite, gypsum or quartz in nature.

Mineo et al. [57] suggested that chiral superstructures on the basis of “achiral porphyrin–based
molecules 42 can be induced and controlled by means of a weak asymmetric thermal gradient” or
“asymmetric heat flow.” It can be considered as evidence of “very weak forces having an important
role in natural chiral selective processes” [57]. May it be regarded as a manifestation of resonance with
the external chiral field?

Another feature of the reaction of the chiral superstructure formation from achiral molecules is
a dependence of the conformation of P or M helical structures from irradiation of different energy.

The ratio of P

1 
 

 M enantiomeres was found to be reproducible depending on irradiation [158,162]
(Figure 18).
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Figure 18. (a) Photoresponsive azobenzene 43. (b) CD spectra for (+) and (–) domains of sample
43 [162].

If enantiomers are an energy equivalent, the ratio of enantiomers should be random and
non-reproducible. The reproducibility of M→P ratio UV and the opposite P→M sequence after Vis
irradiation (Figure 18) could result from the action of the external chiral inductor as a chiral trigger.

Another strange feature of crystallization of achiral molecules in the LC phase was found
during crystallization of pyridinum–tailored antracene 44 [181] in the presence of iodine and other
pseudo-halogen anions with a similar anionic radius.
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A specific role of the anionic radius to form chiral supromolecular assemblies from achiral molecule
44 testifies to the influence of the helix pitch size in the ongoing formation of a helix structure. An
external chiral inductor may also be responsible for this experimental data. It is difficult to explain a
similar sensitivity of the organic helical framework to the metallic core radius by internal reasons [182].

An extremely interesting effect was observed in a supamolecular self-assembly of achiral
tetraphenylethylene 45 (Figures 19 and 20) [183] due to solvent evaporation. (A) R = C7, (B) R
= C8, (C) R = C9, (D) R = C10, M, P, M, P, correspondingly.
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Hence, 45 with the even number of carbon atoms in alkyl chains was produced by right-handed
superstructures, whereas the odd number led to the left-handed supramolecular structure (Figure 20).
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No physical rationale for this phenomenon has been discussed. We believe that a possible explanation
for this effect may be the influence of an external chiral inductor as a resonator.

The sensitivity of this resonator to the structure of achiral molecules could be illustrated by the
following examples (Figures 21–24).

Symmetry 2019, 11, x FOR PEER REVIEW 25 of 53 

 

No physical rationale for this phenomenon has been discussed. We believe that a possible explanation 
for this effect may be the influence of an external chiral inductor as a resonator. 

 
Figure 21. Graphical illustration of the 45 self-assembly effect [183]. 

The sensitivity of this resonator to the structure of achiral molecules could be illustrated by the 
following examples (Figures 22–25). 

N N

O
O O

OO
(O)RR(O) R = alkyl  

46 

 

R = methyl 

 

Figure 22. Schematic illustration of the chiral superstructure on the basis of 46 [148,164]. Figure 21. Schematic illustration of the chiral superstructure on the basis of 46 [148,164].



Symmetry 2019, 11, 649 29 of 56
Symmetry 2019, 11, x FOR PEER REVIEW 26 of 53 

 

O

N
N

O

O

H2n+1CnO O

O

n = 6

O

O

O

47 

  

 
Figure 23. Schematic representation of the chiral superstructure on the basis of 47 [183]. 

 
Figure 24. Schematic model of the chiral superstructure based on propeller-shaped molecule 48 [184,185]. 

RO OR

OR

OR

RO

RO

R = O(CH)5CH3

O(CH)5CH3  
49 

Figure 22. Schematic representation of the chiral superstructure on the basis of 47 [183].

Symmetry 2019, 11, x FOR PEER REVIEW 26 of 53 

 

O

N
N

O

O

H2n+1CnO O

O

n = 6

O

O

O

47 

  

 
Figure 23. Schematic representation of the chiral superstructure on the basis of 47 [183]. 

 
Figure 24. Schematic model of the chiral superstructure based on propeller-shaped molecule 48 [184,185]. 

RO OR

OR

OR

RO

RO

R = O(CH)5CH3

O(CH)5CH3  
49 

Figure 23. Schematic model of the chiral superstructure based on propeller-shaped molecule
48 [184,185].



Symmetry 2019, 11, 649 30 of 56

Symmetry 2019, 11, x FOR PEER REVIEW 26 of 53 

 

O

N
N

O

O

H2n+1CnO O

O

n = 6

O

O

O

47 

  

 
Figure 23. Schematic representation of the chiral superstructure on the basis of 47 [183]. 

 
Figure 24. Schematic model of the chiral superstructure based on propeller-shaped molecule 48 [184,185]. 

RO OR

OR

OR

RO

RO

R = O(CH)5CH3

O(CH)5CH3  
49 

Symmetry 2019, 11, x FOR PEER REVIEW 27 of 53 

 

 
Figure 25. Schematic illustration of the chiral superstructure on the basis of crown-shaped molecule 
49 [186,187]. 

As can be seen, symmetry (C2, C4) of corresponding chiral superstructures coincides with 
symmetry of the underlying achiral molecules (46,45,48). Crown-shaped molecule 49 with 12 
peripheral alkyl chains (C3) form single columns with 12-fold triple helices (C3) (Figure 25) [186,187]. 
Asymmetric molecule 47 (C1 symmetry axis) with the center of gravity in the side chain forms a helix 
from the linear sequence of these molecules (tail to head) with C1 symmetry (Figure 23). 

Thus, the centers of gravity (symmetry) of achiral molecules and relevant chiral superstructures 
are similar. This coincidence could be possible evidence of the gravitational influence in the 
construction of chiral ensembles from achiral molecules. 

Not necessarily organic compounds or salts solely participate in the formation of chiral 
superstructures. Singh et al. [188] observed that cubic nanocrystals (~13.4 nm) of magnetite Fe3O4 as 
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Figure 24. Schematic illustration of the chiral superstructure on the basis of crown-shaped molecule
49 [186,187].

As can be seen, symmetry (C2, C4) of corresponding chiral superstructures coincides with symmetry
of the underlying achiral molecules (46,45,48). Crown-shaped molecule 49 with 12 peripheral alkyl
chains (C3) form single columns with 12-fold triple helices (C3) (Figure 24) [186,187]. Asymmetric
molecule 47 (C1 symmetry axis) with the center of gravity in the side chain forms a helix from the
linear sequence of these molecules (tail to head) with C1 symmetry (Figure 22).

Thus, the centers of gravity (symmetry) of achiral molecules and relevant chiral superstructures are
similar. This coincidence could be possible evidence of the gravitational influence in the construction
of chiral ensembles from achiral molecules.

Not necessarily organic compounds or salts solely participate in the formation of chiral
superstructures. Singh et al. [188] observed that cubic nanocrystals (~13.4 nm) of magnetite Fe3O4

as dipoles self-assembled into arrays of helical superstructures. Fe3O4 dipoles are oriented along the
applied magnetic field (H = 700g). The chains of single magnetite particles aggregated as the solvent
evaporated (Figure 25). Examples of self-assembly of one-dimensional Fe3O4 nanocube belts can be
seen in Figure 26.
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28c,d also shows chirality inversion cases in some single experiments (denoted by arrows). 
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Figure 28. (a) Self-assembly of helical Fe3O4 nanocrystal superstructures. (b) SEM image of the right–
handed array of double helices. (B) Array of right-handed triple helices and the end of a triple helix 
(inset). (c) SEM image of self-healing (handedness inversion or damage). The arrows indicate chirality 
inversion sites. (d) SEM Image of left-handed double or triple helices (Fe3O4Ag) with sites of helices 
with the sign reversal [188]. 

A comparison to NaClO3 crystallization with stirring implies a presence of a hypothetical chiral 
inductor. Hence, the magnetic field alone cannot be a chiral inductor in the formation of the chiral 
order of magnetite crystals. It is believed that a combination of the magnetic field only with another 
field [189] (electrical or gravitational) can be an asymmetric inductor. 

A number of nanotubes were synthesized (BN, WS2, MoS2, NbSe2, NiCl2, SiO2, TiO2, MoO3, and 
V2O5) [189]. Celik-Aktas et al. [190] studing boron nitride nanotubes by transmission electron 

Figure 26. Of Fe3O4 nanoparticle chiral arrays. (a) One-dimensional belt folding into a left-handed
helix. (b) Transmission electron microscopy (TEM) image of an individual left-handed helix. (c)
Scanning electron microscopy (SEM) of single-stranded helices. (d) SEM image of (left-handed) double
helix [188].

The authors concluded that “there was no intrinsic preference for helices of either handedness;
each experiment began with the nucleation of either right- or left-handed helices with equal probability”.
At the same time, chiral arrays during a single experiment retained the identical handedness. Double or
triple helices were observed during some experiments (Figure 27a,b). Figure 27c,d also shows chirality
inversion cases in some single experiments (denoted by arrows). Consequently, chirality was preserved
during the experiments, except for some cases of partial inversion which reduced enantioselectivity.
Whereas crystallization of chiral superstructures from achiral molecules in LC can be compared with
NaClO3 crystallization without stirring (Scheme 2 top), chiral arrays of Fe3O4 nanoparticles in the
magnetic field can be compared with NaClO3 crystallization with stirring (Scheme 2, bottom). Indeed,
the images (Figures 26 and 27a) show domains with homochiral superstructures (single handedness).
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inductor. Hence, the magnetic field alone cannot be a chiral inductor in the formation of the chiral 
order of magnetite crystals. It is believed that a combination of the magnetic field only with another 
field [189] (electrical or gravitational) can be an asymmetric inductor. 

A number of nanotubes were synthesized (BN, WS2, MoS2, NbSe2, NiCl2, SiO2, TiO2, MoO3, and 
V2O5) [189]. Celik-Aktas et al. [190] studing boron nitride nanotubes by transmission electron 

Figure 27. (a) Self-assembly of helical Fe3O4 nanocrystal superstructures. (b) SEM image of the
right–handed array of double helices. (B) Array of right-handed triple helices and the end of a triple
helix (inset). (c) SEM image of self-healing (handedness inversion or damage). The arrows indicate
chirality inversion sites. (d) SEM Image of left-handed double or triple helices (Fe3O4Ag) with sites of
helices with the sign reversal [188].
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A comparison to NaClO3 crystallization with stirring implies a presence of a hypothetical chiral
inductor. Hence, the magnetic field alone cannot be a chiral inductor in the formation of the chiral
order of magnetite crystals. It is believed that a combination of the magnetic field only with another
field [189] (electrical or gravitational) can be an asymmetric inductor.

A number of nanotubes were synthesized (BN, WS2, MoS2, NbSe2, NiCl2, SiO2, TiO2, MoO3,
and V2O5) [189]. Celik-Aktas et al. [190] studing boron nitride nanotubes by transmission electron
microscopy (TEM), observed “regular, zigzag, dark and bright spots on the side walls of the nanotubes.”

These spots moved in a regular fashion around the tube. Basing on this evidence,
the authors [191,192] suggested a double-helix structural model (Figure 28) “as a result of a stronger
wall–wall interaction associated with the ionic bonding in boron nitride”. However, stabilization of the
right-handed helix structure (Figure 28) is opposite to that of the left-handed. It is possible that the
preference of right–handed helix symmetry can be explained as the result of an external chiral inductor
(chiral environment).
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Figure 28. TEM image of BN nanotubes. (a) “Dark contrast regions in the middle of the tube and on
the side walls are visible.” (b) Schematic helix structure of BN nanotubes. (c) Atomic structure of BN
hexagonal helices. (d) BN nanotubes (the change point is indicated by an arrow) [191–193].

The sharp turning point of the BN nanotube at an angle of about 30–40◦ (Figure 28) [190–193] is
extremely similar to the inversion point of the chirality sign of the magnetite nanocrystals self-assembly
(Figure 27c,d). Therefore, it can be assumed that this BN point is the turning point of the transition of
the right–handed helix to the left-handed one (or the contrary).

7. Chiral Field (Chiral Memory) and Racemic Field

An example of the chiral field existence can be an enantioselective reaction (21) of prochiral
substrate hydrogenation on an achiral catalyst in the cholesteric liquid crystal (ChLC) [189].

Symmetry 2019, 11, x FOR PEER REVIEW 29 of 53 

 

 
   

(a) (b) (c) (d) 

Figure 29. TEM image of BN nanotubes. (a) “Dark contrast regions in the middle of the tube and on 

the side walls are visible.” (b) Schematic helix structure of BN nanotubes. (c) Atomic structure of BN 

hexagonal helices. (d) BN nanotubes (the change point is indicated by an arrow) [191–193].  

The sharp turning point of the BN nanotube at an angle of about 30–40° (Figure 29) [190–193] is 

extremely similar to the inversion point of the chirality sign of the magnetite nanocrystals self-

assembly (Figure 28c,d). Therefore, it can be assumed that this BN point is the turning point of the 

transition of the right–handed helix to the left-handed one (or the contrary). 

7. Chiral Field (Chiral Memory) and Racemic Field 

An example of the chiral field existence can be an enantioselective reaction (21) of prochiral 

substrate hydrogenation on an achiral catalyst in the cholesteric liquid crystal (ChLC) [189]. 

COOH

NHCOMePh

COOH

NHCOMePh

*
RhCl(PPh3)3

ChLC
+ H2

 

 

(21) 

The temperature maximum of hydrogenation enantioselectivity (ee = 16% at 60–70 C) coincides 

with the temperature maximum of ChLC (cholesteryl tridecanoate) helical ordering. Mirror symmetry 

breaking in this case is contrary to common sense. Indeed, molecule sizes of α-acetamidocinnamic 

acid and the RhCl(PPh3)3 catalyst are much smaller than the ChLC helical pitch (300–400 nm). 

Therefore, asymmetric induction at the stage of coordination of substrate and catalyst molecules 

cannot only occur under the influence of ChLC helical chirality. A possible explanation of mirror 

symmetry breaking in this experiment is the effect of the chiral field on individual molecules of the 

substrate and catalyst [194,195]. Indeed, it was shown by the method of induced circular dichroism 

that helical ordering was built by achiral reactant molecules as well as from achiral Wilkinson’s 

catalyst molecules in the conditions of the hydrogenation reaction in the ChLC medium. Thus, the 

chiral structure of the key intermediate in this reaction was provided by the action of the chiral field 

[194,195]. 

A strong chiral field was shown to exist between two flat aromatic “pincers” (tweezers) [196,197] 

separated by some kind of a more or less rigid “teter” with a chiral moiety as a chirality inductor. 

Porphyrin or metalloporphyrin groups at the chain ends with the chiral inductor in the middle of this 

host molecule, for example 50, can be used as tweezers [198–201]. The length of the chain the inductor 

and porphyrin group separating can exceed 13 single and double bonds173. In the absence of a chiral 

inductor, such structure is used to study molecular chirality of chiral bidentate guest molecules by 

circular dichroism of metalloporphyrin hosts as a sensor of chirality [202–207]. End porphyrin groups 

can be located at a considerable distance from each other in formulations such as dibenzo­30-crown-

10 skeleton 51 [208]. 

(21)

The temperature maximum of hydrogenation enantioselectivity (ee = 16% at 60–70 ◦C) coincides
with the temperature maximum of ChLC (cholesteryl tridecanoate) helical ordering. Mirror symmetry
breaking in this case is contrary to common sense. Indeed, molecule sizes of α-acetamidocinnamic acid
and the RhCl(PPh3)3 catalyst are much smaller than the ChLC helical pitch (300–400 nm). Therefore,
asymmetric induction at the stage of coordination of substrate and catalyst molecules cannot only
occur under the influence of ChLC helical chirality. A possible explanation of mirror symmetry
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breaking in this experiment is the effect of the chiral field on individual molecules of the substrate
and catalyst [194,195]. Indeed, it was shown by the method of induced circular dichroism that helical
ordering was built by achiral reactant molecules as well as from achiral Wilkinson’s catalyst molecules
in the conditions of the hydrogenation reaction in the ChLC medium. Thus, the chiral structure of the
key intermediate in this reaction was provided by the action of the chiral field [194,195].

A strong chiral field was shown to exist between two flat aromatic “pincers” (tweezers) [196,197]
separated by some kind of a more or less rigid “teter” with a chiral moiety as a chirality inductor.
Porphyrin or metalloporphyrin groups at the chain ends with the chiral inductor in the middle of this
host molecule, for example 50, can be used as tweezers [198–201]. The length of the chain the inductor
and porphyrin group separating can exceed 13 single and double bonds173. In the absence of a chiral
inductor, such structure is used to study molecular chirality of chiral bidentate guest molecules by
circular dichroism of metalloporphyrin hosts as a sensor of chirality [202–207]. End porphyrin groups
can be located at a considerable distance from each other in formulations such as dibenzo30-crown-10
skeleton 51 [208].
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There is an assumption that tweezer’s architecture of 51 lead to the mesostructure formation.
Mmirror symmetry of N-atoms in 51 is realized through the π–π* interaction of porphirin groups. This
structure provides a strong racemic field between flat porphirin groups. Chirality of self-assembled
achiral porphyrins (imprinted chirality) in host–chiral guest structures persists after a removal of the
chiral guest–inductor which caused this chirality [209]. This is a new example of chiral memory.

A property of silica gel to retain information (“remember”it) about complex or chiral molecules
dissolved in it during molding was noticed long ago [210–213]. After their removal, silica gel could
selectively adsorb these molecules or enantiomers. This selectivity of silica gel could be attributed
individually to silylium ions [214]. However, the experimental variety of the ability to memorize
structural information, which is characteristic of different gels, allows us to attribute this property to
physical gels [215–223].

The discotic trisamides and trisureas of the 52 and 53 type form fibers and organic gels [224–226].
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A minor structural variation in this type molecules may dramatically disturb helical columnar
superstructures built on the basis of these molecules. The structure and properties variability of
these helical columnar aggregates may be related to the gel structure as well as π–π* stacking
and H-bonding. It is believed that the gel formation leads to reaction medium structuring.
Together with π–π* stacking [227,228], H-bonding [229], and donor–acceptor interaction [230], this
structuring facilitates the chiral information transfer. Polymers 54 and 55 form co-gels with the
N,N’-bis(octadecyl)L(D)-Boc-glutamic gelator [218].Symmetry 2019, 11, x FOR PEER REVIEW 31 of 53 
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Figure 30. illustration of the chiral memory effect in poly(biphenylacetylene)s. 

We believe that all above-mentioned examples of chiral memory can be explained by the 

existence of a chiral field. The conditions of the chiral field existence and preservation correspond to 

the necessity of structural ordering in the overall variety of chiral memory examples. 

Supramolecular chirality of polymers 54 and 55 follows the chirality type of the gelator. Helicity of
the polymer assemblies can be memorized even after a removal of gelator molecules. Reaction mixture
structuring by means of physical gel and π–π* stacking or H-bonding relationships of interacting
molecules is necessary for displaying chiral memory in the formation of chiral superstructures. These
relations and the chiral memory effect were observed for self-assembly of molecules 56 [231] and 57 [216],
and other aromatic molecules in the presence of molecular low weight gelators [217,229–231]. The idea
of reaction mixture media structuring with gel has been further evolved experimentally [232–235].
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We believe that all above-mentioned examples of chiral memory can be explained by the 
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the necessity of structural ordering in the overall variety of chiral memory examples. 

Numerous examples of the chiral memory effect have been observed in polymerization [236–243].
Polymerization creates higher-order structural ordering than the structural arrangement by gel.
Therefore, π–π* stacking, in addition to structural ordering during polymerization, creates conditions
for the emergence of chiral memory. The chiral memory effect in polymerization of oligomers is
also observed with the participation of hydrogen bonding [244]. It is also possible that other factors
may contribute to chiral structuring of the medium during polymerization, e.g., vicinal chirality
(Figure 29) [245].
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Figure 29. Illustration of the chiral memory effect in poly(biphenylacetylene)s.

We believe that all above-mentioned examples of chiral memory can be explained by the existence
of a chiral field. The conditions of the chiral field existence and preservation correspond to the necessity
of structural ordering in the overall variety of chiral memory examples.

Chiral effects are known to have only a small energy barrier (see, e.g., reactions (3) and (4) with the
P–M transition) [107–111]). Therefore, for example, the P–M conversion occurs when the temperature
changes within 30 ◦C [101–111]. The chiral field effect may be compared with the chiral effect of other
fields or inductors. An example is the chiral effect of ultrasound radiation on chiral amplification [95]
in crystallization. It is of interest that the chiral memory motif is also observed in chirality amplification
during porphyrin self-assembling [246].

A racemic field is misappreciated in comparison with a chiral field. Perhaps, a reason for this is a
kinetic dependence, in which an asymmetric reaction (without an asymmetric inductor) produces the
same number of “right” and “left” products. With a high energy of this reaction, the racemic field may
not be noticed. Therefore, the comparison between the racemic field and the chiral field can be valid
only for not high-energy reactions such as crystallization [247]. Thomas and Tor [248] synthesized a
novel 1.10-phenanthroline ligand with branched multifunctional dentritic groups. When an octahedral
metal ion self-assembled with these ligands two enantiomers, ∆ and Λ, were formed (Figure 30). This
can apparently be considered as an example of racemic field impact.
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Figure 30. Dendritic fragments assembled around an octahedral metal ion from Λ and ∆

enantiomers [248].

A colourless crystal of helical [Cu4Cl4(ally)4]∞ was formed after neat triallylamine (ally) addition
to copper (I) chloride at ambient temperature [249] (Figure 31). Out of the five crystallizations three
resulted in the predominantly P-helix and two in the predominantly M-helix. Those examples can
be considered as a manifestation of the stochastic action of the chiral fieid (Figure 31) as well as the
racemic field (Figure 30).
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These cases demonstrate an analogy with crystallization of sodium chlorate (Scheme 2) and the
stochastic helicity formation (Section 6).

There is abundant evidence that a collection of right- and left-handed enantiomers possesses other
physical properties than a collection of pure enantiomers [39]. It is reflected in tighter packing (more
than 4% denser) or higher melting points of racemates than those of their enantiomers (Wallach’s
rule) [250–252]. Also, data on solubility and some other physical properties show that racemates
tend to be slightly more stable than pure enantiomers. The simplest explanation of Wallach’s
phenomenon is associated with a difference in hydrogen bonding energies of “true” racemates and
pure enantiomers [253–260]. Opponents of this concept validity believe that “true” racemates and
pure enantiomers with analogous H-bonding are not rare in occurrence [261–266]. The discussion is
complicated by the fact that there are the examples of anti-Wallach’s rule [267]. Therefore, the cause of
Wallach’s phenomenon has not been completely understood up to now. Some researchers designated
Wallach’s rule as “mutually exclusive binding” in “true” racemates [268].

Thus, the differences in the physical properties of racemate and enantiomer crystals as well as
mirror symmetry breaking or conservation in crystallization of sodium chlorate (Scheme 2) or dendritic
complexes (Figure 30) and triallylamine complexes (Figure 31) suggest the existence of a racemic field
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alongside with a chiral field. It is possible that the existence of mirror symmetry in the form of a
racemic field is global (mirror symmetry space). After all, our Galaxy has a mesostructure (Figure 3).

There are direct evidences of sophisticated structures of racemates. For example, collagen peptides
form tight ridges-in-grooves packing of right- and left-handed triple helices (Figure 32) [269].
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It seems there is a force which provides an energy advantage for the synthesis of a denser racemate
structure. The difference between racemic and chiral fields could explain this experimental observation.

Racemic compounds exist in solution as well (Scheme 4). According to Kagan and Noyori’s
models racemates and homochiral dimers function as real actors in catalytic asymmetric reactions with
nonlinear effects (see Section 5).

Racemic superstructures formed by P- and M-helices represent a large group of
racemates [39,270–272]. There is no consensus about a reason for the structural difference between
heterochiral (racemic) and homochiral dimers [273–275].

8. B–Z DNA Conformational Transition

Having a seemingly stable molecular structure, the DNA molecule is a vulnerable object.
For example, there are more than a hundred of oxidative damages of the DNA molecular structure.
Alongside with the structural damages, the DNA molecule may be subject to conformational distortions
(Table 7) [276]. All these conformations of canonical B-DNA (right-handed double helix) lead to genetic
instability and genetic diseases [277–283]. From this viewpoint, the conversion of right-handed B-DNA
into left-handed Z-DNA attracts widespread attention.

Table 7. DNA conformations [276–278].

Name Conformation Name Conformation

Cruciform
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It is unlikely that a transition of right-handed B-DNA into left-handed Z-DNA shown in Table 7
occurs linearly without changing the angle of the DNA thread. It is known that the angle between the
polymer helices of opposite senses is about 130◦ (Figure 34) [285,286], which has been confirmed by
other experimental data (see Figure 27c,d).
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Lee et al. [287] calculated a free energy difference between B-DNA and Z-DNA which is 0.9 kcal/mol
per dinucleotide unit. The low energy of this transition was confirmed by the influence of relatively
weak chemical factors on this transition. Indeed, ions, especially cations, strongly affect B–Z DNA
transitions [288,289]. This influence can be explained by reducing phosphate–phosphate interactions
between phosphate groups on opposite strands. Phosphate groups got closer to each other in
Z-DNA than in B-DNA (7.7 Å in Z-DNA compared to 11.7 Å in B-DNA) [290]. Therefore, cations
clustering around the negatively charged phosphate group affected B-DNA and Z-DNA in a different
manner. It is not surprising that ions with higher valencies appeared more effective than monovalent
ions [291–293]. The agents that change the dielectric constant of water (or alcohol) were found to

stabilize Z-DNA [294–296]. Small molecules affected B

1 
 

 Z equilibrium as well [297,298]. The B–Z
DNA transition was also influenced by Co, Mn, Ru and Pt complexes [299–301]. Nevertheless, chiral
metal complexes failed to convert B-DNA to Z-DNA (see also [302–306]).

Xu et al. [307] first reported that the (P) and (M) helicene 60 helix molecule (Figure 35) displayed
structural selectivity in binding to DNA. The circular dichroism (CD) spectra of the (P)-60/Z-DNA
mixture showed the 70% decrease in intensity of CD whereas no change occurred in binding of (P)-60
to B-DNA. No discrimination was seen in the CD spectra of the (M)-60/B-DNA and (M)-60/Z-DNA
mixture. There was only the 20% decrease in CD intensity.
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Figure 35. Enantiomeric helical pair of helicene 60.

This observation allows a very important and fundamental conclusion: an external chiral inductor
can affect B–Z DNA conformations or their equilibrium. The influence of this inductor is apparently
not related to the chemical interaction. Optically active hexahelicen and its derivatives are known
for their huge optical rotational ability (CD activity and chiral field). Therefore, their effect on chiral
conformations of DNA is due to a greater degree of the helicene chiral field.

By analogy, Tsuji et al. [308] showed that an optically active helicene-spermine conjugate (Figure 36)
might discriminate B–Z DNA conformations as well. The authors proposed a schematic illustration of
the intermediate complex of the B-DNA and Z-DNA interaction with (P)-64 and (M)-64, respectively
(Scheme 10).
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An analysis of the discriminatory ability of irradiations and electromagnetic fields to initiate 
DNA degradation shows that almost each of them exerts impact on DNA, alone or jointly with some 
other factors. For example, a magnetic field with an extremely low frequency can induce a DNA 
double-strand break (the most potent form of DNA damage and genomic instability) [312]. A similar 
effect was observed for DNA marker exposure under a pulsed magnetic field (25 Hz) [313]. The 
pulsed magnetic field increased a spontaneous genomic DNA degradation in this case. The pulsed 
magnetic field enhanced the cell-killing effect of UV radiation [314]. 

Impact of the electromagnetic field on DNA obeys the same pattern as that of the magnetic field. 
It appears that a stable electromagnetic field does not affect DNA. These are only low frequency 
electromagnetic fields that exert a genotoxic effect on DNA [315]. For example, 50 Hz low frequency 
electromagnetic fields enhanced cell proliferation and DNA damage [316]. Genotoxic effects were 
observed in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields [317] (see 
also [318,319]). Regretfully, a combination of two factors (ionizing radiation and a presence of organic 
salts) is required to protect DNA from damage. Zheng and Sanche [320] marked that organic salts 
were efficient in protecting DNA from damage by electrons of 1 eV to 60 keV. The authors suggest 
that anions of organic salts create additional electric fields within the DNA groove which protect the 
molecule (see also [321]). 

Scheme 10. Schematic illustration of B-DNA and Z-DNA intermediate complexes with (P)-64 and
(M)-64.

Electrostatic interactions of cationic spermine 64 along the phosphate backbone of the DNA minor
groove led to the steric hindrance in the case of Z-DNA and (M)-64. Qu et al. [309] reported that an
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anticancer agent (+)-dunorubicin and its novel (-)-enantiomer (WP 900) exhibited enantioselectivity in
binding to DNA.

Apart from the above-mentioned chiral inductors, complex structures containing large aromatic
ensembles can exert a discriminatory effect on DNA. Doi et al. [310] found that spermine achiral
conjugate 65 affected the B→Z transition of d(CGCGCG)2 at a low salt concentration. Haque et
al. [311] observed an opposite transition of left-handed Z-DNA into B-DNA in the presence of
benzophenanthridine plant alkaloid chelerythrine 66.
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An analysis of the discriminatory ability of irradiations and electromagnetic fields to initiate
DNA degradation shows that almost each of them exerts impact on DNA, alone or jointly with some
other factors. For example, a magnetic field with an extremely low frequency can induce a DNA
double-strand break (the most potent form of DNA damage and genomic instability) [312]. A similar
effect was observed for DNA marker exposure under a pulsed magnetic field (25 Hz) [313]. The pulsed
magnetic field increased a spontaneous genomic DNA degradation in this case. The pulsed magnetic
field enhanced the cell-killing effect of UV radiation [314].

Impact of the electromagnetic field on DNA obeys the same pattern as that of the magnetic field.
It appears that a stable electromagnetic field does not affect DNA. These are only low frequency
electromagnetic fields that exert a genotoxic effect on DNA [315]. For example, 50 Hz low frequency
electromagnetic fields enhanced cell proliferation and DNA damage [316]. Genotoxic effects were
observed in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields [317] (see
also [318,319]). Regretfully, a combination of two factors (ionizing radiation and a presence of organic
salts) is required to protect DNA from damage. Zheng and Sanche [320] marked that organic salts
were efficient in protecting DNA from damage by electrons of 1 eV to 60 keV. The authors suggest
that anions of organic salts create additional electric fields within the DNA groove which protect the
molecule (see also [321]).

Therefore, usually, a low frequency electromagnetic or a low frequency magnetic field (alone
or in combination with other factors) can affect DNA; however, some scientists disagree with this
opinion [322,323].

Investigations of the static magnetic field effect on DNA have led to less definite conclusions.
Li et al. [324] showed that a “magnetic field could potentiate the activity of oxidant radicals” and
could bring about “both stabilizing and destabilizing effects to DNA”. According to Ruiz-Gomez et
al. [325] the magnetic field effect on DNA is not certain. Aydin et al. [326] believe that a low intensity
static magnetic field may trigger genomic instability. “But this genotoxic effect of the magnetic field,
however, is minimized in living organisms due to the presence of protectic cellular responses” [327]
(see, however [328]).

This assumption has sound grounds. It is now known that each type of DNA damage corresponds
to a certain repair mechanism in a living cell such as nucleotide excision repair, base excision repair,
mismatch repair, and so on [329]. It is logical to assume that impact of a stable factor of the Earth’s
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magnetic field over millions of years of evolution has led to the development of a living cell protective
mechanism, alongside with a corresponding DNA repair mechanism. However, since the pulsed
magnetic field is not found in nature, DNA has no protective mechanism from it. Probably, that is why
the static magnetic field has little effect on DNA and the cell in vivo whereas the pulsated magnetic
field affects DNA and the cell radically [320–322,330]. According to the same logic we can suggest
that periodic long-term gravitational pulsations (lunar tides), as a common phenomenon on Earth,
have a protective mechanism against DNA damage (corresponding DNA repair mechanism) whereas
static gravitation is uncommon for living organisms on Earth. Indeed, gravitational impact on the
Moon (by Earth) has no pulsation. This impact is constant because only one side of the Moon faces the
Earth. Therefore, living organisms may have difficulties with the B–Z DNA transition as there is no
protection from static gravity.

9. Conclusions

An obvious advantage of the right-handed helical structure of the most important biological
macromolecules is possible evidence of the existence of an external chiral inductor with
similar symmetry.

Effects of chiral and racemic fields as possible inductors and conductors of the corresponding
influence explain chemical processes with mirror symmetry breaking or retention.

It is possible that the mirror symmetry effect of a racemic field generates additional energy for
material objects. This effect may probably explain the mesostructure of galaxies or the formation of
chiral crystals of different signs in equal proportions in Earth’s deposits. Also, this effect may account
for the difference in the physical properties of racemic and enantiomeric crystals (Wallach’s rule) or
spontaneous chiral ordering of achiral molecules in the form of domains of different chirality signs
in approximately equal proportions. The physical basis of mirror symmetry breaking and mirror
symmetry retention effects can be found in stochastic chemical reactions running by two routes: with
the formation either of racemic or chiral products.

External inductor’s impact on these reactions and processes has been also discussed. This influence
corresponds to the mesostructure of our Galaxy as a source of chiral and racemic gravitational fields.
The fields can serve as a chiral (chiral environment) or racemic inductor and trigger.

These fields, in turn, can affect all biological processes in living organisms. This is especially
relevant for Z-DNA areas of native DNA damage with the left-handed conformational conversion.
Indeed, there are mechanisms in Nature that protect DNA from destructive factors (mismatch repair,
nucleotide or base excision repair, oxidative defects repair, and so on). It is highly likely that Nature has
a corresponding DNA repair mechanism against DNA conformational damage caused by the pulsed
gravitational field of Earth (Moon tides). Changing of this status quo in lunar settlements (stable
gravity and zero magnetic field) can be dangerous for living organisms. Indeed, it is possible that
DNA molecules (especially Z-DNA fragments) in organisms placed in the other chiral gravitational
environment could behave via a different mechanism and become more vulnerable. Moreover, the
corresponding DNA repair mechanism will function in a different manner.
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