Article

# Non-Unique Fixed Point Theorems in Modular Metric Spaces 

Sharafat Hussain 1,2,3(D)<br>1 Department of Mathematics, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan; sharafat@ualberta.ca<br>2 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada<br>3 Department of Mathematics, Women University of Azad Jammu and Kashmir, Bagh 12500, AJK, Pakistan

Received: 5 April 2019; Accepted: 15 April 2019; Published: 16 April 2019


#### Abstract

This paper is devoted to the study of Ćirić-type non-unique fixed point results in modular metric spaces. We obtain various theorems about a fixed point and periodic points for a self-map on modular spaces which are not necessarily continuous and satisfy certain contractive conditions. Our results extend the results of Ćirić, Pachpatte, and Achari in modular metric spaces.


Keywords: $f$-orbitally $\omega$-complete; strong Ćirić type $\omega$-contraction; strong Pachpatte type $\omega$-contraction

MSC: 47H09; 54H25

## 1. Introduction

Metric fixed point theory was initiated by the renowned theorem of Banach [1], known as the Banach Contraction Mapping Principle. He stated that every contraction in a complete metric space has a unique fixed point. Following this pioneering work, many authors have generalized this elegant result by refining the contraction condition and/or by changing the metric space to more refined abstract spaces (see, e.g., [2-5] and the related references therein). In 1974, Ćirić [6] studied non-unique fixed point results in metric spaces. He obtained various theorems about a fixed point and periodic points for a self-map $f$ on a metric space $M$ which is not necessarily continuous and satisfies the condition

$$
\min \{d(f x, f y), d(x, f x), d(y, f y)\}-\min \{d(x, f y), d(y, f x)\} \leq k d(x, y)
$$

where $x, y \in M$ and $k \in(0,1)$. Later on, Pachpatte [7] proved that an orbitally continuous self-map $f$ on an $f$-orbitally complete metric space $M$ satisfying the condition

$$
\begin{aligned}
& \min \left\{[d(f x, f y)]^{2}, d(x, y) d(f x, f y),[d(y, f y)]^{2}\right\} \\
&-\min \{d(x, f x) d(y, f y), d(x, f y) d(y, f x)\} \leq k d(x, f x) d(y, f y)
\end{aligned}
$$

where $x, y \in M$ and $k \in(0,1)$, has a fixed point. Achari [8] established some fixed point theorems when the self-mapping $f$ on a metric space $(M, d)$ satisfies the inequality

$$
\begin{gathered}
\frac{\min \{d(f x, f y) d(x, y), d(x, f x) d(y, f y)\}-\min \{d(x, f x) d(x, f y), d(y, f y) d(y, f x)\}}{\min \{d(x, f x), d(y, f y)\}} \\
\leq k d(x, y),
\end{gathered}
$$

where $x, y \in M, k \in(0,1)$, and $d(x, f x) \neq 0, d(y, f y) \neq 0$. Inspired by this pioneering work, many researchers have studied non-unique fixed point results for different types of contractions on metric spaces (see [9-18]), as well as in many other abstract spaces (see [19-26]).

On the other hand, Nakno [27] initiated the theory of modular spaces, which was re-defined and extended by Musielak and Orlicz [28-30]. In 2008, Chistyakov [31] gave the concept of a modular metric space generated by an F-modular and the advanced theory of modular spaces. As a generalization of metric spaces, Chistyakov $[32,33]$ ) introduced and studied modular metric spaces on an arbitrary set and, in [34], proved fixed point results for contractive maps in modular spaces. The existence of fixed point theorems in modular spaces has received a great deal of attention from researchers, recently (see [35-38] and references therein).

Inspired by the works of Chistyakov and Ćirić, in this paper, we study non-unique fixed points and periodic points in modular metric spaces. Our results extend the results of Ćirić, Pachpatte, and Achari in modular metric spaces.

## 2. Preliminaries

In this section, we recollect some basic notions and results about modular metric spaces, which will be used later. Throughout the article, we assume that $M$ is a nonempty set, $\lambda$ is a non-negative real number (i.e., $\lambda \in(0, \infty)$ ), and $\omega:(0, \infty) \times M \times M \rightarrow[0, \infty]$ is a function (that will also be written as $\omega(\lambda, x, y)=\omega_{\lambda}(x, y)$ for all $\lambda>0$ and $\left.x, y \in M\right)$ such that $\omega=\left\{\omega_{\lambda}\right\}_{\lambda>0}$ with $\omega_{\lambda}: M \times M \rightarrow[0, \infty]$.

Definition 1. [32] A map $\omega:(0, \infty) \times M \times M \rightarrow[0, \infty]$ is called a (metric) modular on $M$ if it satisfies the following conditions:
(i) $\omega_{\lambda}(x, y)=0$ if and only if $x=y$;
(ii) $\omega_{\lambda}(x, y)=\omega_{\lambda}(y, x)$; and
(iii) $\omega_{\lambda+\mu}(x, y) \leq \omega_{\lambda}(x, z)+\omega_{\mu}(z, y)$,
for all $\lambda, \mu>0$ and $x, y, z \in M$.
If, in lieu of $(i), \omega$ satisfies only
$\left(i_{p}\right) \omega_{\lambda}(x, x)=0$ for all $x \in M$ and $\lambda>0$,
then $\omega$ is called a pseudomodular on $M$. Furthermore, $\omega$ is called a strict modular on $M$ if it satisfies ( $i_{p}$ ) and
( $i_{s}$ ) given $x, y \in M$, if there exists a non-negative real number $\lambda$, possibly depending on $x$ and $y$, such that $\omega_{\lambda}(x, y)=0$, then $x=y$.

A modular (strict modular, pseudomodular) is called a convex modular if, in place of (iii), it satisfies
(iv) $\omega_{\lambda+\mu}(x, y) \leq \frac{\lambda}{\lambda+\mu} \omega_{\lambda}(x, z)+\frac{\mu}{\lambda+\mu} \omega_{\mu}(z, y)$
for all $\lambda, \mu>0$ and $x, y, z \in M$.
It was shown, in [32], that if $\omega$ is a convex modular then, for all $0<\lambda \leq \mu$ and $x, y \in M$, one has

$$
\begin{equation*}
\omega_{\mu}(x, y) \leq \frac{\lambda}{\mu} \omega_{\lambda}(x, y) \leq \omega_{\lambda}(x, y) \tag{1}
\end{equation*}
$$

By using condition (iii) of Definition 1, one can show that a modular (pseudomodular) $\omega$ satisfies

$$
\begin{equation*}
\omega_{\mu_{2}}(x, y) \leq \omega_{\mu_{1}}(x, y) \tag{2}
\end{equation*}
$$

for $\mu_{1}<\mu_{2}$ and for all $x, y \in M$.
Definition 2. [32] Let $\omega$ be a pseudomodular on $M$ and $x \in M$. Then, the sets

$$
\begin{aligned}
& M_{\omega}=M_{\omega}(x)=\left\{y \in M: \omega_{\lambda}(x, y) \rightarrow 0 \text { as } \lambda \rightarrow \infty\right\} \\
& M_{\omega}^{*}=M_{\omega}^{*}(x)=\left\{y \in M: \text { there exists } \lambda=\lambda(y)>0 \text { such that } \omega_{\lambda}(x, y)<\infty\right\}
\end{aligned}
$$

are called modular metric spaces (around $x$ ).
It was shown, in [32], that, in general, $M_{\omega}$ is contained in $M_{\omega}^{*}$. According to ([32], Theorem 2.6), if $\omega$ is a modular metric on $M$, then the modular space $M_{\omega}$ can be equipped with a non-trivial metric generated by $\omega$, given by

$$
d_{\omega}(x, y)=\inf \left\{\lambda>0: \omega_{\lambda}(x, y) \leq \lambda\right\}
$$

for all $x, y \in M_{\omega}$. If $\omega$ is a convex modular on $M$, then it follows, from ([32], Section 3.5 and Theorem 3.6), that $M_{\omega}=M_{\omega}^{*}$ holds and they are equipped with the metric $d_{\omega}^{*}$, given by

$$
d_{\omega}^{*}(x, y)=\inf \left\{\lambda>0: \omega_{\lambda}(x, y) \leq 1\right\} .
$$

Definition 3. $[32,33]$ Let $M_{\omega}$ and $M_{\omega}^{*}$ be modular metric spaces.
(i) A sequence $\left\{x_{n}\right\}$ in $M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$ is called $\omega$-convergent to $x \in M$ if and only if $\lim _{n \rightarrow \infty} \omega_{\lambda}\left(x_{n}, x\right)=0$, for some $\lambda>0$. Then, $x$ is said to be the modular limit of $\left\{x_{n}\right\}$
(ii) A sequence $\left\{x_{n}\right\}$ in $M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$ is called $\omega$-Cauchy if $\lim _{n, m \rightarrow \infty} \omega_{\lambda}\left(x_{n}, x_{m}\right)=0$, for some $\lambda>0$.
(iii) A subset $X$ of $M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$ is called $\omega$-complete if every $\omega$-Cauchy sequence in $X$ is $\omega$-convergent to $x \in X$.

By using the properties of modular metrics and the definition of convergence, one can easily prove that if $\lim _{n \rightarrow \infty} \omega_{\lambda}\left(x_{n}, x\right)=0$ for some $\lambda>0$, then $\lim _{n \rightarrow \infty} \omega_{\mu}\left(x_{n}, x\right)=0$ for all $\mu>\lambda>0$. It was also shown, in [33], that if $\omega$ is pseudomodular on $M$, then the modular metric $M_{\omega}^{*}$ and $M_{\omega}$ are closed with respect to $\omega$-convergence.

Definition 4. [34] A pseudomodular $\omega$ on $M$ is said to satisfy the $\Delta_{2}$-condition (on $M_{\omega}^{*}$ ) if the following condition holds: Given a sequence $\left\{x_{n}\right\} \subset M_{\omega}^{*}$ and $x \in M_{\omega}^{*}$, if there exists a number $\lambda>0$, possibly depending on $\left\{x_{n}\right\}$ and $x$, such that $\lim _{n \rightarrow \infty} \omega_{\lambda}\left(x_{n}, x\right)=0$, then $\lim _{n \rightarrow \infty} \omega_{\frac{\lambda}{2}}\left(x_{n}, x\right)=0$.

Now, we state the definitions of modular contractive mappings and a fixed point theorem for such mappings (given in [34]).

Definition 5. Let $\omega$ be a modular metric on $M$.
(i) A map $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is said to be $\omega$-contractive if there exists $k \in(0,1)$ and $\lambda_{0}=\lambda_{0}(k)>0$ such that

$$
\omega_{k \lambda}(f x, f y) \leq \omega_{\lambda}(x, y)
$$

for all $0<\lambda<\lambda_{0}$ and $x, y \in M_{\omega}^{*}$.
(ii) A map $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is said to be strong $\omega$-contractive if there exists $k \in(0,1)$ and $\lambda_{0}=\lambda_{0}(k)>0$ such that

$$
\omega_{k \lambda}(f x, f y) \leq k \omega_{\lambda}(x, y)
$$

for all $0<\lambda<\lambda_{0}$ and $x, y \in M_{\omega}^{*}$.
Theorem 1. Let $\omega$ be a strict convex metric modular on $M$ and $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ be a $\omega$-contractive (or strong $\omega$-contractive) mapping on a complete modular metric space $M_{\omega}^{*}$ induced by $\omega$. If, for every $\lambda>0$, there exists an $x=x(\lambda) \in M_{\omega}^{*}$ such that $\omega_{\lambda}(x, f x)<\infty$, then $f$ has a fixed point in $M_{\omega}^{*}$. Moreover, if $\omega_{\lambda}(x, y)<\infty$ for all $x, y \in M_{\omega}^{*}$ and every $\lambda>0$, then $f$ has a unique fixed point in $M_{\omega}^{*}$.

## 3. Extension of Non-Unique Fixed Point of Ćirić on Modular Metric Spaces

Let $M_{\omega}^{*}$ and $M_{\omega}$ be modular metric spaces and $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ ( or $f: M_{\omega} \rightarrow M_{\omega}$ ) be a self-map. Let $x \in M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$. We call $\mathcal{O}(x)=\left\{f^{n} x: n=0,1,2,3, \ldots\right\}$ the orbit of $x$, and $f$ is called orbitally continuous if $\lim _{i} f^{n_{i}} x=z$ implies $\lim _{i} f f^{n_{i}} x=f z$ for each $x \in M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$. The space $M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$ is $f$-orbitally $\omega$-complete if every $\omega$-Cauchy sequence of the form $\left\{f^{n_{i}} x\right\}_{i=1}^{\infty}, x \in M_{\omega}^{*}$, $\left(\right.$ or $\left.M_{\omega}\right)$, converges in $M_{\omega}^{*}\left(\right.$ or $\left.M_{\omega}\right)$.

Definition 6. Let $\omega$ be a metric modular on $M$. A mapping $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is called a strong Ćirić-type $\omega$-contraction if there exists $k \in(0,1)$ and $\lambda_{0}=\lambda_{0}(k)$, such that

$$
\begin{equation*}
\min \left\{\omega_{k \lambda}(f x, f y), \omega_{k \lambda}(x, f x), \omega_{k \lambda}(y, f y)\right\}-\min \left\{\omega_{k \lambda}(x, f y), \omega_{k \lambda}(y, f x)\right\} \leq k \omega_{\lambda}(x, y) \tag{3}
\end{equation*}
$$

holds for all $0<\lambda<\lambda_{0}$ and $x, y \in M_{\omega}^{*}$.
Theorem 2. Let $\omega$ be a convex modular on $M$. Suppose $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is an orbitally continuous mapping on a $f$-orbitally $\omega$-complete modular space $M_{\omega}^{*}$ and $f$ is a strong Ćirić-type $\omega$-contraction. Assume that, for every $\lambda>0$, there exists an $x \in M_{\omega}^{*}$ such that $\omega_{\lambda}(x, f x)=C<\infty$. Then, for each $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ converges to a fixed point of $f$.

Proof. Let $x \in M_{\omega}^{*}$ be arbitrary such that $\omega_{\lambda}(x, f x)=C<\infty$. Define the iterative sequence $\left\{x_{n}\right\}$ by

$$
x_{0}=x, x_{1}=f x_{0}=f x, x_{2}=f x_{1}=f^{2} x, \cdots, x_{n}=f x_{n-1}=f^{n} x
$$

We shall show that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence. As $\omega_{\lambda}\left(x_{j-1}, x_{j}\right)=0$ for some $j \in \mathbb{N}$ immediately implies that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence, we assume that $\omega_{\lambda}\left(x_{n-1}, x_{n}\right)>0$ for all $n \in \mathbb{N}$ and $\lambda>0$. By inequality (3) with $x=x_{n-1}$ and $y=x_{n}$, we get

$$
\begin{aligned}
& \min \left\{\omega_{k \lambda}\left(f x_{n-1}, f x_{n}\right), \omega_{k \lambda}\left(x_{n-1}, f x_{n-1}\right), \omega_{k \lambda}\left(x_{n}, f x_{n}\right)\right\} \\
& -\min \left\{\omega_{k \lambda}\left(x_{n-1}, f x_{n}\right), \omega_{k \lambda}\left(x_{n}, f x_{n-1}\right)\right\} \\
& =\min \left\{\omega_{k \lambda}\left(x_{n}, x_{n+1}\right), \omega_{k \lambda}\left(x_{n-1}, x_{n}\right)\right\} \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

From the fact $0<k \lambda<\lambda$, we then have $\omega_{\lambda}\left(x_{n-1}, x_{n}\right) \leq \omega_{k \lambda}\left(x_{n-1}, x_{n}\right)$. As $\omega_{k \lambda}\left(x_{n-1}, x_{n}\right) \leq$ $k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \leq k \omega_{k \lambda}\left(x_{n-1}, x_{n}\right)$ is not possible (as $k<1$ ), we have

$$
\begin{equation*}
\omega_{k \lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \tag{4}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. As $0<k^{n} \lambda<\lambda<\lambda_{0}$, by (4), we obtain

$$
\omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right)=\omega_{k k^{n-1} \lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{k^{n-1} \lambda}\left(x_{n-1}, x_{n}\right)
$$

or, inductively,

$$
\omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right) \leq k^{n} \omega_{\lambda}(x, f x)=k^{n} C,
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. By letting $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right)=0 \tag{5}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. By setting $\lambda_{1}=(1-k) \lambda_{0}<\lambda_{0}$, we obtain

$$
\omega_{k^{n} \lambda_{1}}\left(x_{n}, x_{n+1}\right) \leq k^{n} \omega_{\lambda_{1}}(x, f x)=k^{n} C
$$

for all $n \in \mathbb{N}$. By letting $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{k^{n} \lambda_{1}}\left(x_{n}, x_{n+1}\right)=0 \tag{6}
\end{equation*}
$$

for all $0<\lambda_{1}<\lambda_{0}$, As $\omega$ is convex, for any $m, n \in \mathbb{N}$ such that $m<n$, we get

$$
\begin{equation*}
\omega_{\lambda^{*}}\left(x_{n}, x_{m}\right) \leq \sum_{j=m}^{n-1} \frac{\lambda_{j}}{\lambda^{*}} \omega_{\lambda_{j}}\left(x_{j}, x_{j+1}\right) \tag{7}
\end{equation*}
$$

where

$$
\lambda^{*}=\sum_{j=m}^{n-1} \lambda_{j}
$$

Now, putting $\lambda_{j}=k^{j} \lambda_{1}, j=m, m+1, \cdots, n-1$, in (7), we have

$$
\begin{equation*}
\omega_{\lambda^{*}}\left(x_{n}, x_{m}\right) \leq \sum_{j=m}^{n-1} \frac{k^{j} \lambda_{1}}{\lambda^{*}} \omega_{k^{j} \lambda_{1}}\left(x_{j}, x_{j+1}\right) \tag{8}
\end{equation*}
$$

where

$$
\lambda^{*}=\sum_{j=m}^{n-1} k^{j} \lambda_{1}=k^{m} \lambda_{1} \frac{1-k^{n-m}}{1-k}=k^{m}\left(1-k^{n-m}\right) \lambda_{0}<\lambda_{0}
$$

Taking into account $0<k^{j} \lambda_{1}<\lambda_{1}<\lambda_{0}$ for $j=m, m+1, \cdots, n-1$ and (6), we get

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \omega_{\lambda^{*}}\left(x_{n}, x_{m}\right)=0 \tag{9}
\end{equation*}
$$

for all $0<\lambda^{*}<\lambda_{0}$. From the fact that $0<\lambda^{*}<\lambda_{0}$, we then have

$$
\begin{equation*}
\omega_{\lambda_{0}}\left(x_{n}, x_{m}\right) \leq \frac{\lambda^{*}}{\lambda_{0}} \omega_{\lambda^{*}}\left(x_{n}, x_{m}\right)=k^{m}\left(1-k^{m}\right) \omega_{\lambda^{*}}\left(x_{n}, x_{m}\right) \leq k^{m} \omega_{\lambda^{*}}\left(x_{n}, x_{m}\right) \tag{10}
\end{equation*}
$$

Now, from (9) we have

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \omega_{\lambda_{0}}\left(x_{n}, x_{m}\right)=0 \tag{11}
\end{equation*}
$$

This shows that $\left\{x_{n}\right\}$ is a $\omega$-Cauchy sequence in $M_{\omega}^{*}$. By the $f$-orbitally $\omega$-completeness of $M_{\omega}^{*}$, there exists some $z$ in $M_{\omega}^{*}$ such that $\lim _{n} f^{n} x=z$. The orbital continuity of $f$ implies

$$
f z=\lim _{n} f f^{n} x=z
$$

which shows that $z$ is a fixed point of $f$.
Theorem 3. Let $\omega$ be a convex modular on $M$. Suppose $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is an orbitally continuous mapping on a $f$-orbitally $\omega$-complete modular space $M_{\omega}^{*}$ and let $\varepsilon>0$. Suppose that there exists $k \in(0,1), \lambda_{0}=\lambda_{0}(k)$ and $x \in M_{\omega}^{*}$ such that $\omega_{\lambda}\left(x, f^{q} x\right)<\varepsilon$, for some $q \in \mathbb{N}$ and for all $\lambda<\lambda_{0}$. If

$$
\begin{equation*}
0<\omega_{\lambda}(x, y)<\varepsilon \text { implies } \min \left\{\omega_{k \lambda}(f x, f y), \omega_{k \lambda}(x, f x), \omega_{k \lambda}(y, f y)\right\} \leq k \omega_{\lambda}(x, y) \tag{12}
\end{equation*}
$$

holds, for all $0<\lambda<\lambda_{0}$ and $x, y \in M_{\omega}^{*}$, then $f$ has a periodic point.

Proof. Let $Q=\left\{q: \omega_{\lambda}\left(x, f^{q} x\right)<\varepsilon\right.$ for some $x \in M_{\omega}^{*}$ and for all $\left.\lambda<\lambda_{0}\right\}$ be the subset of $\mathbb{N}$ which is non-empty, due to the assumption of the Theorem. Let $x \in M_{\omega}^{*}$ such that $\omega_{\lambda}\left(x, f^{m} x\right)<\varepsilon$, where $m=\min Q$.

If $m=1$, by using (12) with $x$ and $f x$, we get

$$
\min \left\{\omega_{k \lambda}\left(f x, f^{2} x\right), \omega_{k \lambda}(x, f x), \omega_{k \lambda}\left(f x, f^{2} x\right)\right\} \leq k \omega_{\lambda}(x, f x)
$$

By the fact that $k \lambda<\lambda$, we have

$$
\omega_{\lambda}(x, f x) \leq \omega_{k \lambda}(x, f x)
$$

As $\omega_{k \lambda}(x, f x) \leq \omega_{\lambda}(x, f x) \leq k \omega_{k \lambda}(x, f x)$ is impossible (as $k<1$ ), we have

$$
\omega_{k \lambda}\left(f x, f^{2} x\right) \leq k \omega_{\lambda}(x, f x)<k \varepsilon
$$

for all $0<\lambda<\lambda_{0}$. Proceeding as in Theorem 2, we obtain that $f z=z$ for some $z \in M_{\omega}^{*}$.
Now, take $m \geq 2$; that is,

$$
\begin{equation*}
\omega_{\lambda}(y, f y) \geq \varepsilon \tag{13}
\end{equation*}
$$

for all $y \in M_{\omega}^{*}$ and $\lambda<\lambda_{0}$. Then, from $0<\omega_{\lambda}\left(x, f^{m} x\right)<\varepsilon$ and by (22), we get

$$
\min \left\{\omega_{k \lambda}\left(f x, f^{m+1} x\right), \omega_{k \lambda}(x, f x), \omega_{k \lambda}\left(f^{m} x, f^{m+1} x\right)\right\} \leq k \omega_{\lambda}\left(x, f^{m} x\right)
$$

By the fact that $k \lambda<\lambda<\lambda_{0}$ and (13), thus $\omega_{k \lambda}(x, f x) \geq \varepsilon$ and $\omega_{k \lambda}\left(f^{m} x, f^{m+1} x\right)=$ $\omega_{k \lambda}\left(f^{m} x, f f^{m} x\right) \geq \varepsilon$, and we get

$$
\omega_{k \lambda}\left(f x, f^{m+1} x\right) \leq k \omega_{\lambda}\left(x, f^{m} x\right)<k \varepsilon
$$

for all $x \in M_{\omega}^{*}$ and $\lambda<\lambda_{0}$. Similarly,

$$
\omega_{k^{2} \lambda}\left(f^{2} x, f^{m+2} x\right) \leq k^{2} \omega_{\lambda}\left(x, f^{m} x\right)<k^{2} \varepsilon .
$$

Continuing in this manner, we get

$$
\omega_{k^{n} \lambda}\left(f^{n} x, f^{m+n} x\right) \leq k^{n} \omega_{\lambda}\left(x, f^{m} x\right)<k^{n} \varepsilon
$$

for all $n \in \mathbb{N}$. Therefore, for the sequence

$$
x_{0}=x, x_{1}=f^{m} x_{0}, x_{2}=f^{m} x_{1}, \cdots x_{n}=f^{m} x_{n-1}
$$

we have that

$$
\omega_{k m \lambda}\left(x_{n}, x_{n+1}\right)=\omega_{k^{n m} \lambda}\left(f^{n m} x, f^{m+n m} x\right) \leq k^{n m} \omega_{\lambda}\left(x, f^{m} x\right)<k^{n m} \varepsilon
$$

Then, following the same method as in Theorem 2, we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence. As $\left\{x_{n}\right\} \subseteq\left\{f^{n} x\right\}$ and $M_{\omega}^{*}$ is f-orbitally $\omega$-complete, there exists some $z \in M_{\omega}^{*}$ such that

$$
z=\lim _{n} x_{n}=\lim _{n} f^{n m}
$$

Taking into account that if $f$ is orbital continuous, then $f^{r}$ is also orbital continuous for all $r \in \mathbb{N}$, we have

$$
f^{m} z=\lim _{n} x_{n}=\lim _{n} f^{m} f^{n m}==\lim _{n} f^{(n+1) m}=z
$$

which shows that $z$ is a periodic point of $f$.
Theorem 4. Let $\omega$ be a modular on $M$ and $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ be an orbitally continuous mapping on a modular space $M_{\omega}^{*}$. Suppose that, whenever $x \neq y, f$ satisfies the following

$$
\begin{equation*}
\min \left\{\omega_{\lambda}(f x, f y), \omega_{\lambda}(x, f x), \omega_{\lambda}(y, f y)\right\}-\min \left\{\omega_{\lambda}(x, f y), \omega_{\lambda}(y, f x)\right\}<\omega_{\lambda}(x, y) \tag{14}
\end{equation*}
$$

for all $\lambda>0$ and $x, y \in M_{\omega}^{*}$. If, for some $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ has a limit point $z \in M_{\omega}^{*}$, then $z$ is a fixed point of $f$.

Proof. If, for some $m \in \mathbb{N}, \omega_{\lambda}\left(x_{m-1}, x_{m}\right)=0$, then $x_{n}=x_{m}=z$ for $n \geq m$, and the assertion holds. Suppose, then, that $\omega_{\lambda}\left(x_{m-1}, x_{m}\right) \neq 0$ for all $m \in \mathbb{N}$. Let $\lim _{i} x_{n_{i}}=z$. Then, by (14), for $x_{n-1}, x_{n} \in$ $M_{\omega}^{*}$. Then,

$$
\begin{aligned}
& \min \left\{\omega_{\lambda}\left(f x_{n-1}, f x_{n}\right), \omega_{\lambda}\left(x_{n-1}, f x_{n-1}\right), \omega_{\lambda}\left(x_{n}, f x_{n}\right)\right\}- \\
& \min \left\{\omega_{\lambda}\left(x_{n-1}, f x_{n}\right), \omega_{\lambda}\left(x_{n}, f x_{n-1}\right)\right\}=\min \left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right), \omega_{\lambda}\left(x_{n-1}, x_{n}\right)\right\} \\
& <\omega_{\lambda}\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

As $\omega_{\lambda}\left(x_{n-1}, x_{n}\right)<\omega_{\lambda}\left(x_{n-1}, x_{n}\right)$ is impossible, we have $\omega_{\lambda}\left(x_{n}, x_{n+1}\right)<\omega_{\lambda}\left(x_{n-1}, x_{n}\right)$ for all $\lambda>0$. Therefore, $\left\{\omega_{\lambda}\left(x_{n+1}, x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a decreasing, and hence convergent, sequence of real numbers. As $\lim _{i} \omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right)=\omega_{\lambda}(z, f z)$ and $\left\{\omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right)\right\} \subseteq\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}$, it follows that

$$
\begin{equation*}
\lim _{n} \omega_{\lambda}\left(x_{n}, x_{n+1}\right)=\omega_{\lambda}(z, f z) \tag{15}
\end{equation*}
$$

Furthermore, as $\lim _{i} x_{n_{i}+1}=f z, \lim _{i} x_{n_{i}+2}=f^{2} z$, and $\left\{\omega_{\lambda}\left(x_{n_{i}+1}, x_{n_{i}+2}\right)\right\} \subseteq\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}$, by (15), we have

$$
\begin{equation*}
\lim _{n} \omega_{\lambda}\left(f z, f^{2} z\right)=\omega_{\lambda}(z, f z) \tag{16}
\end{equation*}
$$

If $\omega_{\lambda}(z, f z)>0$, then (14) implies that $\omega_{\lambda}\left(f z, f^{2} z\right)<\omega_{\lambda}(z, f z)$, a contradiction. Hence, $\omega_{\lambda}(z, f z)=0$, i.e., $f z=z$. This completes the proof of the Theorem.

Theorem 5. Let $\omega$ be a modular on $M$ satisfying the $\Delta_{2}$-condition on $M_{\omega}^{*}$. Suppose that $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is an orbitally continuous mapping on a modular space $M_{\omega}^{*}$ and $\varepsilon>0$. Suppose that $f$ satisfies the following

$$
\begin{equation*}
0<\omega_{\lambda}(x, y)<\varepsilon \text { implies } \min \left\{\omega_{\lambda}(f x, f y), \omega_{\lambda}(x, f x), \omega_{\lambda}(y, f y)\right\}<\omega_{\lambda}(x, y) \tag{17}
\end{equation*}
$$

for all $\lambda>0$ and $x, y \in M_{\omega}^{*}$. If, for some $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ has a limit point $z \in M_{\omega}^{*}$, then $z$ is the periodic point of $f$.

Proof. Let $\lim _{i} x_{n_{i}}=z$, then there exists $r \in \mathbb{N}$ such that $i>r$ implies $\omega_{\frac{\lambda}{2}}\left(x_{n_{i}}, z\right)<\frac{\varepsilon}{2}$. Hence,

$$
\omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right) \leq \omega_{\frac{\lambda}{2}}\left(x_{n_{i}}, z\right)+\omega_{\frac{\lambda}{2}}\left(x_{n_{i}+1}, z\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

and the set

$$
S=\left\{s \in \mathbb{N}: \omega_{\lambda}\left(x_{p}, x_{p+s}\right)<\varepsilon \text { for some } p \in \mathbb{N}\right\}
$$

is non-empty. Put $m=\min S$. If $\omega_{\lambda}\left(x_{s}, x_{s+m}\right)=0$ for some $s \in \mathbb{N}$, then $z=x_{s}=f^{m} z$, and the assertion holds. Now, assume that $\omega_{\lambda}\left(x_{s}, x_{s+m}\right)>0$ for every $s \in \mathbb{N}$ and $\lambda>0$. Let $q \in \mathbb{N}$ such that $\omega_{\lambda}\left(x_{q}, x_{q+m}\right)<\varepsilon$.

If $m=1$, then, by (17) (as in the proof of the Theorem 4), $\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}_{n \in \mathbb{N}}$ is a decreasing sequence for $n \geq q$, which implies that $f z=z$.

So, suppose that $m \geq 2$; that is, that

$$
\begin{equation*}
\omega_{\lambda}\left(x_{n}, x_{n+1}\right) \geq \varepsilon \tag{18}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $\lambda>0$. As $f$ is orbital continuous, $\lim _{i} x_{n_{i}+s}=f^{s} z$. By (18),

$$
\begin{equation*}
\omega_{\lambda}\left(f^{s} z, f^{s+1}\right)=\lim _{i}\left(x_{n_{i}+s}, x_{n_{i}+s+1}\right) \geq \varepsilon \tag{19}
\end{equation*}
$$

for all $s \in \mathbb{N}$. By (17) and the assumption $0<\omega_{\lambda}\left(x_{q}, x_{q+m}\right)<\varepsilon$, we have

$$
\min \left\{\omega_{\lambda}\left(f x_{q}, f x_{q+m}\right), \omega_{\lambda}\left(x_{q}, f x_{q}\right), \omega_{\lambda}\left(x_{q+m}, f x_{q+m}\right)\right\}<\omega_{\lambda}\left(x_{q}, x_{q+m}\right)
$$

or

$$
\min \left\{\omega_{\lambda}\left(x_{q+1}, x_{q+m+1}\right), \omega_{\lambda}\left(x_{q}, x_{q+1}\right), \omega_{\lambda}\left(x_{q+m}, x_{q+m+1}\right)\right\}<\omega_{\lambda}\left(x_{q}, x_{q+m}\right)
$$

Hence, by (18), we get

$$
\omega_{\lambda}\left(x_{q+1}, x_{q+m+1}\right)<\omega_{\lambda}\left(x_{q}, x_{q+m}\right)<\varepsilon
$$

In a similar way, we get

$$
\begin{equation*}
\varepsilon>\omega_{\lambda}\left(x_{q}, x_{q+m}\right)>\omega_{\lambda}\left(x_{q+1}, x_{q+m+1}\right)>\omega_{\lambda}\left(x_{q+2}, x_{q+m+2}\right)>\cdots \tag{20}
\end{equation*}
$$

which shows that $\left\{\omega_{\lambda}\left(x_{n}, x_{n+m}\right): n \geq q\right.$ and $\left.\lambda>0\right\}$ is decreasing and, hence, is a convergent sequence of real numbers. As the subsequences $\left\{\omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+m}\right)\right\}_{i \in \mathbb{N}}$ and $\left\{\omega_{\lambda}\left(x_{n_{i}+1}, x_{n_{i}+m+1}\right)\right\}_{i \in \mathbb{N}}$ converge to $\omega_{\lambda}\left(z, f^{m} z\right)$ and $\omega_{\lambda}\left(z, f^{m+1} z\right)$, respectively, then, by the orbital continuity of $f$ and as $\lim _{i} f^{n_{i}}=z$, we have

$$
\begin{equation*}
\omega_{\lambda}\left(f z, f^{m+1} z\right)=\omega_{\lambda}\left(z, f^{m} z\right)=\lim _{n} \omega_{\lambda}\left(x_{n}, x_{m+n}\right) \tag{21}
\end{equation*}
$$

By (20) and (21), we get $\omega_{\lambda}\left(z, f^{m} z\right)<\varepsilon$. If $\omega_{\lambda}\left(z, f^{m} z\right)>0$, then, from (17), we obtain

$$
\min \left\{\omega_{\lambda}\left(f z, f^{m+1} z\right), \omega_{\lambda}(z, f z), \omega_{\lambda}\left(f^{m} z, f^{m+1} z\right)\right\}<\omega_{\lambda}\left(z, f^{m} z\right)<\varepsilon
$$

By (19),

$$
\omega_{\lambda}\left(f z, f^{m+1} z\right)<\omega_{\lambda}\left(z, f^{m} z\right)
$$

which is a contradiction. Hence, $\omega_{\lambda}\left(z, f^{m} z\right)=0$, which implies that $z$ is the periodic point of $f$.

## 4. Extension of Non-Unique Fixed Point of Pachpatte on Modular Metric Spaces

In this section, non-unique fixed point theorems for Pachpatte-type contractions are proved in the setting of modular metric spaces. We start this section with the following definition.

Definition 7. Let $\omega$ be a metric modular on $M$. A mapping $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is called a strong Pachpatte-type $\omega$-contraction if there exists $k \in(0,1)$ and $\lambda_{0}=\lambda_{0}(k)$, such that

$$
\begin{align*}
\min & \left\{\left[\omega_{k \lambda}(f x, f y)\right]^{2}, \omega_{k \lambda}(x, y) \omega_{k \lambda}(f x, f y),\left[\omega_{k \lambda}(y, f y)\right]^{2}\right\}  \tag{22}\\
& -\min \left\{\omega_{k \lambda}(x, f x), \omega_{k \lambda}(y, f y), \omega_{k \lambda}(x, f y) \omega_{k \lambda}(y, f x)\right\} \leq k \omega_{\lambda}(x, f x) \omega_{\lambda}(y, f y)
\end{align*}
$$

holds, for all $\lambda_{0}>\lambda>0$, and $x, y \in M_{\omega}^{*}$.
Theorem 6. Let $\omega$ be a convex modular on $M$. Suppose $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is an orbitally continuous mapping on a $f$-orbitally $\omega$-complete modular space $M_{\omega}^{*}$ and $f$ is a strong Pachpatte-type $\omega$-contraction. Assume, for every $\lambda>0$, there exists an $x \in M_{\omega}^{*}$ such that $\omega_{\lambda}(x, f x)=C<\infty$. Then, for each $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ converges to a fixed point of $f$.

Proof. Let $x \in M_{\omega}^{*}$ be arbitrary, such that $\omega_{\lambda}(x, f x)=C<\infty$. Define the iterative sequence $\left\{x_{n}\right\}$ by

$$
x_{0}=x, x_{1}=f x_{0}=f x, x_{2}=f x_{1}=f^{2} x, \cdots, x_{n}=f x_{n-1}=f^{n} x
$$

We shall show that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence. As $\omega_{\lambda}\left(x_{j-1}, x_{j}\right)=0$ for some $j \in \mathbb{N}$ immediately implies that $\left\{x_{n}\right\}$ is $\omega$-Cauchy sequence, we assume that $\omega_{\lambda}\left(x_{n-1}, x_{n}\right)>0$ for all $n \in \mathbb{N}$ and $\lambda>0$. By (22) with $x=x_{n-1}$ and $y=x_{n}$, we get

$$
\begin{aligned}
& \min \left\{\left[\omega_{k \lambda}\left(x_{n}, x_{n+1}\right)\right]^{2}, \omega_{k \lambda}\left(x_{n-1}, x_{n}\right) \omega_{k \lambda}\left(x_{n}, x_{n+1}\right),\left[\omega_{k \lambda}\left(x_{n}, x_{n+1}\right)\right]^{2}\right\} \\
&-\min \left\{\omega_{k \lambda}\left(x_{n-1}, x_{n}\right), \omega_{k \lambda}\left(x_{n}, x_{n+1}\right), \omega_{k \lambda}\left(x_{n-1}, x_{n+1}\right) \omega_{k \lambda}\left(x_{n}, x_{n}\right)\right\} \\
&=\min \left\{\left[\omega_{k \lambda}\left(x_{n}, x_{n+1}\right)\right]^{2}, \omega_{k \lambda}\left(x_{n-1}, x_{n}\right) \omega_{k \lambda}\left(x_{n}, x_{n+1}\right)\right\} \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

From the fact that $0<k \lambda<\lambda$, we have

$$
\omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right) \leq \omega_{k \lambda}\left(x_{n}, x_{n+1}\right) \omega_{k \lambda}\left(x_{n-1}, x_{n}\right)
$$

As

$$
\omega_{k \lambda}\left(x_{n-1}, x_{n}\right) \omega_{k \lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{k \lambda}\left(x_{n-1}, x_{n}\right) \omega_{k \lambda}\left(x_{n}, x_{n+1}\right)
$$

is impossible (as $k<1$ ), we have

$$
\left[\omega_{k \lambda}\left(x_{n}, x_{n+1}\right)\right]^{2} \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{k \lambda}\left(x_{n}, x_{n+1}\right)
$$

or

$$
\begin{equation*}
\omega_{k \lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \tag{23}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. As $0<k^{n} \lambda<\lambda<\lambda_{0}$, by (23), we obtain

$$
\omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right)=\omega_{k k^{n-1} \lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{k^{n-1} \lambda}\left(x_{n-1}, x_{n}\right)
$$

or, inductively,

$$
\omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right) \leq k^{n} \omega_{\lambda}(x, f x)=k^{n} C,
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. By letting $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right)=0 \tag{24}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. Following the same procedure as in the proof of Theorem 2, we conclude that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence in $M_{\omega}^{*}$. By the $f$-orbitally $\omega$-completeness of $M_{\omega}^{*}$, there is some $z$ in $M_{\omega}^{*}$ such that $\lim _{n} f^{n} x=z$. The orbital continuity of $f$ implies that

$$
f z=\lim _{n} f f^{n} x=z
$$

which shows that $z$ is a fixed point of $f$.
Theorem 7. Let $\omega$ be a modular on $M$ and $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ be an orbitally continuous mapping on a modular space $M_{\omega}^{*}$. Suppose that, whenever $x \neq y, f$ satisfies the following

$$
\begin{align*}
\min & \left\{\left[\omega_{\lambda}(f x, f y)\right]^{2}, \omega_{\lambda}(x, y) \omega_{\lambda}(f x, f y),\left[\omega_{\lambda}(y, f y)\right]^{2}\right\}  \tag{25}\\
& -\min \left\{\omega_{\lambda}(x, f x), \omega_{\lambda}(y, f y), \omega_{\lambda}(x, f y) \omega_{\lambda}(y, f x)\right\}<\omega_{\lambda}(x, f x) \omega_{\lambda}(y, f y)
\end{align*}
$$

for all $\lambda>0$ and $x, y \in M_{\omega}^{*}$. If, for some $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ has a limit point $z \in M_{\omega}^{*}$, then $z$ is a fixed point of $f$.

Proof. If for some $m \in \mathbb{N}, \omega_{\lambda}\left(x_{m-1}, x_{m}\right)=0$, then $x_{n}=x_{m}=z$ for $n \geq m$, and the assertion holds. Suppose, then, that $\omega_{\lambda}\left(x_{m-1}, x_{m}\right) \neq 0$ for all $m \in \mathbb{N}$. Let $\lim _{i} x_{n_{i}}=z$. Then, by (25), for $x_{n-1}, x_{n} \in M_{\omega}^{*}$, we have

$$
\begin{aligned}
& \min \left\{\left[\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right]^{2}, \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right),\left[\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right]^{2}\right\} \\
&-\min \left\{\omega_{\lambda}\left(x_{n-1}, x_{n}\right), \omega_{\lambda}\left(x_{n}, x_{n+1}\right), \omega_{\lambda}\left(x_{n-1}, x_{n+1}\right) \omega_{\lambda}\left(x_{n}, x_{n}\right)\right\} \\
&=\min \left\{\left[\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right]^{2}, \omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}<\omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right) .
\end{aligned}
$$

As $\omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right)<\omega_{\lambda}\left(x_{n-1}, x_{n}\right) \omega_{\lambda}\left(x_{n}, x_{n+1}\right)$ is impossible, we have $\omega_{\lambda}\left(x_{n}, x_{n+1}\right)<$ $\omega_{\lambda}\left(x_{n-1}, x_{n}\right)$ for all $\lambda>0$. Therefore, $\left\{\omega_{\lambda}\left(x_{n+1}, x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a decreasing, and hence convergent, sequence of real numbers. As $\lim _{i} \omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right)=\omega_{\lambda}(z, f z)$ and $\left\{\omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right)\right\} \subseteq\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}$, it follows that

$$
\begin{equation*}
\lim _{n} \omega_{\lambda}\left(x_{n}, x_{n+1}\right)=\omega_{\lambda}(z, f z) \tag{26}
\end{equation*}
$$

Furthermore, as $\lim _{i} x_{n_{i}+1}=f z, \lim _{i} x_{n_{i}+2}=f^{2} z$ and $\left\{\omega_{\lambda}\left(x_{n_{i}+1}, x_{n_{i}+2}\right)\right\} \subseteq\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}$, by (26), we have

$$
\begin{equation*}
\omega_{\lambda}\left(f z, f^{2} z\right)=\omega_{\lambda}(z, f z) \tag{27}
\end{equation*}
$$

If $\omega_{\lambda}(z, f z) \omega_{\lambda}\left(f z, f^{2} z\right)>0$, then (25) implies $\omega_{\lambda}\left(f z, f^{2} z\right)<\omega_{\lambda}(z, f z)$, a contradiction. Hence, $\omega_{\lambda}(z, f z) \omega_{\lambda}\left(f z, f^{2} z\right)=0$. From (27), we have $\omega_{\lambda}(z, f z)=0$; that is, $f z=z$. This completes the proof of the Theorem.

Remark 1. The conclusion of Theorem 6 remains true if we replace condition (22) by

$$
\begin{aligned}
\min \left\{\left[\omega_{k \lambda}(f x, f y)\right]^{2}, \omega_{k \lambda}(x, y) \omega_{k \lambda}(f x, f y),\left[\omega_{k \lambda}(y, f y)\right]^{2}\right\} & -\min \left\{\omega_{k \lambda}(x, f y), \omega_{k \lambda}(y, f x)\right\} \\
& \leq k \omega_{\lambda}(x, f x) \omega_{\lambda}(y, f y),
\end{aligned}
$$

and, similarly, the conclusion of Theorem 7 remains true if we replace condition (25) by

$$
\begin{aligned}
\min \left\{\left[\omega_{\lambda}(f x, f y)\right]^{2}, \omega_{\lambda}(x, y) \omega_{\lambda}(f x, f y),\left[\omega_{\lambda}(y, f y)\right]^{2}\right\} & -\min \left\{\omega_{\lambda}(x, f y), \omega_{\lambda}(y, f x)\right\} \\
& <\omega_{\lambda}(x, f x) \omega_{\lambda}(y, f y)
\end{aligned}
$$

## 5. Extension of Non-Unique Fixed Point of Achari on Modular Metric Spaces

In this section, non-unique fixed point theorems for Achari-type contractions are proved in the setting of modular metric spaces. We start this section with the following definition.

Definition 8. Let $\omega$ be a metric modular on M. A mapping $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is called a strong Achari-type $\omega$-contraction if there exists $k \in(0,1)$ and $\lambda_{0}=\lambda_{0}(k)$, such that

$$
\begin{equation*}
\frac{A(x, y)-B(x, y)}{C(x, y)} \leq k \omega_{\lambda}(x, y) \tag{28}
\end{equation*}
$$

holds for all $\lambda_{0}>\lambda>0$, and $x, y \in M_{\omega}^{*}$, where

$$
\begin{aligned}
& A(x, y)=\min \left\{\omega_{k \lambda}(f x, f y) \omega_{k \lambda}(x, y), \omega_{k \lambda}(x, f x) \omega_{k \lambda}(y, f y)\right\} \\
& B(x, y)=\min \left\{\omega_{k \lambda}(x, f x) \omega_{k \lambda}(x, f y), \omega_{k \lambda}(y, f y) \omega_{k \lambda}(y, f x)\right\}
\end{aligned}
$$

and

$$
C(x, y)=\min \left\{\omega_{k \lambda}(x, f x), \omega_{k \lambda}(y, f y)\right\}
$$

such that $\omega_{k \lambda}(x, f x) \neq 0, \omega_{k \lambda}(y, f y) \neq 0$.
Theorem 8. Let $\omega$ be a convex modular on $M$. Suppose $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ is an orbitally continuous mapping on a f-orbitally $\omega$-complete modular space $M_{\omega}^{*}$ and $f$ is a strong Achari-type $\omega$-contraction. Assume that, for every $\lambda>0$, there exists an $x \in M_{\omega}^{*}$ such that $\omega_{\lambda}(x, f x)=C<\infty$. Then, for each $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ converges to a fixed point of $f$.

Proof. Let $x \in M_{\omega}^{*}$ be arbitrary, such that $\omega_{\lambda}(x, f x)=C<\infty$. Define the iterative sequence $\left\{x_{n}\right\}$ by

$$
x_{0}=x, x_{1}=f x_{0}=f x, x_{2}=f x_{1}=f^{2} x, \cdots, x_{n}=f x_{n-1}=f^{n} x
$$

We shall show that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence. As $\omega_{\lambda}\left(x_{j-1}, x_{j}\right)=0$ for some $j \in \mathbb{N}$ immediately implies that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence, we assume that $\omega_{\lambda}\left(x_{n-1}, x_{n}\right)>0$ for all $n \in \mathbb{N}$ and $\lambda>0$. By inequality (28) with $x=x_{0}$ and $y=x_{1}$, we get

$$
\frac{\omega_{k \lambda}\left(x_{1}, x_{2}\right) \omega_{k \lambda}\left(x_{0}, x_{1}\right)}{\min \left\{\omega_{k \lambda}\left(x_{1}, x_{2}\right), \omega_{k \lambda}\left(x_{0}, x_{1}\right)\right\}} \leq k \omega_{\lambda}\left(x_{0}, x_{1}\right)
$$

From the fact $0<k \lambda<\lambda$, we have $\omega_{\lambda}\left(x_{0}, x_{1}\right) \leq \omega_{k \lambda}\left(x_{0}, x_{1}\right)$. As $\omega_{k \lambda}\left(x_{0}, x_{1}\right) \leq k \omega_{\lambda}\left(x_{0}, x_{1}\right) \leq$ $k \omega_{k \lambda}\left(x_{0}, x_{1}\right)$ is not possible (as $k<1$ ), we have

$$
\begin{equation*}
\omega_{k \lambda}\left(x_{1}, x_{2}\right) \leq k \omega_{\lambda}\left(x_{0}, x_{1}\right) \tag{29}
\end{equation*}
$$

for all $0<\lambda<\lambda_{0}$. As $0<k^{n} \lambda<\lambda<\lambda_{0}$, proceeding in the same manner, we obtain

$$
\omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right)=\omega_{k k^{n-1} \lambda}\left(x_{n}, x_{n+1}\right) \leq k \omega_{k^{n-1} \lambda}\left(x_{n-1}, x_{n}\right) \cdots \leq k^{n} \omega_{\lambda}\left(x_{0}, x_{1}\right)=k^{n} C
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. By letting $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{k^{n} \lambda}\left(x_{n}, x_{n+1}\right)=0 \tag{30}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $0<\lambda<\lambda_{0}$. By setting $\lambda_{1}=(1-k) \lambda_{0}<\lambda_{0}$, we obtain

$$
\omega_{k^{n} \lambda_{1}}\left(x_{n}, x_{n+1}\right) \leq k^{n} \omega_{\lambda_{1}}(x, f x)=k^{n} C
$$

for all $n \in \mathbb{N}$. By letting $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{k^{n} \lambda_{1}}\left(x_{n}, x_{n+1}\right)=0 \tag{31}
\end{equation*}
$$

for all $0<\lambda_{1}<\lambda_{0}$. Following the same procedure as in the proof of Theorem 2, we conclude that $\left\{x_{n}\right\}$ is an $\omega$-Cauchy sequence in $M_{\omega}^{*}$. By the $f$-orbitally $\omega$-completeness of $M_{\omega}^{*}$, there is some $z$ in $M_{\omega}^{*}$ such that $\lim _{n} f^{n} x=z$. The orbital continuity of $f$ implies that

$$
f z=\lim _{n} f f^{n} x=z
$$

which shows that $z$ is a fixed point of $f$.
Theorem 9. Let $\omega$ be a modular on $M$ and $f: M_{\omega}^{*} \rightarrow M_{\omega}^{*}$ be an orbitally continuous mapping on a modular space $M_{\omega}^{*}$. Suppose that whenever $x \neq y, f$ satisfies

$$
\begin{equation*}
\frac{P(x, y)-Q(x, y)}{R(x, y)}<\omega_{\lambda}(x, y) \tag{32}
\end{equation*}
$$

for all $\lambda>0$, and $x, y \in M_{\omega}^{*}$; where

$$
\begin{aligned}
& P(x, y)=\min \left\{\omega_{\lambda}(f x, f y) \omega_{\lambda}(x, y), \omega_{\lambda}(x, f x) \omega_{\lambda}(y, f y)\right\} \\
& Q(x, y)=\min \left\{\omega_{\lambda}(x, f x) \omega_{\lambda}(x, f y), \omega_{\lambda}(y, f y) \omega_{\lambda}(y, f x)\right\}
\end{aligned}
$$

and

$$
R(x, y)=\min \left\{\omega_{\lambda}(x, f x), \omega_{\lambda}(y, f y)\right\}
$$

such that $\omega_{\lambda}(x, f x) \neq 0, \omega_{\lambda}(y, f y) \neq 0$. If, for some $x \in M_{\omega}^{*}$, the sequence $\left\{f^{n} x\right\}_{n=1}^{\infty}$ has a limit point $z \in M_{\omega}^{*}$, then $z$ is a fixed point of $f$.

Proof. If, for some $m \in \mathbb{N}, \omega_{\lambda}\left(x_{m-1}, x_{m}\right)=0$, then $x_{n}=x_{m}=z$ for $n \geq m$, and the assertion holds. Suppose, then, that $\omega_{\lambda}\left(x_{m-1}, x_{m}\right) \neq 0$ for all $m \in \mathbb{N}$. Let $\lim _{i} x_{n_{i}}=z$. Then, by (32), for $x_{n-1}, x_{n} \in M_{\omega}^{*}$, we have

$$
\frac{\min \left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right) \omega_{\lambda}\left(x_{n-1}, x_{n}\right), \omega_{\lambda}\left(x_{n}, x_{n+1}\right) \omega_{\lambda}\left(x_{n-1}, x_{n}\right)\right\}-0}{\min \left\{\omega_{\lambda}\left(x_{n-1}, x_{n}\right), \omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}}<\omega_{\lambda}\left(x_{n-1}, x_{n}\right)
$$

or

$$
\frac{\omega_{\lambda}\left(x_{n}, x_{n+1}\right) \omega_{\lambda}\left(x_{n-1}, x_{n}\right)}{\min \left\{\omega_{\lambda}\left(x_{n-1}, x_{n}\right), \omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}}<\omega_{\lambda}\left(x_{n-1}, x_{n}\right)
$$

If $\min \left\{\omega_{\lambda}\left(x_{n-1}, x_{n}\right), \omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}=\omega_{\lambda}\left(x_{n}, x_{n+1}\right)$, then $\omega_{\lambda}\left(x_{n-1}, x_{n}\right)<\omega_{\lambda}\left(x_{n-1}, x_{n}\right)$ is impossible. Hence, we have $\omega_{\lambda}\left(x_{n}, x_{n+1}\right)<\omega_{\lambda}\left(x_{n-1}, x_{n}\right)$ for all $\lambda>0$ and $n \in \mathbb{N}$. Therefore, $\left\{\omega_{\lambda}\left(x_{n+1}, x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a decreasing, and hence convergent, sequence of real numbers. As $\lim _{i} \omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right)=\omega_{\lambda}(z, f z)$ and $\left\{\omega_{\lambda}\left(x_{n_{i}}, x_{n_{i}+1}\right)\right\} \subseteq\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}$, it follows that

$$
\begin{equation*}
\lim _{n} \omega_{\lambda}\left(x_{n}, x_{n+1}\right)=\omega_{\lambda}(z, f z) \tag{33}
\end{equation*}
$$

Furthermore, as $\lim _{i} x_{n_{i}+1}=f z, \lim _{i} x_{n_{i}+2}=f^{2} z$, and $\left\{\omega_{\lambda}\left(x_{n_{i}+1}, x_{n_{i}+2}\right)\right\} \subseteq\left\{\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right\}$, by (33), we have

$$
\begin{equation*}
\omega_{\lambda}\left(f z, f^{2} z\right)=\omega_{\lambda}(z, f z) \tag{34}
\end{equation*}
$$

If $\omega_{\lambda}(z, f z)>0$, then (32) implies $\omega_{\lambda}\left(f z, f^{2} z\right)<\omega_{\lambda}(z, f z)$, a contradiction. Hence, $\omega_{\lambda}(z, f z)=0$; that is, $f z=z$. This completes the proof of the Theorem.

Remark 2. The conclusion of Theorem 8 remains true if we replace condition (28) by

$$
\frac{A(x, y)-\min \left\{\omega_{k \lambda}(x, f y), \omega_{k \lambda}(y, f x)\right\}}{C(x, y)} \leq k \omega_{\lambda}(x, y)
$$

and, similarly, the conclusion of Theorem 9 remains true if we replace condition (32) by

$$
\frac{P(x, y)-\min \left\{\omega_{\lambda}(x, f y), \omega_{\lambda}(y, f x)\right\}}{R(x, y)}<\omega_{\lambda}(x, y) .
$$

## 6. Conclusions

Several generalizations of the concept of metric spaces have been introduced. Among them, modular metric spaces [31], partial metric spaces [39], extended b-metric spaces [40], and cone metric spaces [41] have been studied by the several researchers recently. Non-unique fixed points of Ćirić-type were investigated in extended b-metric spaces [19], partial metric spaces [23], and cone metric spaces [25]. This approach can be applied in several abstract spaces and has various applications in (fractional) differential equations and integral equations. Inspired by this work, we studied non-unique fixed points of Ćirić-type in modular metric spaces. We obtained various theorems about fixed points and periodic points for self-maps on modular spaces which are not necessarily continuous and satisfy certain contractive conditions. Our results unify and extend some existing results in the literature. The study of non-unique fixed points in the current context would be an interesting topic for future study.

Funding: This research received no external funding.
Acknowledgments: I would like to thank Erdal Karapinar for suggesting this problem, along with his extended help at various stages of this work. In addition, I would like to thank the anonymous reviewers for their comments and suggestions.
Conflicts of Interest: The author declares no conflict of interest.

## References

1. Banach, S. Surles operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133-181. [CrossRef]
2. Samreen, M.; Kamran, T. Fixed point theorems for weakly contractive mappings on a metric space endowed with a graph. Filomat 2014, 28, 441-450. [CrossRef]
3. Samreen, M.; Kamran, T.; Shahzad, N. Some fixed point theorems in b-metric space endowed with graph. Abstr. Appl. Anal. 2013, 967132. [CrossRef]
4. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26-37.
5. Hicks, T.L.; Rhoades, B.E. A Banach type fixed point theorem. Math. Jpn. 1979, 24, 327-330.
6. Ćirić, L.B. On some maps with a non-unique fixed point. Publ. Inst. Math. 1974, 17, 52-58.
7. Pachpatte, B.G. On Ćirić type maps with a non-unique fixed point. Indian J. Pure Appl. Math. 1979, 10, 1039-1043.
8. Achari, J. Results on nonunique fixed points. Publ. Inst. Math. 1979, 26, 5-9.
9. Ćirić, L.B.; Jotić, N. A further extension of maps with non-unique fixed points. Matematički Vesnik 1998, 50, 1-4.
10. Gupta, S.; Ram, B. Non-unique fixed point theorems of Ćirić type. Vijnana Parishad Anusandhan Patrika 1998, 41, 217-231.
11. Karapınar, E.; Agarwal, R.P. A note on Ćirić type non-unique fixed point theorems. Fixed Point Theory Appl. 2017, 20. [CrossRef]
12. Liu, Z.Q. On Ćirić type mappings with a non-unique coincidence points. Mathematica (Cluj) 1993, 35, 221-225.
13. Karapınar, E. A new non-unique fixed point theorem. J. Appl. Funct. Anal. 2012, 7, 92-97.
14. Zhang, F.; Kang, S.M.; Xie, L. Ćirić type mappings with a non-unique coincidence points. Fixed Point Theory Appl. 2007, 6, 187-190.
15. Dhage, B.C. Some theorems for the maps with a non-unique fixed point. Indian J. Pure Appl. Math. 1985, 16, 254-256.
16. Liu, Z.Q.; Guo, Z.; Kang, S.M.; Lee, S.K. On Ćirić type mappings with non-unique fixed and periodic points. Int. J. Pure Appl. Math. 2006, 26, 399-408 .
17. Mishra, S.N. On fixed points of orbitally continuous maps. Nantha Math. 1979, 12, 83-90.
18. Pathak, H.K. Some non-unique fixed points theorems for new class of mappings. Ranchi Univ. Math. J. 1986, 17, 65-70.
19. Alqahtani, B.; Fulga, A.; Karapınar, E. non-unique fixed point results in extended b-metric space. Mathematics 2018, 6, 68. [CrossRef]
20. Alsulami, H.H.; Karapınar, E.; Rakočević, V. Ćirić type nonunique fixed point theorems on b-metric spaces. Filomat 2017, 31, 3147-3156. [CrossRef]
21. Aydi, H.; Karapınar, E.; Rakocevic, V. Nonunique fixed point theorems on b-metric spaces via simulation functions. Jordan J. Math. Stat. 2017, 47, 133-147.
22. Jain, R.K.; Rajoriya, M.K. Non-unique fixed points in orbitally complete metric space. Pure Appl. Math. Sci. 1987, 25, 55-57.
23. Karapınar, E.; Romaguera, S. Nonunique fixed point theorems in partial metric spaces. Filomat 2013, 27, 1305-1314. [CrossRef]
24. Karapınar, E. Ćirić type non-unique fixed points results: A review. Appl. Comput. Math. Int. J. 2019, 1, 3-21.
25. Karapınar, E. Some nonunique fixed point theorems of Ćirić type on Cone Metric Spaces. Abstr. Appl. Anal. 2010, 2010, 123094. [CrossRef]
26. Basu, T. Extension of Ćirić's fixed point theorem in a uniform space. Ranchi Univ. Math. J. 1980, 11, 109-115.
27. Nakano, H. Modular Semi-Ordered Spaces; Maruzen Co. Ltd.: Tokyo, Japan, 1950.
28. Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49-65. [CrossRef]
29. Musielak, J.; Orlicz, W. Some remarks on modular spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 1959, 7, 661-668.
30. Orlicz, W. A Note on Modular Spaces I. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 1961, 9, 157-162.
31. Chistyakov, V.V. Modular metric spaces generated by F-modulars. Folia Math. 2018, 15, 3-24.
32. Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1-14. [CrossRef]
33. Chistyakov, V.V. Modular metric spaces, II: Application to superposition operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 15-30. [CrossRef]
34. Chistyakov, V.V. A fixed point theorem for contractions in modular metric spaces. arXiv 2011, arXiv:1112.5561.
35. Abobaker, H.; Ryan, R.A. Modular metric spaces. Ir. Math. Soc. Bull. 2017, 80, 35-44.
36. Aksoy, U.; Karapinar, E.; Erhan, I.M. Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems. Filomat 2017, 31, 5475-5488. [CrossRef]
37. Kumam, P. Fixed point theorems for nonexpanzive mapping in modular space. Arch. Math. 2004, 40, 345-353.
38. Azadifar, B.; Sadeghi, G.; Saadati, R.; Park, C. Integral type contractions in modular metric spaces. J. Inequal. Appl. 2013, 2013, 483. [CrossRef]
39. Matthews, S. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183-197. [CrossRef]
40. Kamran, T.; Samreen, M.; Ain, O.U. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [CrossRef]
41. Huang, L.G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468-1476. [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
