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Abstract: In this paper a nonlinear system of Riemann–Liouville (RL) fractional differential equations
with non-instantaneous impulses is studied. The presence of non-instantaneous impulses require
appropriate definitions of impulsive conditions and initial conditions. In the paper several types of
initial value problems are considered and their mild solutions are given via integral representations.
In the linear case the equivalence of the solution and mild solutions is established. Conditions for
existence and uniqueness of initial value problems are presented. Several examples are provided
to illustrate the influence of impulsive functions and the interpretation of impulses in the RL
fractional case.

Keywords: Riemann–Liouville fractional derivative; non-instantaneous impulses; initial value
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1. Introduction

Fractional differential equations model nonlocal phenomena in time. One of the basic
fractional derivatives is the Riemann–Liouville one which arises naturally in real world phenomena.
For example, Heymans and Podlubny [1] provide several examples from the field of viscoelasticity.
Several applications of fractional calculus to control theory, electrical circuits, fractional-order
multipoles in electromagnetism, electrochemistry, and the neurons in biology are provided in [2–5].
In particular, several applications of fractional derivatives in physics are given in the book [6].

Many physical phenomena have short-term perturbations at some points caused by external
interventions during their evolution. Adequate models for this kind of phenomena are impulsive
differential equations. Two types of impulses are popular in the literature: instantaneous impulses
(whose duration is negligible small) and non-instantaneous impulses (these changes start impulsively
and remain active on finite initially given time intervals). There are mainly two approaches for the
interpretation of the solutions of impulsive fractional differential equations: one by keeping the lower
bound of the fractional derivative at the fixed initial time and the other by switching the lower limit of
the fractional derivative at the impulsive points. The statement of the problem depends significantly
on the type of fractional derivative. Caputo fractional derivatives have some properties similar to
ordinary derivatives (such as the derivative of a constant) which lead to similar initial value problems

Symmetry 2019, 11, 614; doi:10.3390/sym11050614 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4922-641X
http://dx.doi.org/10.3390/sym11050614
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/5/614?type=check_update&version=2


Symmetry 2019, 11, 614 2 of 21

as well as similar impulsive conditions (instantaneous and non-instantaneous). In the literature
many types of initial value problems and boundary value problems for Caputo fractional differential
equations with instantaneous and non-instantaneous impulses are studied (see, for example, [7–9]).
For Riemann–Liouville (RL) fractional differential equations with instantaneous impulses several
results are obtained in [8,10–12]. However for the RL fractional derivative, the physical interpretation
of the initial condition (see [1]) requires different impulsive conditions, so as a result the statement
of the problem considered is crucial. To the best of our knowledge this is the first paper concerning
Riemann–Liouville fractional differential equations with non-instantaneous impulses.

In this paper the basic ideas in introducing non-instantaneous impulses for RL fractional
differential equations are presented. The appropriate definition of both the initial conditions and the
impulsive conditions for RL fractional differential equations is an important starting point for their
qualitative investigation. We set up and discuss several types of initial conditions and impulsive
conditions which are deeply connected with the RL fractional derivative. We use both the RL integral
and the weighted limit to present the initial condition and the impulsive conditions. We consider
both approaches in the literature in the fractional case with the presence of impulses in the equations:
when the lower bound of the fractional derivative is fixed at the initial time and when the lower
bound of the fractional derivative is changed at any point of impulse. In all cases mild solutions are
defined by appropriate Volterra integro–algebraic representations and some conditions for existence
and uniqueness are given. Note since instantaneous impulses are a special case of non-instantaneous
ones, a brief overview of impulsive conditions in the instantaneous case is given.

2. Some Preliminary Results From Fractional Calculus

Let t0 ∈ R+ = [0, ∞) be the initial time. Let Lloc
1 (J,Rn) be the linear space of all locally Lebesgue

integrable functions m : J → Rm, J ⊂ R. Let ||.|| be a norm in Rn.
In this paper we will use the following definitions for fractional derivatives and integrals:

- Riemann–Liouville fractional integral of order q ∈ (0, 1) ([13])

t0 Iq
t m(t) =

1
Γ(q)

t∫
t0

m(s)
(t− s)1−q ds, t ≥ t0,

where m ∈ Lloc
1 ([t0, ∞),R) and Γ(.) is the Gamma function.

This is called by some authors the left Riemann–Liouville fractional integral of order q.

Note sometimes the notation t0 D−q
t m(t) = t0 Iq

t m(t) is used.
- Riemann–Liouville fractional derivative of order q ∈ (0, 1) ([13])

RL
t0

Dq
t m(t) =

d
dt
(

t0 I1−q
t m(t)

)
=

1
Γ (1− q)

d
dt

t∫
t0

(t− s)−q m(s)ds, t ≥ t0

where m ∈ Lloc
1 ([t0, ∞),R).

This is also called the left Riemann–Liouville fractional derivative.
- Caputo fractional derivative of order q ∈ (0, 1) ([13])

C
t0

Dq
t m(t) =

1
Γ (1− q)

t∫
t0

(t− s)−q m′(s)ds, t ≥ t0

where m ∈ AC1([t0, ∞),R).
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Proposition 1. ([13]) For q ∈ (0, 1), β > 0 the following hold:

t0 Iq
t (t− t0)

β−1 =
Γ(β)

Γ(β + q)
(t− t0)

β+q−1,

RL
t0

Dq
t (t− t0)

β−1 =
Γ(β)

Γ(β− q)
(t− t0)

β−q−1.

From Proposition 1 we have:

Corollary 1. ([13]) For q ∈ (0, 1):

t0 Iq
t (t− t0)

−q = Γ(1− q),

RL
t0

Dq
t 1 =

1
Γ(1− q)

(t− t0)
−q,

RL
t0

Dq
t (t− t0)

q−1 = 0.

Proposition 2. ([13]) For any m ∈ AC1([t0, ∞),R), m(t0) ≥ 0 we get

C
t0

Dq
t m(t) ≤ RL

t0
Dq

t m(t).

Corollary 2. ([13]) The unique solution of RL
0 Dq

t u(t) = 0 is u(t) = ctq−1.

The definitions of the initial condition of fractional differential equations with RL-derivatives are
based on the following result:

Lemma 1. (Lemma 3.2 [14]). Let q ∈ (0, 1) and b ∈ R : t0 < b, m : [t0, b] → R be a Lebesgue
measurable function.

(a) If there exists a limit limt→t0+[(t− t0)
q−1m(t)] = c ∈ R, then there also exists a limit

t0 I1−q
t m(t)|t=t0 := lim

t→t0+
t0 I1−q

t m(t) = cΓ(q).

(b) If there exists a limit t0 I1−q
t m(t)|t=t0 = b ∈ R, and if the limit limt→t0+[(t− t0)

1−qm(t)] exists,
then

lim
t→t0+

[(t− t0)
1−qm(t)] =

b
Γ(q)

.

Let a < b ≤ ∞ be real numbers and consider the nonlinear RL fractional differential
equation (RLFrDE)

RL
a Dq

t x(t) = F(t, x(t)), t ∈ (a, b]. (1)

Note that according to [14] the initial conditions to (1) could be:

- the integral form (see (3.1.6) [14])

a I1−q
t x(t)|t=a = B ∈ R (2)

- a weighted Cauchy type problem (see (3.1.7) [14])

lim
t→a

(
(t− a)1−qx(t)

)
= C ∈ R (3)
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- the initial condition at the inner point of a finite interval (see (3.4.71) [14])

x(ξ) = B, ξ ∈ (a, b). (4)

Remark 1. According to Lemma 1 if the function x(t) satisfies the initial condition (3), then, x(t) also satisfies
the condition (2) with B = C Γ(q).

Any of the above initial value problem (IVP)’s of RLFrDE (1) has an equivalent integral
representation.

Lemma 2. Let G be an open set in R and F(t, x) : (a, b]× G → R be such that F ∈ L(a, b) for any x ∈ G.
Then

- the IVP for RLFrDE (1), (2) is equivalent to (see Corollary 3.1 [14] )

x(t) =
B

Γ(q)
(t− a)q−1 +

1
Γ(q)

∫ t

a

F(s, x(s))
(t− s)1−q ds, t ∈ (a, b]. (5)

- the weighted IVP for RLFrDE (1), (3) is equivalent to (see Corollary 3.1 [14] and Remark 1)

x(t) = C(t− a)q−1 +
1

Γ(q)

∫ t

a

F(s, x(s))
(t− s)1−q ds, t ∈ (a, b]. (6)

- the IVP for RLFrDE (1), (4) is equivalent to (see (3.4.27) [14])

x(t) = (
ξ − a
t− a

)1−q
(

B− 1
Γ(q)

∫ ξ

a

F(s, x(s))
(ξ − s)1−q ds

)
+

1
Γ(q)

∫ t

a

F(s, x(s))
(t− s)1−q ds, t ∈ (ξ, b]. (7)

Lemma 3. (Corollary 3.12 [14]). Let G be an open set in R and let F : (a, b]× G → R] F(t, x) ∈ C1−q[a, b]
(see Section 3) and for all t ∈ (a, b] and x, y ∈ G the inequality |F(t, x)− F(t, y)| ≤ L|x− y|, L > 0 holds.

Then there exists a unique solution to the integral type initial value problem for RLFrDE (1), (2) in the
space C1−q[a, b].

Remark 2. Note that the global existence result is true for the weighted Cauchy type problem for RLFrDE (1), (3)
(see Theorem 3.12 [14]).

Lemma 4. ([14])

(i) If g ∈ C(t0, T], then for any point t ∈ (t0, T]

RL
t0

Dq
t (t0 Iq

t g(t)) = g(t).

(ii) If g ∈ C(t0, T] and I1−q
t0

g(t) ∈ C(t0, T], then for any point t ∈ (t0, T]

t0 Iq
t (

RL
t0

Dq
t g(t)) = g(t)− t0 I1−q

t g(t)|t=t0

Γ(q)
(t− t0)

q−1.

Remark 3. In the vector case, the fractional derivatives with the same fractional order are taken for
all components.

3. Non-Instantaneous Impulses in RL Fractional Differential Equations

The appropriate definition of both the initial conditions and the impulsive conditions for RL
fractional differential equations is an important starting point. We will discuss the initial value
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problem for nonlinear Riemann–Liouville fractional differential equations with non-instantaneous
impulses (NIRLFrDE). We will set up in an appropriate way both the initial conditions and the
impulsive conditions.

Note RL fractional functional differential equations with non-instantaneous impulses were studied
in [15] but the impulsive conditions as well as the initial condition do not depend on the fractional order.

Let t0, T ∈ R+ : t0 < T < ∞ and points {ti}
p
i=1 and {si}

p
i=0 be given such that 0 ≤ t0 < s0 < ti <

si < ti+1 , i = 1, 2, p− 1, T = sp, and t0 ∈ R+ with p a natural number.

Definition 1. The intervals (sk−1, tk], k = 1, 2, . . . , p are called intervals of non-instantaneous impulses.

Remark 4. If tk = sk−1, k = 1, 2, . . . , p, then the intervals of non-instantaneous impulses are reduced to points
of instantaneous impulses.

We consider the following sets:

C1−q[t0, T] = {y : [t0, T]→ Rn : y(t) ∈ C[t0, T] and there exists t0 Iq
t y(t) for t ∈ [t0, T]},

PC[t0, T] =
{

x : [t0, T]→ Rn : x ∈ C([t0, s0)
⋃
∪p−1

k=1 (sk, sk+1))

and x(sk + 0), x(sk − 0) exist for k = 0, 1, . . . , p− 1
}

,

PC1−q[t0, T] =
{

y(t) ∈ PC[t0, T] : (t− t0)
1−qy(t) ∈ PC[t0, T] for t ∈ ∪p

k=0(tk, sk]
}

,

PC1−q[t0, T] =
{

y(t) ∈ ∪p
k=0C(tk, sk)

⋃
∪p

k=0C(sk, tk+1) :

(t− tk)
1−qy(t) ∈ C(tk, sk) for k = 0, 1, . . . , p

and lim
t→tk+

(
tk I1−q

t y(t)
)
= lim

t→tk−
y(t), k = 1, 2, . . . , p

}
with the norms

||y||PC1−q [t0,T] = max{ max
k=0,1,...,p

(
sup

t∈(tk ,sk ]

||(t− t0)
1−qy(t)||

)
, max

k=0,1,...,p−1

(
sup

t∈(sk ,tk+1]

||y(t)||
)
}

and

||y||PC1−q [t0,T] = max{ max
k=0,1,...,p

(
sup

t∈(tk ,sk ]

||(t− tk)
1−qy(t)||

)
, max

k=0,1,...,p−1

(
sup

t∈(sk ,tk+1]

||y(t)||
)
}.

When impulses are involved in fractional differential equations there are two main approaches
for interpretation of the solutions. We will consider both approaches.

3.1. Fixed Lower Bound of the RL Fractional Derivative at the Given Initial Time

For our considerations in this case we need the function f (t, x) to be defined for all
t ∈ [t0, T], x ∈ Rn.

As is mentioned in Section 2 there are two types of initial conditions to RL fractional differential
equations: the integral form (2) and the weighted form (3). Following this idea we will define two
different types of initial value problems for NIRLFrDE.

3.1.1. Integral Form of the Initial Value Problem

Consider the nonlinear non-instantaneous impulsive Riemann–Liouville fractional differential
equation (NIRLFrDE)

RL
t0

Dq
t x(t) = f (t, x) for t ∈ (tk, sk], k = 0, 1, . . . , p, (8)
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with impulsive conditions

x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk], k = 1, 2, . . . , p, (9)

and the initial condition in integral form

t0 I1−q
t x(t)|t=t0 = x0, (10)

where x0 ∈ Rn, f : [0, T]×Rn → Rn, φk : [sk−1, tk]×Rn ×Rn → Rn, (k = 1, 2, 3, . . . , p).
The impulses in problem (8), (9) start abruptly at the points sk, k = 0, 1, 2, . . . , p− 1 and their

action continues on the interval (sk, tk+1]. The function x takes an impulse at sk, k = 0, 1, 2, . . . , p− 1
and it follows different rules in the two consecutive intervals (sk, tk+1] and (tk+1, sk+1]. At the point
tk+1, k = 0, 1, 2, . . . , p− 1, the function x is continuous.

We will define a mild solution of the initial value problem (8), (9) by properly handling the RL
fractional derivative and both the initial condition and the impulsive conditions.

Next we prove some auxiliary results.

Lemma 5. Let h : [t0, T] → R : h ∈ C1−q[t0, T], for all k = 1, 2, . . . , p the functions ψk ∈ C([tk, sk]×R)
and x : [t0, T]→ R be a function defined by

x(t) =



x0
Γ(q) (t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1h(s)ds, t ∈ (t0, s0]

ψk(t, x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p(
tk−t0
t−t0

)1−q
ψk(tk, x(sk−1 − 0))

−
(

tk−t0
t−t0

)1−q 1
Γ(q)

∫ tk
t0
(tk − s)q−1h(s)ds

+ 1
Γ(q)

∫ t
t0
(t− s)q−1h(s)ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(11)

Then:

(i) the function x satisfies the linear problem

RL
t0

Dq
t x(t) = h(t) for t ∈ (tk, sk], k = 0, 1, . . . , p,

x(t) = ψk(t, x(sk−1 − 0)) for t ∈ (sk−1, tk], k = 1, 2, . . . , p,

t0 I1−q
t x(t)|t=t0 = x0.

(12)

(ii) The function x is continuous at ti, i = 1, 2, . . . , p.

Proof. (i). Let t ∈ (tk, sk], k = 1, 2, . . . , p (the proof in the case t ∈ (t0, s0] is obvious and we omit it).
According to Lemma 4i and Proposition 1 the derivative RL

t0
Dq

t x(t) exists. Apply the operator RL
t0

Dq
t to

both sides of (11), use Proposition 1, Lemma 4i and we obtain

RL
t0

Dq
t x(t) = (tk − t0)

1−qψk(tk, x(sk−1 − 0)) RL
t0

Dq
t (t− t0)

q−1

− 1
Γ(q)

(tk − t0)
1−q

∫ tk

t0

(tk − s)q−1h(s)ds RL
t0

Dq
t (t− t0)

q−1

+
1

Γ(q)
RL
t0

Dq
t

∫ t

t0

(t− s)q−1h(s)ds = h(t).

(13)

Therefore the function x(t) satisfies the first equation in (12).
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Applying the operator t0 I1−q
t x(t) to the first equation of (11), and using Proposition 1 and the

equality t0 I1−q
t t0 Iq

t = t0 I1
t (see p. 10, (1.10) [16]), we get

t0 I1−q
t x(t) =

x0

Γ(q) t0 I1−q
t (t− t0)

q−1 + t0 I1−q
t t0 Iq

t h(t) = x0 +
1

Γ(1)

t∫
t0

h(s)ds.

Therefore, limt→t0 t0 I1−q
t x(t) = x0 and the function x(t) satisfies the initial condition in (12).

(ii) Let k = 1, 2, . . . , p. Taking the limit in (11), we obtain

lim
t→tk+

x(t) = lim
t→tk+

( tk − t0

t− t0

)1−q
ψk(tk, x(sk−1 − 0))

− lim
t→tk+

( tk − t0

t− t0

)1−q 1
Γ(q)

∫ tk

t0

(tk − s)q−1h(s)ds

+ lim
t→tk+

1
Γ(q)

∫ t

t0

(t− s)q−1h(s)ds

= ψk(tk, x(sk−1 − 0)) = x(tk−).

(14)

Lemma 6. Let h ∈ C1−q[t0, T]. If x ∈ PCq[t0, T] and satisfies (12), then x satisfies (11).

Proof. Let t ∈ (t0, s0] and RL
t0

Dq
t x(t) = h(t). Then according to Lemma 4ii we get

t0 Iq
t h(t) = t0 Iq

t

(
RL
t0

Dq
t x(t)

)
= x(t)− t0 I1−q

t x(t)|t=t0

Γ(q)
(t− t0)

q−1,

i.e.,

x(t) = t0 Iq
t h(t) + t0 I1−q

t x(t)|t=t0

Γ(q)
(t− t0)

q−1 =
x0

Γ(q)
(t− t0)

q−1 + t0 Iq
t h(t),

i.e., the function x(t) satisfies the first equation of (11).
Let t ∈ (t1, s1] and RL

t0
Dq

t x(t) = h(t). According to Lemma 2 with a = t0, ξ = t1, b = s1,
B = ψ1(t1, x(s0 − 0)) we get

x(t) = (
t1 − t0

t− t0

)1−q
(

B− 1
Γ(q)

∫ t1

t0

h(s)
(t1 − s)1−q ds

)
+

1
Γ(q)

∫ t

t0

h(s)
(t− s)1−q ds, (15)

i.e., the last equality in (11) is satisfied.
Similarly, we can prove that x satisfies (11) for the other subintervals.

Now, we introduce the concept of a mild solution for IVP for NIRLFrDE (8)–(10).

Definition 2. A function x : [t0, T] → Rn is called a mild solution of the IVP for NIRLFrDE (8)–(10) if it
satisfies the following Volterra integral–algebraic equation

x(t) =



x0
Γ(q) (t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,(
tk−t0
t−t0

)1−q
φk(tk, x(tk), x(sk−1 − 0))

−
(

tk−t0
t−t0

)1−q 1
Γ(q)

∫ tk
t0
(tk − s)q−1 f (s, x(s))ds

+ 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(16)
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Remark 5. Note in formula (16) the function f (t, x) has to be defined on the whole interval [t0, T].

Now we will establish existence results for mild solutions to the integral form of IVP for
NIRLFrDE (8)–(10) on a finite interval.

Theorem 1. (Existence and uniqueness). Let the following assumptions be satisfied:

1. The function f (t, x) ∈ C1−q[t0, T] for any x ∈ Rn and the inequality || f (t, x) − f (t, y)|| ≤
L||x− y|| holds for all t ∈ [0, T] and x, y ∈ Rn, where L > 0.

2. For all k = 1, 2, . . . , p the functions φk(t, x, y) ∈ C[sk−1, tk] for any x, y ∈ Rn and the
inequality ||φk(t, x1, y1)− φk(t, x2, y2)|| ≤ lk(||x1 − x2||+ ||y1 − y2||) holds for t ∈ [sk−1, tk]

and x1, x2, y1, y2 ∈ Rn where lk > 0, k = 1, 2, . . . , p.
3. The inequality K < 1 holds where

K = max
{

max
k=1,2,...p

lk,
21−2qL

√
π(s0 − t0)

q

Γ(0.5 + q)
,(

lk
(
(tk − t0)

1−q +
( tk − t0

sk−1 − t0

)1−q)
+

LPk
Γ(q)

+
L(sk − tk)

q

Γ(q + 1)

( sk − t0

tk − t0

)1−q
)}

,

Pk = max
t∈[tk ,sk ]

(
(tk − t0)

1−q

q ∑
i=0,1,...,k

(tk − ti)
q − (tk − si)

q

(ti − t0)1−q

− (t− t0)
1−q

q ∑
i=0,1,...,k

(t− ti)
q − (t− si)

q

(ti − t0)1−q

+
(tk − t0)

1−q

q ∑
i=0,1,...,k−1

(
(tk − si)

q − (tk − ti+1)
q
)

− (t− t0)
1−q

q ∑
i=0,1,...,k−1

(
(t− si)

q − (t− ti+1)
q
))

, k = 1, 2, . . . , p.

Then there exists a unique mild solution to the integral form of IVP for NIRLFrDE (8)–(10) in the space
PC1−q[t0, T].

We will apply the Banach contraction principle. For any function x ∈ PC1−q[t0, T] we define
the operator

Tx(t) =



x0
Γ(q) (t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,(
tk−t0
t−t0

)1−q
φk(tk, x(tk), x(sk−1 − 0))

−
(

tk−t0
t−t0

)1−q 1
Γ(q)

∫ tk
t0
(tk − s)q−1 f (s, x(s))ds

+ 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(17)

From condition 1 it follows that the operator T is well defined.
Step 1. We prove that Tx(t) ∈ PC1−q[t0, T] for x ∈ PC1−q[t0, T].
From (17) and limt→tk+0 Tx(t) = limt→tk−0 Tx(t) it follows that Tx(t) ∈ C(t0, T]/ ∪ {sk}.
Let t ∈ (t0, s0]. Then from condition 1 we get

(t− t0)
1−qTx(t) =

x0

Γ(q)
+

1
Γ(q)

∫ t

t0

( t− t0

t− s

)1−q
f (s, x(s))ds ∈ C(t0, s0].
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Let t ∈ (tk, sk], k = 1, 2, . . . , p. Then from (17) and condition 1 we get

(t− t0)
1−qTx(t) ∈ C[tk, sk).

Step 2. The operator T is a contraction in PC1−q[t0, T].
Let x1, x2 ∈ PC1−q[t0, T]. First let t ∈ (t0, s0]. Then we obtain

sup
t∈[t0,s0]

||(t− t0)
1−qTx1(t)− (t− t0)

1−qTx2(t)||

≤ sup
t∈[t0,s0]

L
Γ(q)

∫ t

t0

( t− t0

t− s

)1−q
||x1(s)− x2(s))||ds

= sup
t∈[t0,s0]

L
Γ(q)

∫ t

t0

( t− t0

(t− s)(s− t0)

)1−q
||(s− t0)

1−qx1(s)− (s− t0)
1−qx2(s))||ds

≤ sup
t∈[t0,s0]

L
Γ(q)

∫ t

t0

( t− t0

(t− s)(s− t0)

)1−q
||(s− t0)

1−qx1(s)− (s− t0)
1−qx2(s))||ds

≤ ||x1 − x2||PC1−q [t0,T]
L

Γ(q)

∫ t

t0

( t− t0

(t− s)(s− t0)

)1−q
ds

= ||x1 − x2||PC1−q [t0,T]
21−2qL

√
π(t− t0)

q

Γ(0.5 + q)
≤ K||x1 − x2||PC1−q [t0,T].

(18)

Next let t ∈ (s0, t1]. Then

sup
t∈(s0,t1]

||Tx1(t)− Tx2(t)|| = sup
t∈(s0,t1]

||φ1(t, x1(s0 − 0))− φ1(t, x2(s0 − 0))||

≤ l1||x1 − x2||PC1−q [t0,T] ≤ K||x1 − x2||PC1−q [t0,T].
(19)

Continuing this procedure. For example let t ∈ (tk, sk]. Then we get

sup
t∈(tk ,sk ]

||(t− t0)
1−qTx1(t)− (t− t0)

1−qTx2(t)||

≤ ||(tk − t0)
1−q
(

φk(tk, x1(tk), x1(sk−1 − 0))− φk(tk, x2(tk), x2(sk−1 − 0))
)
||

|| 1
Γ(q)

∫ tk

t0

(( tk − t0

tk − s

)1−q
−
( t− t0

t− s

)1−q
)
( f (s, x1(s))− f (s, x2(s)))ds||

+
1

Γ(q)

∫ t

tk

( t− t0

t− s

)1−q
|| f (s, x1(s))− f (s, x2(s))||ds

≤ lk(tk − t0)
1−q||x1(tk)− x2(tk)||

+ lk
( tk − t0

sk−1 − t0

)1−q
(sk−1 − t0)

1−q||x1(sk−1 − 0)− x2(sk−1 − 0)||

+
L

Γ(q)

∫ tk

t0

∣∣∣∣( tk − t0

tk − s

)1−q
−
( t− t0

t− s

)1−q
∣∣∣∣ ||x1(s))− x2(s)||ds

+
L

Γ(q)

∫ t

tk

( t− t0

(t− s)(tk − t0)

)1−q
||(s− t0)

1−qx1(s)− x2(s))||ds

≤ K||x1 − x2||PC1−q [t0,T]

(20)
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where the inequalities

||x1(tk)− x2(tk)|| ≤ sup
t∈(sk−1,tk ]

||x1(t)− x2(t)|| ≤ ||x1 − x2||PC1−q [t0,T],

||(sk−1 − t0)
1−q(x1(sk−1 − 0)− x2(sk−1 − 0))||

≤ sup
t∈(tk−1,sk−1]

||(t− t0)
1−q(x1(t)− x2(t))|| ≤ ||x1 − x2||PC1−q [t0,T],

∫ ti+1

si

(t− s)q−1ds =
(t− si)

q − (t− ti+1)
q

q
,∫ ti+1

si

(tk − s)q−1ds =
(tk − si)

q − (tk − ti+1)
q

q
,∫ si

ti

(t− s)q−1ds =
(t− ti)

q − (t− si)
q

q
,∫ si

ti

(tk − s)q−1ds =
(tk − ti)

q − (tk − si)
q

q
,∫ t

tk

(t− s)q−1ds =
(t− tk)

q

q
,

∫ t

tk

( t− t0

(t− s)(tk − t0)

)1−q
ds =

( t− t0

tk − t0

)1−q (t− tk)
q

q
≤
( sk − t0

tk − t0

)1−q (sk − tk)
q

q

and ∫ tk

t0

(( tk − t0

tk − s

)1−q
−
( t− t0

t− s

)1−q
)
||x1(s)− x2(s)||ds

≤ ∑
i=0,1,...,k

∫ si

ti

(( tk − t0

(tk − s)(ti − t0)

)1−q
−
( t− t0

(t− s)(ti − t0)

)1−q
)
×

× ||(s− t0)
1−q(x1(s)− x2(s))||ds

+ ∑
i=0,1,...,k−1

∫ ti+1

si

(( tk − t0

tk − s

)1−q
−
( t− t0

t− s

)1−q
)
||x1(s)− x2(s))||ds

≤
(
(tk − t0)

1−q

q

(
∑

i=0,1,...,k

(tk − ti)
q − (tk − si)

q

(ti − t0)1−q + ∑
i=0,1,...,k−1

(
(tk − si)

q − (tk − ti+1)
q
)

−
( (t− t0)

1−q

q ∑
i=0,1,...,k

(t− ti)
q − (t− si)

q

(ti − t0)1−q + ∑
i=0,1,...,k−1

(
(t− si)

q − (t− ti+1)
q
))
×

× ||x1 − x2||PC1−q [t0,T] ≤ Pk||x1 − x2||PC1−q [t0,T]

are used.
From the inequalities (18)–(20) it follows that ||Tx1 − Tx2||PC1−q [t0,T] ≤ K||x1 − x2||PC1−q [t0,T]

which proves the Theorem.

3.1.2. Weighted Initial Value Problem

Consider the NIRLFrDE (8) with impulsive conditions (9) and the weighted Cauchy type condition

lim
t→t0

(
(t− t0)

1−qx(t)
)
= x0 ∈ R. (21)

Then the following auxiliary results hold.
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Lemma 7. Let h : [t0, T] → R : h ∈ C1−q[t0, T], for all k = 1, 2, . . . , p the functions ψk ∈ C([tk, sk]×R)
and x : [0, T]→ R be a function defined by

x(t) =



x0(t− t0)
q−1 + 1

Γ(q)

∫ t
t0
(t− s)q−1h(s)ds, t ∈ (t0, s0]

ψk(t, x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,(
tk−t0
t−t0

)1−q
ψk(tk, x(sk−1 − 0))

−
(

tk−t0
t−t0

)1−q 1
Γ(q)

∫ tk
t0
(tk − s)q−1h(s)ds

+ 1
Γ(q)

∫ t
t0
(t− s)q−1h(s)ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(22)

Then:

(i) the function x satisfies the linear problem

RL
t0

Dq
t x(t) = h(t) for t ∈ (tk, sk], k = 0, 1, . . . , p,

x(t) = ψk(t, x(sk−1 − 0)) for t ∈ (sk−1, tk], k = 1, 2, . . . , p,

lim
t→t0

(
(t− t0)

1−qx(t)
)
= x0.

(23)

(ii) The function x is continuous at ti, i = 1, 2, . . . , p.

The proof follows from Lemma 5 and Remark 1 so we omit it.

Lemma 8. Let h ∈ C1−q[t0, T]. If x ∈ PCq[t0, T] and satisfies (23), then x satisfies (22).

Now, we introduce the concept of a mild solution for IVP for NIRLFrDE (8), (9), (21).

Definition 3. A function x : [t0, T]→ Rn is called a mild solution of the IVP for NIRLFrDE (8), (9), (21) if it
satisfies the following Volterra integral–algebraic equation (compare with (16)):

x(t) =



x0(t− t0)
q−1 + 1

Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,(
tk−t0
t−t0

)1−q
φk(tk, x(tk), x(sk−1 − 0))

−
(

tk−t0
t−t0

)1−q 1
Γ(q)

∫ tk
t0
(tk − s)q−1 f (s, x(s))ds

+ 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(24)

Remark 6. The existence and uniqueness Theorem 1 is true for the mild solution to the weighted form of IVP
for NIRLFrDE (8), (9), (21) defined by (24).

3.2. Changed Lower Bounds of the RL Fractional Derivative at the Impulsive Points

Here our function f (t, x) is defined only for t ∈ ∪p
k=0[tk, sk] and x ∈ Rn.

In this case, we will consider the RL fractional derivative with a changeable lower bound at
any point of jump, i.e., instead of RL

t0
Dq

t for all t > t0 we consider RL
tk

Dq
t on (tk, sk], k = 0, 1, . . . . It

does not seem to be possible to consider the usual Cauchy conditions at the point tk to the RLFrDE
RL
tk

Dq
t x(t) = f (t, x(t)), because the solution to this problem, in general, has a singularity at tk and

therefore it is not bounded and continuous at the point tk (see Section 3.4.2 [14]). There are two types of
initial conditions to RL fractional differential equations: the integral form (2) and the weighted form (3).
Following this idea we will define four different types of initial value problems for NIRLFrDE.
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3.2.1. Integral form of the Initial Conditions and Impulses

Consider the IVP for NIRLFrDE

RL
tk

Dq
t x(t) = f (t, x) for t ∈ (tk, sk], k = 0, 1, . . . , p, (25)

with impulsive conditions in the form of RL integrals

x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk), k = 1, 2, . . . , p,

tk I1−q
t x(t)|t=tk = φk(tk, x(tk), x(sk−1 − 0)), k = 1, 2, . . . , p,

(26)

and initial conditions
t0 I1−q

t x(t)|t=t0 = x0, (27)

where x0 ∈ Rn, f : ∪p
k=0[tk, sk]×Rn → Rn, φk : [sk−1, tk]×Rn ×Rn → Rn, (k = 1, 2, . . . , p).

Lemma 9. Let h : ∪p
k=0[tk, sk] → R : h ∈ ∪p

k=0C1−q[tk, sk], for all k = 1, 2, . . . , p the functions ψk ∈
C([tk, sk]×R) and x : [t0, T]→ R be a function defined by

x(t) =



x0
Γ(q) (t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1h(s)ds, t ∈ (t0, s0]

ψk(t, x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p
ψk(tk ,x(sk−1−0))

Γ(q) (t− tk)
q−1

+ 1
Γ(q)

∫ t
tk
(t− s)q−1h(s)ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(28)

Then:

(i) the function x satisfies the linear problem

RL
tk

Dq
t x(t) = h(t) for t ∈ (tk, sk], k = 0, 1, . . . , p,

x(t) = ψk(t, x(sk−1 − 0)) for t ∈ (sk−1, tk), k = 1, 2, . . . , p,

tk I1−q
t x(t)|t=tk = ψk(tk, x(sk−1 − 0)), k = 1, 2, . . . , p

t0 I1−q
t x(t)|t=t0 = x0.

(29)

(ii) The function x satisfies limt→tk+

(
tk I1−q

t x(t)
)
= limt→tk− x(t) for k = 1, 2, . . . , p.

Proof. (i). Let t ∈ (tk, sk), k = 1, 2, . . . , p. According to Lemma 4i and Proposition 1 the derivative
RL
tk

Dq
t x(t) exists. Applying the operator RL

tk
Dq

t to both sides of the last equality of (28), and useing
Corollary 1 and Lemma 4i, we obtain

RL
tk

Dq
t x(t) =

ψk(tk, x(sk−1 − 0))
Γ(q)

RL
tk

Dq
t (t− tk)

q−1

+
1

Γ(q)
RL
tk

Dq
t

∫ t

tk

(t− s)q−1h(s)ds = h(t).
(30)

Therefore the function x(t) satisfies the first equation in (29). A similar argument is needed for
t ∈ (t0, s0].
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Let t ∈ (tk, sk), k = 1, 2, . . . , p and apply the operator tk I1−q
t x(t) to both sides of the last equality

of (28), use Corollary 1 and the equality tk I1−q
t tk Iq

t = tk I1
t (see p. 10, (1.10) [16]), to get

tk I1−q
t x(t) =

ψk(tk, x(sk−1 − 0))
Γ(q) tk I1−q

t (t− tk)
q−1 + tk I1−q

t tk Iq
t h(t)

= ψk(tk, x(sk−1 − 0)) +
1

Γ(1)

t∫
tk

h(s)ds.
(31)

Therefore, limt→tk

(
tk I1−q

t x(t)
)
= ψk(tk, x(sk−1− 0)) and the function x(t) satisfies the impulsive

condition in (29).
Apply the operator t0 I1−q

t x(t) to the first equation of (28), use Corollary 1 and the equality

tk I1−q
t tk Iq

t = t0 I1
t (see p. 10, (1.10) [16]) and we get

tk I1−q
t x(t) =

x0

Γ(q) tk I1−q
t (t− tk)

q−1 + tk I1−q
t t0 Iq

t h(t) = x0 +
1

Γ(1)

t∫
t0

h(s)ds.

Therefore, limt→t0 t0 I1−q
t x(t) = x0 and the function x(t) satisfies the initial condition in (29).

(ii) Let k = 1, 2, . . . , p. According to (31) we obtain

lim
t→tk+

x(t) = lim
t→tk+

(
tk I1−q

t x(t)
)
= ψk(tk, x(sk−1 − 0) = lim

t→tk−
ψk(t, x(sk−1 − 0)) = lim

t→tk−
x(t).

Lemma 10. Let h ∈ ∪p
k=0C1−q[tk, sk]. If x ∈ PCq[t0, T] and satisfies (29), then x satisfies (28).

Proof. Let t ∈ (t0, s0] and RL
t0

Dq
t x(t) = h(t). Then according to Lemma 4ii we get

t0 Iq
t h(t) = t0 Iq

t

(
RL
t0

Dq
t x(t)

)
= x(t)− t0 I1−q

t x(t)|t=t0

Γ(q)
(t− t0)

q−1,

i.e.,

x(t) = t0 Iq
t h(t) + t0 I1−q

t x(t)|t=t0

Γ(q)
(t− t0)

q−1 =
x0

Γ(q)
(t− t0)

q−1 + t0 Iq
t h(t),

i.e., the function x(t) satisfies the first equation of (28).
Let t ∈ (t1, s1] and RL

t1
Dq

t x(t) = h(t). According to Lemma 2 and (6) with a = tk, b = sk, B =

ψ1(t1, x(s0 − 0)) we get

x(t) =
ψ1(t1, x(s0 − 0))

Γ(q)
(t− t1)

q−1 +
1

Γ(q)

∫ t

t1

f (s, x(s))
(t− s)1−q ds, (32)

i.e., the last equality in (28) is satisfied for k = 1.
Similarly, we can prove that x satisfies (28) for the other subintervals.

Now, we define a mild solution for IVP for NIRLFrDE (25)–(27) following the idea with the
presence of impulses in differential equations ([17]) and Lemma 2 with t0 = tk, k = 1, 2, . . . and
b = φk(tk, x(tk), x(sk−1 − 0)).
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Definition 4. A function x : [t0, T]→ Rn is called a mild solution of the IVP for NIRLFrDE (25)–(27) if it
satisfies the following Volterra integral–algebraic equations:

x(t) =



x0
Γ(q) (t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
φk(tk ,x(tk),x(sk−1−0))

Γ(q) (t− tk)
q−1

+ 1
Γ(q)

∫ t
tk
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(33)

We give conditions for the existence of a mild solution to the integral type IVP for
NIRLFrDE (25)–(27).

Theorem 2. (Existence and uniqueness). Let the following assumptions be satisfied:

1. The function f (t, x) : ∪p
k=0[tk, sk]×Rn → Rn, f (t, x) ∈ ∪p

k=0C1−q[tk, sk] for any x ∈ Rn and the
inequality || f (t, x)− f (t, y)|| ≤ L||x− y|| holds for all t ∈ [tk, sk], k = 0, 1, . . . , p and x, y ∈ Rn,
where L > 0.

2. For all k = 1, 2, . . . , p the functions φk(t, x, y) ∈ C[sk−1, tk] for any x, y ∈ Rn and the
inequality ||φk(t, x1, y1)− φk(t, x2, y2)|| ≤ lk(||x1 − x2||+ ||y1 − y2||) holds for t ∈ [sk−1, tk]

and x1, x2, y1, y2 ∈ Rn where lk > 0, k = 1, 2, . . . , p.
3. The inequality K < 1 holds where

K = max
{

max
k=1,2,...p

lk,
21−2qL

√
π(s0 − t0)

q

Γ(0.5 + q)
,

lk
Γ(q)

+
lk

Γ(q)(sk−1 − tk−1)
1−q +

L21−2q√π(t− tk)
q

Γ(0.5 + q)

}
.

Then there exists a unique mild solution to the integral form of IVP for NIRLFrDE (8)–(10) in the space
PC1−q[t0, T].

We will apply the Banach contraction principle. For any function x ∈ PC1−q[t0, T] we define
the operator

Tx(t) =


x0

Γ(q) (t− t0)
q−1 + t0 Iq

t f (t, x(t)), t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
φk(tk ,x(tk),x(sk−1−0))

Γ(q) (t− tk)
q−1 + tk Iq

t f (t, x(t)),

t ∈ (tk, sk], k = 1, 2, . . . , p.

(34)

From condition 1 it follows that the operator T is well defined.
Step 1. We prove that Tx(t) ∈ PC1−q[t0, T] for x ∈ PC1−q[t0, T].
From (34) it follows that Tx(t) ∈ ∪p

k=0C(tk, sk)
⋃∪p

k=0C(sk, tk+1).
Let t ∈ (t0, s0]. Then from condition 1 we get

(t− t0)
1−qTx(t) =

x0

Γ(q)
+

1
Γ(q)

∫ t

t0

( t− t0

t− s

)1−q
f (s, x(s))ds ∈ C(t0, s0].

Let t ∈ (tk, sk], k = 1, 2, . . . , p. Then from (34) and condition 1 we get

(t− tk)
1−qTx(t) ∈ C(tk, sk).
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From (34), condition 1, Corollary 1 and tk I1−q
t tk Iq

t = tk I1
t we get

tk I1−q
t Tx(t) =

φk(tk, x(tk), x(sk−1 − 0))
Γ(q) tk I1−q

t (t− tk)
q−1

+ tk I1−q
t

(
tk Iq f (t, x(t))

)
= φk(tk, x(tk), x(sk−1 − 0) + tk I1

t f (t, x(t)).

Therefore,

lim
t→tk+

(
tk I1−q

t x(t)
)
= lim

t→tk−
φk(t, x(t), x(sk−1 − 0) = lim

t→tk−
x(t).

Step 2. The operator T is a contraction in PC1−q[t0, T].
Let x1, x2 ∈ PC1−q[t0, T]. First let t ∈ (t0, s0]. Then similar to (18) we get

sup
t∈[t0,s0]

||(t− t0)
1−qTx1(t)− (t− t0)

1−qTx2(t)||

≤ ||x1 − x2||PC1−q [t0,T]
21−2qL

√
π(t− t0)

q

Γ(0.5 + q)
≤ K||x1 − x2||PC1−q [t0,T]

(35)

where the equality ∫ t

a

( 1
(t− s)(s− a)

)1−q
ds =

21−2q√π(t− a)2q−1Γ(q)
Γ(0.5 + q)

(36)

is applied. Next let t ∈ (s0, t1]. As in (19) we get

sup
t∈(s0,t1]

||Tx1(t)− Tx2(t)|| ≤ l1||x1 − x2||PC1−q [t0,T] ≤ K||x1 − x2||PC1−q [t0,T]. (37)

Continuing this procedure. For example let t ∈ (tk, sk]. Then from (34) we get

sup
t∈(tk ,sk ]

||(t− tk)
1−qTx1(t)− (t− tk)

1−qTx2(t)||

≤ ||φk(tk, x1(tk), x1(sk−1 − 0))− φk(tk, x2(tk), x2(sk−1 − 0))
Γ(q)

||

+
1

Γ(q)

∫ t

tk

( t− tk
t− s

)1−q
|| f (s, x1(s))− f (s, x2(s))||ds

≤ lk
Γ(q)
||x1(tk)− x2(tk)||

+
lk

Γ(q)(sk−1 − tk−1)
1−q (sk−1 − tk−1)

1−q||x1(sk−1 − 0)− x2(sk−1 − 0)||

+
L

Γ(q)

∫ t

tk

( t− tk
(t− s)(s− tk)

)1−q
||(s− tk)

1−q(x1(s)− x2(s))||ds

≤
( lk

Γ(q)
+

lk
Γ(q)(sk−1 − tk−1)

1−q +
L21−2q√π(t− tk)

q

Γ(0.5 + q)

)
||x1 − x2||PC1−q [t0,T]

≤ K||x1 − x2||PC1−q [t0,T]

(38)
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where the inequality (36) with a = tk and

||x1(tk)− x2(tk)|| ≤ sup
t∈(sk−1,tk ]

||x1(t)− x2(t)|| ≤ ||x1 − x2||PC1−q [t0,T],

||(sk−1 − t0)
1−q(x1(sk−1 − 0)− x2(sk−1 − 0))||

≤ sup
t∈(tk−1,sk−1]

||(t− t0)
1−q(x1(t)− x2(t))|| ≤ ||x1 − x2||PC1−q [t0,T]

are used.
From the inequalities (35), (37), (38) it follows that ||Tx1 − Tx2||PC1−q [t0,T] ≤ K||x1 − x2||PC1−q [t0,T]

which proves the Theorem.

3.2.2. Weighted Form of the Initial Conditions and Impulses

Consider the NIRLFrDE (25) with impulsive conditions in weighted form

x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk), k = 1, 2, . . . , p,

lim
t→tk

(
(t− tk)

1−qx(t)
)
= φk(tk, x(tk), x(sk−1 − 0)), k = 1, 2, . . . , p

(39)

and initial conditions in the weighted form:

lim
t→t0

(
(t− t0)

1−qx(t)
)
= x0. (40)

Applying Lemmas 2, 9 and 10 and (6) we could define a mild solution of IVP for
NIRLFrDE (25), (39), (40):

Definition 5. A function x : [t0, T]→ Rn is called a mild solution of the IVP for NIRLFrDE (25), (39), (40) if
it satisfies the following Volterra integral–algebraic equations:

x(t) =


x0(t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
φk(tk, x(tk), x(sk−1 − 0))(t− tk)

q−1

+ 1
Γ(q)

∫ t
tk
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(41)

Note Theorem 2 for existence and uniqueness could be easily converted to the mild solution of
the IVP for NIRLFrDE (25), (39), (40) given by (41).

3.2.3. Mixed Forms of the Initial Conditions and Impulses

We have the following cases:
Case 1. Consider the IVP for NIRLFrDE (25) with mixed impulsive and initial conditions of

the form:

x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk), k = 1, 2, . . . , p,

tk I1−q
t x(t)|t=tk = φk(tk, x(tk), x(sk−1 − 0)), k = 1, 2, . . . , p

(42)

and initial conditions in the weighted form:

lim
t→t0

(
(t− t0)

1−qx(t)
)
= x0, (43)

Then the mild solution to the IVP (25), (42), (43) will be:
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Definition 6. A function x : [t0, T]→ Rn is called a mild solution of the IVP for NIRLFrDE (25), (42), (43) if
it satisfies the following Volterra integral–algebraic equations:

x(t) =


x0(t− t0)

q−1 + 1
Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
φk(tk ,x(tk),x(sk−1−0))

Γ(q) (t− tk)
q−1

+ 1
Γ(q)

∫ t
tk
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(44)

Case 2. Consider the IVP for NIRLFrDE (25) with impulsive conditions in the weighted form:

x(t) = φk(t, x(t), x(sk−1 − 0)) for t ∈ (sk−1, tk), k = 1, 2, . . . , p,

lim
t→tk

(
(t− tk)

1−qx(t)
)
= φk(tk, x(tk), x(sk−1 − 0)), k = 1, 2, . . . , p

(45)

and initial conditions in integral form:

t0 I1−q
t x(t)|t=t0 = x0. (46)

Then the mild solution to the IVP (25), (45), (46) will be:

Definition 7. A function x : [t0, T]→ Rn is called a mild solution of the IVP for NIRLFrDE (25), (45), (46) if
it satisfies the following Volterra integral–algebraic equations:

x(t) =


x0

Γ(q) (t− t0)
q−1 + 1

Γ(q)

∫ t
t0
(t− s)q−1 f (s, x(s))ds, t ∈ (t0, s0]

φk(t, x(t), x(sk−1 − 0)), t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
φk(tk, x(tk), x(sk−1 − 0))(t− tk)

q−1

+ 1
Γ(q)

∫ t
tk
(t− s)q−1 f (s, x(s))ds, t ∈ (tk, sk], k = 1, 2, . . . , p.

(47)

Note Theorem 2 could be easily converted to mild solutions of the IVP for NIRLFrDE with mixed
initial and impulsive conditions.

3.3. Examples

To illustrate the application of the above formulas for the mild solutions of non-instantaneous
impulsive RL fractional differential equations and the types of impulsive functions we consider the
following examples in the scalar case.

Example 1. Let tk = 2k, sk = 2k + 1, k = 0, 1, 2, . . . , p, T = 2p + 1, p is a natural number,
and f (t, x) = 1

t−1.5 for t ∈ [0, T].
Consider the IVP for the scalar NIRLFrDE (8)–(10) with t0 = 0. The function f (t, x) is defined on

the whole interval [0, T]. However (16) cannot be applied because the integral
∫ t

0 (t− s)q−1 1
s−1.5 ds is

not convergent for t > 1.5.
Now, consider the IVP for the scalar NIRLFrDE (25), (27). The application of

formula (33) for the solution causes no problem since we use the integral
∫ t

2k(t − s)q−1 1
s−1.5 ds for

t ∈ (2k, 2k + 1], k = 0, 1, 2, . . . , p which is convergent. Example 2. Consider the partial case of (8)–(10)
with n = 1, t0 = 0, q = 0.8 and f (t, x) ≡ 1 for t ∈ [0, T].

We will consider several types of impulsive functions φk(t, x, y).

Case 1. Let φk(t, x, y) = gk(t) for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . , p).
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Case 1.1. Consider (8)–(10) and (16) to obtain the solution:

x(t) =


x0

t−0.2

Γ(0.8) +
1.25t0.8

Γ(0.8) t ∈ (0, s0]

gk(t) t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p(
tk
t
)0.2gk(tk)− 1.25tk

Γ(0.8)t0.2 +
1.25t0.8

Γ(0.8) t ∈ (tk, sk], k = 1, 2, . . . , p.

The solution depends on the initial value x0 only on the interval (0, s0]. Therefore,
two solutions with different initial values x0 6= x̃0 will coincide for all t > s0.

Case 1.2. Consider (25), (27) and apply (33) to obtain the solution:

x(t) =


x0

t−0.2

Γ(0.8) +
1.25t0.8

Γ(0.8) t ∈ (0, s0]

gk(t) t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p
gk(tk)
Γ(0.8) (t− tk)

−0.2 + 1.25(t−tk)
0.8

Γ(0.8) t ∈ (tk, sk], k = 1, 2, . . . , p.

Similarly to Case 1.1 we obtain that two solutions with different initial values
x0 6= x̃0 coincide for all t > s0.

Case 2. Let φk(t, x, y) = akx + bk for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . , p) where ak, bk are constants.

- If ak = 1, bk = 0, then the impulsive condition (9) is reduced to the condition
x(t) = x(t) for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . , p) and obviously the IVP for
NIRLFrDE (8)–(10), respectively (25), (27), will have an infinite number of solutions.

- If ak = 1, bk 6= 0, then the impulsive condition (9) is reduced to the condition
x(t) = x(t) + b for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . , p) which has no solution and the
IVP for NIRLFrDE (8)–(10), respectively (25), (27), will have no solution.

- If ak 6= 1, bk = 0, then the impulsive condition (9) is reduced to the condition
x(t) = ax(t) for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . , p) which has only the zero solution,
and therefore any solution of IVP for NIRLFrDE (8)–(10), respectively (25), (27)
will be zero on (sk−1, tk], (k = 1, 2, 3, . . . , p). In this case from (16) we obtain the
solution for (8)–(10):

x(t) =


x0

t−0.2

Γ(0.8) +
1.25t0.8

Γ(0.8) t ∈ (0, s0]

0 t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
− 1.25tk

Γ(0.8)t0.2 +
1.25t0.8

Γ(0.8) t ∈ (tk, sk], k = 1, 2, . . . , p.

and from (33) we obtain the solution for (25), (27):

x(t) =


x0

t−0.2

Γ(0.8) +
1.25t0.8

Γ(0.8) t ∈ (0, s0]

0 t ∈ (sk−1, tk], k = 1, 2, 3, . . . , p,
1.25(t−tk)

0.8

Γ(0.8) t ∈ (tk, sk], k = 1, 2, . . . , p.

- If ak 6= 1, bk 6= 0, then the impulsive condition (9) is reduced to the condition
x(t) = ax(t) + b for t ∈ [sk−1, tk], (k = 1, 2, . . . , p) which has an unique solution
and we can talk about uniqueness of the solution IVP for NIRLFrDE (8)–(10),
respectively (25), (27).

Case 3. Let φk(t, x, y) = arctan(x) + cos(x) + y for t ∈ [sk−1, tk], (k = 1, 2, 3, . . . , p). Then the
impulsive condition (9) is reduced to the algebraic equation x = arctan(x)+ cos(x)+ y which
could have more than one solution (for example if y = 1, then there are 5 constant solutions),
i.e., we do not have uniqueness for the IVP for NIRLFrDE (8)–(10), respectively (25), (27).
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Example 3. Consider the partial case of (8)–(10) with t0 = 0, q = 0.5, f (t, x) = ax for
t ∈ [0, T], x ∈ R, a = const 6= 0 and φk(t, x, y) = bky, k = 1, 2, . . . , p. In this case we can consider
both IVP (8), (10) and IVP (25), (27).

Case 1. When we apply (16) we obtain the solution of (8), (10):

x(t) =


x0√

t
E0.5,0.5(−a

√
t) for t ∈ [0, s0],

bkx(sk−1) for t ∈ (sk−1, tk],√
tk
t

(
bkx(sk−1)− a

Γ(0.5)

∫ tk
0

x(s)√
tk−s ds

)
+ a

Γ(0.5)

∫ t
0

x(s)√
t−s

ds for t ∈ (tk, sk].

Case 2. When we apply (33) and Proposition 1 we obtain the solution of (25), (27):

x(t) =


x0

E0.5,0.5(−a
√

t)√
t

for t ∈ [0, s0],

x0 ∏k
j=1

bjE0.5,0.5(−a
√

sj−1−tj−1)√
sj−1−tj−1

for t ∈ (sk−1, tk],

x0
E0.5,0.5(−a

√
t−tk)√

t−tk
∏k

j=1

( bjE0.5,0.5(−a
√

sj−1−tj−1)√
sj−1−tj−1

)
for t ∈ [tk, sk],

4. Brief Overview of RL Fractional Equations with Instantaneous Impulses

From Remark 4 note the case of instantaneous impulses is a special case of non-instantaneous impulses.
Several authors set up and studied various types of instantaneous impulsive differential equations

for RL fractional differential equations and here we will give a brief overview of the types of
instantaneous impulsive conditions in RL fractional differential equations. We emphasize only the case
of the fractional order q ∈ (0, 1). Also, we will assume that the points {tk} are the points of impulses.

In [18] Kosmatov studied the RL fractional differential equations of fractional order q with the
following impulsive conditions:

RL
0 Dβ

t x(t)|t=ti+0 − RL
0 Dq

t x(t)|t=ti−0 = Ji(x(ti)), i = 1, 2, . . . , p, (48)

where β ∈ (0, q). As is shown in [12] the impulse functions RL
0 Dβ

t x(t) are singular at t = ti, i=1,2,. . . , p,
for β ∈ (0, q) and the impulsive conditions (48) are unsuitable (see Remarks 4.1 [12]). Note the
existence of a mild solution for Riemann–Liouville fractional differential equations with fractional
order q and impulsive conditions of the form (48) is studied in [10]. In [19] Zhao studied a nonlinear
Riemann–Liouville fractional differential equation with instantaneous impulsive conditions of the type

∆x(ti) = Ji(x(ti)), i = 1, 2, . . . , p, (49)

where ∆x(ti) = x(ti + 0)− x(ti − 0). Note similar impulsive conditions are used in [20,21]. As is
shown in [12] the integral representation of the solution with impulsive condition (49) is not correct
(see Remark 4.3 [12]). In [8] the initial value problems of nonlinear impulsive RL fractional differential
equations are studied with instantaneous impulsive conditions of the type

lim
t→ti+0

(t− ti)
1−qx(t) = Ji(ti, x(ti), RL

0 Dβ
t x(t)|t=ti−0), i = 1, 2, . . . , p, (50)

with β ∈ (0, q). Similar impulsive conditions are studied in [11,22] but written in the form:

∆I1−q
ti

x(ti) = Ji(ti, x(ti−)), i = 1, 2, . . . , p, (51)
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where ∆I1−q
ti

x(ti) = I1−q
ti+

x(ti+) − I1−q
ti− x(ti−) = limt→ti+0(t − ti)

1−qx(t) − limt→ti−(t − ti)
1−qx(t).

In [23] the instantaneous impulsive conditions are given by

RL
0+ I1−q

t x(ti + 0)− RL
0+ I1−q

t x(ti − 0) = Ji(x(ti)), i = 1, 2, . . . , p. (52)

The integral representation of the solution of instantaneous impulsive RL fractional derivative of
order q ∈ (0, 1) is given in [8] in the case when the impulsive conditions are

lim
t→ti+0

(t− ti)
1+β−qx(t) = xi, i = 1, 2, . . . , p,

and the initial condition is
RL
0 I1−q

t x(t)|t=0 = x0

where β ∈ (0, q).
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