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Abstract: We discuss junction conditions across null hypersurfaces in a class of scalar–tensor gravity
theories (i) with second-order dynamics, (ii) obeying the recent constraints imposed by gravitational
wave propagation, and (iii) allowing for a cosmologically viable evolution. These requirements select
kinetic gravity braiding models with linear kinetic term dependence and scalar field-dependent
coupling to curvature. We explore a pseudo-orthonormal tetrad and its allowed gauge fixing with one
null vector standing as the normal and the other being transversal to the hypersurface. We derive
a generalization of the Lanczos equation in a 2 + 1 decomposed form, relating the energy density,
current, and isotropic pressure of a distributional source to the jumps in the transverse curvature
and transverse derivative of the scalar. Additionally, we discuss a scalar junction condition and its
implications for the distributional source.
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1. Introduction

Scalar–tensor gravity theories give viable modifications of general relativity in which accelerated
expansion could be recovered without dark energy at late times; well-tested solar system constraints
could be obeyed (for example through the Vainshtein mechanism); and the recent constraint from
gravitational wave detection [1–7] on the propagation speed of the tensorial modes could be
successfully implemented. Indeed, from the class of Hordeski theories ensuring second-order dynamics
for both the scalar field and the metric tensor [8,9], a subclass has been identified [10–13] in which
gravitational waves propagate with the speed of light (as verified both from the almost coincident
detection with accompanying γ-rays in the case of the neutron star binary merger and from a stringent
test of the dispersion relations disruling massive modes for the 10 black hole mergers). This subclass
contains cubic derivative couplings of the scalar field in the Lagrangian, known as kinetic gravity
braiding [14,15]. In the Jordan frame, the curvature couples with the scalar through an unspecified
function of the scalar field.

This class of scalar–tensor gravity models could be further restricted by the requirement to ensure
a viable cosmological evolution. In Ref. [16], it has been proven that for a kinetic gravity braiding
model with Lagrangian only linearly and quadratically depending on the kinetic term X = − (∇φ)2 /2,
an autonomous system of equations governs the dynamics, leading to a number of fixed points for
the background dynamics, with three of them representing consecutive radiation-, matter-, and dark
energy-dominated regimes (see for example Figure 1 of Ref. [16]). The same model was further
analyzed from the string theory-motivated point of view of avoiding de Sitter regimes, which are
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not embeddable in string theory [17]. Cross-correlating this model class with the requirement of the
propagation of tensorial modes with the speed of light, the quadratic dependence has to be dropped.
In this paper, we consider this class of kinetic gravity braiding models with only linear dependence on
the kinetic terms and analyze the junctions across null hypersurfaces.

Junction conditions in general relativity are known either for spatial or temporal hypersurfaces [18]
or for null hypersurfaces [19,20]. The latter are more sophisticated, as the normal to the hypersurface
is not suitable for a 3 + 1 space-time decomposition, being also tangent at the same time.
The decomposition can be done with respect to a transverse vector, with the gauge arising from
its non-unique choice dropping out from the final results [19], or by employing a pseudo-orthonormal
basis with two null vectors, one of them playing the role of the normal, the other being transversal [20].
The distributional contribution arising in the curvature from the possible discontinuity of the metric
derivative across the hypersurface is related to singular sources on the hypersurface through the
Lanczos equation. The same technique led to the derivation of the dynamics on a brane embedded in a
5-dimensional bulk [21–23].

In the full Horndeski class of scalar–tensor gravity theories, junction conditions across spatial
or temporal hypersurfaces have been derived [24,25], but the null case stays uncovered, despite its
importance being undoubted as all electromagnetic and gravitational shock-waves propagate along
such hypersurfaces.

Here we propose to derive such junction conditions for the class of kinetic gravity braiding
theories with a linear kinetic terms, which, as discussed above, are both cosmologically viable and obey
the gravitational wave constraints. This generalizes our earlier work on null junctions in Brans–Dicke
theories [26].

The notations are as follows: space-time indices are Greek, 2-dimensional spatial indices are
Latin capital letters. The soldering of any quantity A, with values A+ and A− on the two sides
of the hypersurface, is Ã = A+Θ ( f ) + A−Θ (− f ), where Θ is the step function. The average on
the hypersurface is denoted as 〈A〉 = (A+ + A−) /2 and the jump over the hypersurface as [A] =

A+ − A−.

2. Equations of Motion

The assumed Lagrangian

LGKGB = B(φ)X + V(φ)︸ ︷︷ ︸
L2

−2ξ(φ)�φX︸ ︷︷ ︸
L3

+
1
2

F(φ)R︸ ︷︷ ︸
L4

(1)

with B, ξ, F arbitrary functions of the scalar field yields the following expressions through the variation
of metric

E(2)
µν = −1

2
B(φ)

(
Xgµν − φµφν

)
− 1

2
V(φ)gµν, (2)

E(3)
µν = ξ(φ)�φφµφν + 2ξ ′(φ)X

(
φµφν + Xgµν

)
+ 2ξ(φ)X(µφν) − ξ(φ)Xκφκ gµν, (3)

E(4)
µν =

1
2
{

F(φ)Gµν +
(

F′(φ)�φ− 2F′′(φ)X
)

gµν − F′(φ)φµν − F′′(φ)φµφν

}
, (4)

and through the variation of the scalar field

E(2)
φ = B(φ)�φ− B′(φ)X + V′(φ), (5)

E(3)
φ = ξ(φ)

{
(�φ)2 − φµνφµν − Rµνφµφν

}
− 2ξ ′′(φ)X2, (6)

E(4)
φ =

1
2

F′(φ)R, (7)
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where φµ ≡ ∇µφ and φµν ≡ ∇ν∇µφ. The Ricci curvature tensor appears in the expression E(3)
φ through

the Ricci identity [∇µ,∇ν]Vκ = Rκ
λµνVλ, which has been used to get rid of third derivatives of φ.

These are the left-hand sides of the equations of motion (EoMs). The right-hand sides are half of
the energy–momentum tensor for the metric variation of the matter action and zero for the scalar field
variation, as in the Jordan frame the matter does not couple to the scalar field.

3. Junction Conditions

3.1. The Extrinsic Formulation

We employ a pseudo-orthonormal basis with two null vectors Nµ and Lµ, the first being the
normal (surface gradient, which is also tangent) to the hypersurface Σ and the other playing the
role of the transverse vector, with respect to which we perform a (2 + 1) + 1 decomposition [20].
The normalization is LµNµ = −1. The continuity of both the metric tensor gµν and scalar φ are
imposed over the hypersurface: [φ] =

[
gµν

]
= 0. Their first derivatives in the null transverse direction

φL ≡ Lµ∂µφ and Lρ∂ρgµν may have a jump

ζ = [φL] , cµν =
[
Lρ∂ρgµν

]
, (8)

and since all tangential derivatives are assumed to be continuous, we have

[φµ] = −Nµζ, [∂κ gµν] = −Nκcµν. (9)

The second-order derivatives appearing in the equations of motion

Eµν ≡ Ẽµν + Eµνδ ( f ) =
1
2
(
T̃µν +Tµνδ ( f )

)
, (10)

Eφ ≡ Ẽφ + Eφδ ( f ) = 0 (11)

lead to the distributional contributions Eµν and Eφ along the thin shell, arising from the derivative of
the step function. All quantities with a tilde are the regular contributions to the respective quantities.
For consistency, we also include a distributional energy–momentum tensor Tµν together with the
regular one T̃µν. In the argument of the delta distribution, f denotes a function which generates the
hypersurface as its zero set. For convenience, we also assume that Nµ = ∇µ f .

We introduce the notations

cµ = cµνNν, c† = cµNµ, c = cµ
µ (12)

and explicitly give the jump of the connection as

[Γκ
µν] = −

1
2

(
Nµcκ

ν + Nνcκ
µ − Nκcµν

)
, (13)

hence the singular parts of the curvature tensor and its traces become

Rκ
λµν = −1

2

(
Nµcκ

νNλ − Nνcκ
µNλ + NνcµλNκ − NµcνλNκ

)
, (14)

Rµν = −1
2
(

Nµcν + Nνcµ − NµNνc
)

, (15)

R = −c†. (16)

In particular, the singular part of the Einstein tensor is

Gµν = −1
2

(
Nµcν + Nνcµ − NµNνc− c†gµν

)
. (17)
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We also give the jumps and singular parts of the quantities constructed from the scalar field. As
a calligraphic version of φ is not catchy, in the decomposition A = Ã + A δ( f ) we introduce the
alternative notation A ≡ Sing(A), denoting the singular part of the arbitrary quantity A.

For the scalar field, we have

Sing(φµν) = −ζNµNν, Sing(�φ) = −ζNµNµ = 0, [X] = φNζ, (18)

where φN = Nµφµ is the normal derivative. We note that the value of φN on the hypersurface is
unambigous, being a tangential derivative, which is continuous.

Explicit calculation gives the hypersurface contributions to the left-hand side of the tensorial EoMs:

E
(2)
µν = 0, (19)

E
(3)
µν = ξ(φ)ζ

(
2φN N(µ〈φν)〉 − φ2

N gµν

)
, (20)

E
(4)
µν =

1
2
(

F(φ)Gµν + F′(φ)ζNµNν

)
(21)

and the hypersurface contributions to the left-hand side of the scalar EoMs:

E
(2)
φ = 0, (22)

E
(3)
φ = ξ(φ)

(
2ζNµNν〈φµν〉+ φNcµ〈φµ〉 −

1
2

φ2
Nc
)

, (23)

E
(4)
φ = −1

2
F′(φ)c†. (24)

3.2. The Intrinsic Formulation

The above equations are expressed in a four-dimensional coordinate system smooth across the
hypersurface. Such coordinate systems may be difficult to construct, hence it would be more practical
to use coordinantes intrinsic to the junction hypersurface.

The hypersurface contributions to the left-hand side of the tensor EoMs (20) and (21) are tangential
in the sense that

E
(3)
µν Nν = E

(4)
µν Nν = 0. (25)

Hence, we may expand them in a basis adapted to the junction hypersurface Σ. We choose this basis
as
(

Lµ, Nµ, eµ
2 , eµ

3

)
, where the eµ

A are two spacelike tangent vector fields to Σ, satisfying

Nµeµ
A = Lµeµ

A = 0. (26)

For a fixed choice of Nµ, we may always choose eµ
A such that the vector fields (Nµ, eµ

2 , eµ
3 ) form a

holonomic set, but this is not imperative (we may also choose them to form a pseudo-orthonormal
system). The following statements are also valid in the anholonomic case. The inner products of the
spacelike vectors generate a spacelike induced metric

qAB = gµνeµ
Aeν

B (27)

on the two-dimensional subspaces spanned by the vectors eµ
A. Its inverse is denoted qAB (capital Latin

indices are raised and lowered by either the metric or its inverse). The completeness relation of the
adapted basis is

gµν = −LµNν − NµLν + qABeµ
Aeν

B. (28)
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We further denote eµ
1 = Nµ, with the Latin indices a, b, ... taking the values 1, 2, .... The extrinsic

curvature Kab = eµ
a eν

b
1
2LN gµν is unsuitable to describe the transversal change in the metric as Nµ is

also tangential. For this reason, we introduce the transverse curvature [20]:

Kab =
1
2

eµ
a eν

bLLgµν, (29)

with its jump related to cµν as

[Kab] =
1
2

eµ
a eν

bcµν. (30)

The singular part (hypersurface contribution) of the Einstein equation is but the generalized
Lanczos equation

E µν =
1
2
T µν, (31)

where E is the sum of the terms (20) and (21). As the left-hand side is purely tangential,
the distributional stress–energy–momentum tensor admits the decomposition

T µν = ρNµNν + jA
(

Nµeν
A + eµ

ANν
)
+ pABeµ

Aeν
B, (32)

where ρ, jA, and pAB are the energy density, current vector, and stress tensor of the distributional
source, respectively. These quantities, defined as the components emerging with respect to the intrinsic
triad of vectors, can be evaluated even when the bulk coordinates do not match smoothly along Σ.
They are defined as

ρ = 2EµνLµLν, jA = −2EµνLµeν
A, pAB = 2Eµνeµ

Aeν
B. (33)

The 2 + 1 decomposition of Equation (31) yields an isotropic pressure pAB = pqAB and

ρ = F(φ)[KAB]qAB + F′(φ)[φL]− 2ξ(φ)φN [φ
2
L], (34)

jA = −F(φ)[KNA] + 2ξ(φ)[φL]φNφA, (35)

p = F(φ)[KNN ]− 2ξ(φ)[φL]φ
2
N , (36)

where φA = eµ
Aφµ, KNA ≡ K1A, and KNN ≡ K11.

The scalar equation is

0 = ξ(φ)φ2
NqAB[KAB]− 2ξ(φ)φNφA[KNA]

+
(

F′(φ) + 2ξ(φ)φN〈φL〉
)
[KNN ]− 2ξ(φ)[φL] (φNN − 〈KNN〉φN) , (37)

which contains jumps and averages. However, by exploring the relation [A]〈B〉+ 〈A〉[B] = [AB], the
averages can be transformed away to obtain

0 = ξ(φ)φ2
NqAB[KAB]− 2ξ(φ)φNφA[KNA] + F′(φ)[KNN ]

− 2ξ(φ)[φL]φNN + 2ξ(φ)φN [φLKNN ]. (38)

Equations (34)–(36) provide generalizations of the Lanczos equation, and Equation (38) a
constraint on the distributional sources.

3.3. Gauge Fixing

At this point, it is worthwhile to remember that there is still gauge freedom in the tetrad choice.
The normal vector field is autoparallel [20]

Nν∇νNµ = κNµ (39)
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with the non-affinity parameter κ = KNN . If the null fields are rescaled as N̄µ = eαNµ and L̄µ = e−αLµ,
with some function α defined on the hypersurface, then the non-affinity parameter changes as

κ̄ = eα (Nν∇να + κ) , (40)

while
φL̄ = e−αφL.

Hence,
φL̄K̄N̄N̄ = φL (Nν∇να +KNN) . (41)

It is possible to achieve
[φL̄K̄N̄N̄ ] = 0 (42)

through any solution of the differential equation

∂α

∂λ
= −〈κ〉 − 〈φL〉

[φL]
[κ], (43)

where λ is a coordinate adapted to Nµ, and the ratio 〈φL〉/ [φL] is a function on the hypersurface, being
evaluated there. Hence, in this gauge, the last term of Equation (38) drops out.

4. Discussion of the Junction Conditions

From the 2 + 1 decomposed form of the tensorial junction conditions, we may express the jumps
in the components of the transverse curvature in terms of the distributional energy density, current,
and isotropic pressure, as well as the jump of the transverse derivative of the scalar field and its square,
as follows

[KAB]qAB =
ρ

F
− (ln F)′ [φL] +

2ξφN
F

[φ2
L], (44)

[KNA] = −
jA
F

+
2ξφN

F
φA[φL], (45)

[KNN ] =
p
F
+

2ξφ2
N

F
[φL]. (46)

Then the scalar junction equation (in the gauge where [φLKNN ] = 0) becomes

F′p + ξφN

(
φNρ + 2φA jA

)
= ξ

(
2FφNN − F′φ2

N + 4ξφ2
NφAφA

)
[φL]− 2ξ2φ3

N [φ
2
L]. (47)

There are two cases when these equations simplify considerably: (A) when there is no cubic derivative
coupling ξ = 0, and (B) when the normal derivative of the scalar field vanishes φN = 0. In both cases,
the scalar Equation (47) shows that there is no isotropic pressure p = 0, that the third Lanczos Equation
(46) implies [KNN ] = 0, the second Lanczos Equation (45) gives the current as jA = −F (φ) [KNA],
and finally, the first Lanczos Equation (44) constrains the energy density as ρ = F (φ) [KAB]qAB +

F′ (φ) [φL].

5. Concluding Remarks

By exploring a formalism based on a transverse null vector to the null hypersurface, we derived
junction conditions across null shells in the kinetic gravity braiding theories with linear kinetic term
dependence, in which the curvature and the scalar couples through a generic scalar field-dependent
function. These scalar–tensor theories obey both the gravitational wave constraints and could exhibit a
viable cosmological evolution through radiation-, matter-, and dark energy-dominated fixed points.
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Our formalism gives the necessary equations to discuss energetic shock waves propagating with the
speed of light in these models.

The junction conditions contain the 2 + 1 decomposed form of the tensorial equation,
a generalization of the general relativistic Lanczos equation. This relates the jump in the transverse
curvature to the distributional energy density, current, and isotropic pressure. In the relations, the
jump of the transverse derivative of the scalar and its square are also involved. An additional scalar
equation, without counterpart in general relativity, constrains all of these functions.

If either there is no cubic derivative coupling term ξ = 0, or the scalar field does not change in
the normal direction to the null hypersurface φN = 0, the junction conditions simplify considerably,
leaving the possibility of a distributional source without pressure

T µν =
(

F (φ) [KAB]qAB + F′ (φ) [φL]
)

NµNν − F (φ) [KNA](Nµeν
A + eµ

ANν), (48)

together with the geometric condition [KNN ] = 0. These generalize the corresponding result found for
Brans–Dicke theories in the Jordan frame [26].
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