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1. Introduction

Metric fixed point theory was initiated by the renowned theorem of Banach [1], known as the
Banach Contraction Mapping Principle. He stated that every contraction in a complete metric space
has a unique fixed point. Following this pioneering work, many authors have generalized this
elegant result by refining the contraction condition and/or by changing the metric space to more
refined abstract spaces (see, e.g., [2–5] and the related references therein). In 1974, Ćirić [6] studied
non-unique fixed point results in metric spaces. He obtained various theorems about a fixed point and
periodic points for a self-map f on a metric space M which is not necessarily continuous and satisfies
the condition

min {d( f x, f y), d(x, f x), d(y, f y)} −min {d(x, f y), d(y, f x)} ≤ kd(x, y),

where x, y ∈ M and k ∈ (0, 1). Later on, Pachpatte [7] proved that an orbitally continuous self-map f
on an f -orbitally complete metric space M satisfying the condition

min
{
[d( f x, f y)]2, d(x, y)d( f x, f y), [d(y, f y)]2

}
−min {d(x, f x)d(y, f y), d(x, f y)d(y, f x)} ≤ kd(x, f x)d(y, f y),

where x, y ∈ M and k ∈ (0, 1), has a fixed point. Achari [8] established some fixed point theorems
when the self-mapping f on a metric space (M, d) satisfies the inequality

min {d( f x, f y)d(x, y), d(x, f x)d(y, f y)} −min {d(x, f x)d(x, f y), d(y, f y)d(y, f x)}
min {d(x, f x), d(y, f y)}

≤ kd(x, y),
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where x, y ∈ M , k ∈ (0, 1), and d(x, f x) 6= 0, d(y, f y) 6= 0. Inspired by this pioneering work, many
researchers have studied non-unique fixed point results for different types of contractions on metric
spaces (see [9–18]), as well as in many other abstract spaces (see [19–26]).

On the other hand, Nakno [27] initiated the theory of modular spaces, which was re-defined and
extended by Musielak and Orlicz [28–30]. In 2008, Chistyakov [31] gave the concept of a modular metric
space generated by an F-modular and the advanced theory of modular spaces. As a generalization of
metric spaces, Chistyakov [32,33]) introduced and studied modular metric spaces on an arbitrary set
and, in [34], proved fixed point results for contractive maps in modular spaces. The existence of fixed
point theorems in modular spaces has received a great deal of attention from researchers, recently
(see [35–38] and references therein).

Inspired by the works of Chistyakov and Ćirić, in this paper, we study non-unique fixed points
and periodic points in modular metric spaces. Our results extend the results of Ćirić, Pachpatte,
and Achari in modular metric spaces.

2. Preliminaries

In this section, we recollect some basic notions and results about modular metric spaces, which
will be used later. Throughout the article, we assume that M is a nonempty set, λ is a non-negative real
number (i.e., λ ∈ (0, ∞)), and ω : (0, ∞)×M×M→ [0, ∞] is a function (that will also be written as
ω(λ, x, y) = ωλ(x, y) for all λ > 0 and x, y ∈ M) such that ω = {ωλ}λ>0 with ωλ : M×M→ [0, ∞].

Definition 1. [32] A map ω : (0, ∞)×M×M→ [0, ∞] is called a (metric) modular on M if it satisfies the
following conditions:

(i) ωλ(x, y) = 0 if and only if x = y;
(ii) ωλ(x, y) = ωλ(y, x); and
(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y),

for all λ, µ > 0 and x, y, z ∈ M.
If, in lieu of (i), ω satisfies only

(ip) ωλ(x, x) = 0 for all x ∈ M and λ > 0,

then ω is called a pseudomodular on M. Furthermore, ω is called a strict modular on M if it satisfies (ip) and

(is) given x, y ∈ M, if there exists a non-negative real number λ, possibly depending on x and y, such that
ωλ(x, y) = 0, then x = y.

A modular (strict modular, pseudomodular) is called a convex modular if, in place of (iii), it satisfies

(iv) ωλ+µ(x, y) ≤ λ
λ+µ ωλ(x, z) + µ

λ+µ ωµ(z, y)

for all λ, µ > 0 and x, y, z ∈ M.

It was shown, in [32], that if ω is a convex modular then, for all 0 < λ ≤ µ and x, y ∈ M, one has

ωµ(x, y) ≤ λ

µ
ωλ(x, y) ≤ ωλ(x, y). (1)

By using condition (iii) of Definition 1, one can show that a modular (pseudomodular) ω satisfies

ωµ2(x, y) ≤ ωµ1(x, y) (2)

for µ1 < µ2 and for all x, y ∈ M.

Definition 2. [32] Let ω be a pseudomodular on M and x ∈ M. Then, the sets
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Mω = Mω(x) = {y ∈ M : ωλ(x, y)→ 0 as λ→ ∞}
M∗ω = M∗ω(x) = {y ∈ M : there exists λ = λ(y) > 0 such that ωλ(x, y) < ∞} ,

are called modular metric spaces (around x).

It was shown, in [32], that, in general, Mω is contained in M∗ω. According to ([32], Theorem 2.6),
if ω is a modular metric on M, then the modular space Mω can be equipped with a non-trivial metric
generated by ω, given by

dω(x, y) = inf {λ > 0 : ωλ(x, y) ≤ λ} ,

for all x, y ∈ Mω. If ω is a convex modular on M, then it follows, from ([32], Section 3.5 and Theorem
3.6), that Mω = M∗ω holds and they are equipped with the metric d∗ω, given by

d∗ω(x, y) = inf {λ > 0 : ωλ(x, y) ≤ 1} .

Definition 3. [32,33] Let Mω and M∗ω be modular metric spaces.

(i) A sequence {xn} in M∗ω (or Mω) is called ω-convergent to x ∈ M if and only if lim
n→∞

ωλ(xn, x) = 0,

for some λ > 0. Then, x is said to be the modular limit of {xn}
(ii) A sequence {xn} in M∗ω (or Mω) is called ω-Cauchy if lim

n,m→∞
ωλ(xn, xm) = 0, for some λ > 0.

(iii) A subset X of M∗ω (or Mω) is called ω−complete if every ω-Cauchy sequence in X is ω-convergent to
x ∈ X.

By using the properties of modular metrics and the definition of convergence, one can easily
prove that if lim

n→∞
ωλ(xn, x) = 0 for some λ > 0, then lim

n→∞
ωµ(xn, x) = 0 for all µ > λ > 0. It was also

shown, in [33], that if ω is pseudomodular on M, then the modular metric M∗ω and Mω are closed with
respect to ω-convergence.

Definition 4. [34] A pseudomodular ω on M is said to satisfy the ∆2-condition (on M∗ω) if the following
condition holds: Given a sequence {xn} ⊂ M∗ω and x ∈ M∗ω , if there exists a number λ > 0, possibly depending
on {xn} and x, such that lim

n→∞
ωλ(xn, x) = 0, then lim

n→∞
ω λ

2
(xn, x) = 0.

Now, we state the definitions of modular contractive mappings and a fixed point theorem for
such mappings (given in [34]).

Definition 5. Let ω be a modular metric on M.

(i) A map f : M∗ω → M∗ω is said to be ω-contractive if there exists k ∈ (0, 1) and λ0 = λ0(k) > 0 such that

ωkλ( f x, f y) ≤ ωλ(x, y),

for all 0 < λ < λ0 and x, y ∈ M∗ω.
(ii) A map f : M∗ω → M∗ω is said to be strong ω-contractive if there exists k ∈ (0, 1) and λ0 = λ0(k) > 0

such that
ωkλ( f x, f y) ≤ kωλ(x, y),

for all 0 < λ < λ0 and x, y ∈ M∗ω.

Theorem 1. Let ω be a strict convex metric modular on M and f : M∗ω → M∗ω be a ω-contractive (or strong
ω-contractive) mapping on a complete modular metric space M∗ω induced by ω. If, for every λ > 0, there exists
an x = x(λ) ∈ M∗ω such that ωλ(x, f x) < ∞, then f has a fixed point in M∗ω. Moreover, if ωλ(x, y) < ∞
for all x, y ∈ M∗ω and every λ > 0, then f has a unique fixed point in M∗ω.
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3. Extension of Non-Unique Fixed Point of Ćirić on Modular Metric Spaces

Let M∗ω and Mω be modular metric spaces and f : M∗ω → M∗ω ( or f : Mω → Mω) be a self-map.
Let x ∈ M∗ω ( or Mω). We call O(x) = { f nx : n = 0, 1, 2, 3, . . .} the orbit of x, and f is called orbitally
continuous if limi f ni x = z implies limi f f ni x = f z for each x ∈ M∗ω ( or Mω). The space M∗ω ( or Mω)

is f -orbitally ω-complete if every ω-Cauchy sequence of the form { f ni x}∞
i=1, x ∈ M∗ω, ( or Mω),

converges in M∗ω ( or Mω).

Definition 6. Let ω be a metric modular on M. A mapping f : M∗ω → M∗ω is called a strong Ćirić-type
ω-contraction if there exists k ∈ (0, 1) and λ0 = λ0(k), such that

min {ωkλ( f x, f y), ωkλ(x, f x), ωkλ(y, f y)} −min {ωkλ(x, f y), ωkλ(y, f x)} ≤ kωλ(x, y) (3)

holds for all 0 < λ < λ0 and x, y ∈ M∗ω.

Theorem 2. Let ω be a convex modular on M. Suppose f : M∗ω → M∗ω is an orbitally continuous mapping on
a f -orbitally ω-complete modular space M∗ω and f is a strong Ćirić-type ω-contraction. Assume that, for every
λ > 0, there exists an x ∈ M∗ω such that ωλ(x, f x) = C < ∞. Then, for each x ∈ M∗ω , the sequence { f nx}∞

n=1
converges to a fixed point of f .

Proof. Let x ∈ M∗ω be arbitrary such that ωλ(x, f x) = C < ∞. Define the iterative sequence {xn} by

x0 = x, x1 = f x0 = f x, x2 = f x1 = f 2x, · · · , xn = f xn−1 = f nx.

We shall show that {xn} is an ω-Cauchy sequence. As ωλ(xj−1, xj) = 0 for some j ∈ N
immediately implies that {xn} is an ω-Cauchy sequence, we assume that ωλ(xn−1, xn) > 0 for all
n ∈ N and λ > 0. By inequality (3) with x = xn−1 and y = xn, we get

min {ωkλ( f xn−1, f xn), ωkλ(xn−1, f xn−1), ωkλ(xn, f xn)}
−min {ωkλ(xn−1, f xn), ωkλ(xn, f xn−1)}
= min {ωkλ(xn, xn+1), ωkλ(xn−1, xn)} ≤ kωλ(xn−1, xn).

From the fact 0 < kλ < λ, we then have ωλ(xn−1, xn) ≤ ωkλ(xn−1, xn). As ωkλ(xn−1, xn) ≤
kωλ(xn−1, xn) ≤ kωkλ(xn−1, xn) is not possible (as k < 1), we have

ωkλ(xn, xn+1) ≤ kωλ(xn−1, xn), (4)

for all n ∈ N and 0 < λ < λ0. As 0 < knλ < λ < λ0, by (4), we obtain

ωknλ(xn, xn+1) = ωkkn−1λ(xn, xn+1) ≤ kωkn−1λ(xn−1, xn),

or, inductively,

ωknλ(xn, xn+1) ≤ knωλ(x, f x) = knC,

for all n ∈ N and 0 < λ < λ0. By letting n→ ∞, we get

lim
n→∞

ωknλ(xn, xn+1) = 0, (5)

for all n ∈ N and 0 < λ < λ0. By setting λ1 = (1− k)λ0 < λ0, we obtain

ωknλ1(xn, xn+1) ≤ knωλ1(x, f x) = knC,
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for all n ∈ N. By letting n→ ∞, we get

lim
n→∞

ωknλ1(xn, xn+1) = 0, (6)

for all 0 < λ1 < λ0, As ω is convex, for any m, n ∈ N such that m < n, we get

ωλ∗(xn, xm) ≤
n−1

∑
j=m

λj

λ∗
ωλj(xj, xj+1), (7)

where

λ∗ =
n−1

∑
j=m

λj.

Now, putting λj = kjλ1, j = m, m + 1, · · · , n− 1, in (7), we have

ωλ∗(xn, xm) ≤
n−1

∑
j=m

kjλ1

λ∗
ωkjλ1

(xj, xj+1), (8)

where

λ∗ =
n−1

∑
j=m

kjλ1 = kmλ1
1− kn−m

1− k
= km(1− kn−m)λ0 < λ0.

Taking into account 0 < kjλ1 < λ1 < λ0 for j = m, m + 1, · · · , n− 1 and (6), we get

lim
n,m→∞

ωλ∗(xn, xm) = 0, (9)

for all 0 < λ∗ < λ0. From the fact that 0 < λ∗ < λ0, we then have

ωλ0(xn, xm) ≤
λ∗

λ0
ωλ∗(xn, xm) = km(1− km)ωλ∗(xn, xm) ≤ kmωλ∗(xn, xm). (10)

Now, from (9) we have

lim
n,m→∞

ωλ0(xn, xm) = 0. (11)

This shows that {xn} is a ω-Cauchy sequence in M∗ω. By the f -orbitally ω-completeness of M∗ω,
there exists some z in M∗ω such that limn f nx = z. The orbital continuity of f implies

f z = lim
n

f f nx = z,

which shows that z is a fixed point of f .

Theorem 3. Let ω be a convex modular on M. Suppose f : M∗ω → M∗ω is an orbitally continuous mapping on
a f -orbitally ω-complete modular space M∗ω and let ε > 0. Suppose that there exists k ∈ (0, 1), λ0 = λ0(k) and
x ∈ M∗ω such that ωλ(x, f qx) < ε, for some q ∈ N and for all λ < λ0. If

0 < ωλ(x, y) < ε implies min {ωkλ( f x, f y), ωkλ(x, f x), ωkλ(y, f y)} ≤ kωλ(x, y) (12)

holds, for all 0 < λ < λ0 and x, y ∈ M∗ω, then f has a periodic point.
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Proof. Let Q = {q : ωλ(x, f qx) < ε for some x ∈ M∗ω and for all λ < λ0} be the subset of N which
is non-empty, due to the assumption of the Theorem. Let x ∈ M∗ω such that ωλ(x, f mx) < ε, where
m = min Q.

If m = 1, by using (12) with x and f x, we get

min
{

ωkλ( f x, f 2x), ωkλ(x, f x), ωkλ( f x, f 2x)
}
≤ kωλ(x, f x).

By the fact that kλ < λ, we have

ωλ(x, f x) ≤ ωkλ(x, f x).

As ωkλ(x, f x) ≤ ωλ(x, f x) ≤ kωkλ(x, f x) is impossible (as k < 1), we have

ωkλ( f x, f 2x) ≤ kωλ(x, f x) < kε,

for all 0 < λ < λ0. Proceeding as in Theorem 2, we obtain that f z = z for some z ∈ M∗ω.
Now, take m ≥ 2; that is,

ωλ(y, f y) ≥ ε, (13)

for all y ∈ M∗ω and λ < λ0. Then, from 0 < ωλ(x, f mx) < ε and by (22), we get

min
{

ωkλ( f x, f m+1x), ωkλ(x, f x), ωkλ( f mx, f m+1x)
}
≤ kωλ(x, f mx).

By the fact that kλ < λ < λ0 and (13), thus ωkλ(x, f x) ≥ ε and ωkλ( f mx, f m+1x) =

ωkλ( f mx, f f mx) ≥ ε, and we get

ωkλ( f x, f m+1x) ≤ kωλ(x, f mx) < kε,

for all x ∈ M∗ω and λ < λ0. Similarly,

ωk2λ( f 2x, f m+2x) ≤ k2ωλ(x, f mx) < k2ε.

Continuing in this manner, we get

ωknλ( f nx, f m+nx) ≤ knωλ(x, f mx) < knε,

for all n ∈ N. Therefore, for the sequence

x0 = x, x1 = f mx0, x2 = f mx1, · · · xn = f mxn−1,

we have that

ωknmλ(xn, xn+1) = ωknmλ( f nmx, f m+nmx) ≤ knmωλ(x, f mx) < knmε.

Then, following the same method as in Theorem 2, we conclude that {xn} is a Cauchy sequence.
As {xn} ⊆ { f nx} and M∗ω is f-orbitally ω-complete, there exists some z ∈ M∗ω such that

z = lim
n

xn = lim
n

f nm.

Taking into account that if f is orbital continuous, then f r is also orbital continuous for all r ∈ N,
we have

f mz = lim
n

xn = lim
n

f m f nm == lim
n

f (n+1)m = z,
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which shows that z is a periodic point of f .

Theorem 4. Let ω be a modular on M and f : M∗ω → M∗ω be an orbitally continuous mapping on a modular
space M∗ω. Suppose that, whenever x 6= y, f satisfies the following

min {ωλ( f x, f y), ωλ(x, f x), ωλ(y, f y)} −min {ωλ(x, f y), ωλ(y, f x)} < ωλ(x, y), (14)

for all λ > 0 and x, y ∈ M∗ω . If, for some x ∈ M∗ω , the sequence { f nx}∞
n=1 has a limit point z ∈ M∗ω , then z is

a fixed point of f .

Proof. If, for some m ∈ N, ωλ(xm−1, xm) = 0, then xn = xm = z for n ≥ m, and the assertion holds.
Suppose, then, that ωλ(xm−1, xm) 6= 0 for all m ∈ N. Let lim

i
xni = z. Then, by (14), for xn−1, xn ∈

M∗ω. Then,

min {ωλ( f xn−1, f xn), ωλ(xn−1, f xn−1), ωλ(xn, f xn)} −
min {ωλ(xn−1, f xn), ωλ(xn, f xn−1)} = min {ωλ(xn, xn+1), ωλ(xn−1, xn)}
< ωλ(xn−1, xn).

As ωλ(xn−1, xn) < ωλ(xn−1, xn) is impossible, we have ωλ(xn, xn+1) < ωλ(xn−1, xn) for all
λ > 0. Therefore, {ωλ(xn+1, xn)}n∈N is a decreasing, and hence convergent, sequence of real numbers.
As lim

i
ωλ(xni , xni+1) = ωλ(z, f z) and

{
ωλ(xni , xni+1)

}
⊆ {ωλ(xn, xn+1)}, it follows that

lim
n

ωλ(xn, xn+1) = ωλ(z, f z). (15)

Furthermore, as lim
i

xni+1 = f z, lim
i

xni+2 = f 2z, and
{

ωλ(xni+1, xni+2)
}
⊆ {ωλ(xn, xn+1)},

by (15), we have

lim
n

ωλ( f z, f 2z) = ωλ(z, f z). (16)

If ωλ(z, f z) > 0, then (14) implies that ωλ( f z, f 2z) < ωλ(z, f z), a contradiction. Hence,
ωλ(z, f z) = 0, i.e., f z = z. This completes the proof of the Theorem.

Theorem 5. Let ω be a modular on M satisfying the ∆2-condition on M∗ω . Suppose that f : M∗ω → M∗ω is an
orbitally continuous mapping on a modular space M∗ω and ε > 0. Suppose that f satisfies the following

0 < ωλ(x, y) < ε implies min {ωλ( f x, f y), ωλ(x, f x), ωλ(y, f y)} < ωλ(x, y), (17)

for all λ > 0 and x, y ∈ M∗ω . If, for some x ∈ M∗ω , the sequence { f nx}∞
n=1 has a limit point z ∈ M∗ω , then z is

the periodic point of f .

Proof. Let lim
i

xni = z, then there exists r ∈ N such that i > r implies ω λ
2
(xni , z) < ε

2 . Hence,

ωλ(xni , xni+1) ≤ ω λ
2
(xni , z) + ω λ

2
(xni+1, z) <

ε

2
+

ε

2
= ε,

and the set
S =

{
s ∈ N : ωλ(xp, xp+s) < ε for some p ∈ N

}
is non-empty. Put m = min S. If ωλ(xs, xs+m) = 0 for some s ∈ N, then z = xs = f mz, and the
assertion holds. Now, assume that ωλ(xs, xs+m) > 0 for every s ∈ N and λ > 0. Let q ∈ N such that
ωλ(xq, xq+m) < ε.
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If m = 1, then, by (17) (as in the proof of the Theorem 4), {ωλ(xn, xn+1)}n∈N is a decreasing
sequence for n ≥ q, which implies that f z = z.

So, suppose that m ≥ 2; that is, that

ωλ(xn, xn+1) ≥ ε, (18)

for all n ∈ N and λ > 0. As f is orbital continuous, lim
i

xni+s = f sz. By (18),

ωλ( f sz, f s+1) = lim
i
(xni+s, xni+s+1) ≥ ε, (19)

for all s ∈ N. By (17) and the assumption 0 < ωλ(xq, xq+m) < ε, we have

min
{

ωλ( f xq, f xq+m), ωλ(xq, f xq), ωλ(xq+m, f xq+m)
}
< ωλ(xq, xq+m),

or

min
{

ωλ(xq+1, xq+m+1), ωλ(xq, xq+1), ωλ(xq+m, xq+m+1)
}
< ωλ(xq, xq+m).

Hence, by (18), we get

ωλ(xq+1, xq+m+1) < ωλ(xq, xq+m) < ε.

In a similar way, we get

ε > ωλ(xq, xq+m) > ωλ(xq+1, xq+m+1) > ωλ(xq+2, xq+m+2) > · · · , (20)

which shows that {ωλ(xn, xn+m) : n ≥ q and λ > 0} is decreasing and, hence, is a convergent sequence
of real numbers. As the subsequences {ωλ(xni , xni+m)}i∈N and

{
ωλ(xni+1, xni+m+1)

}
i∈N converge

to ωλ(z, f mz) and ωλ(z, f m+1z), respectively, then, by the orbital continuity of f and as limi f ni = z,
we have

ωλ( f z, f m+1z) = ωλ(z, f mz) = lim
n

ωλ(xn, xm+n). (21)

By (20) and (21), we get ωλ(z, f mz) < ε. If ωλ(z, f mz) > 0, then, from (17), we obtain

min
{

ωλ( f z, f m+1z), ωλ(z, f z), ωλ( f mz, f m+1z)
}
< ωλ(z, f mz) < ε.

By (19),
ωλ( f z, f m+1z) < ωλ(z, f mz),

which is a contradiction. Hence, ωλ(z, f mz) = 0, which implies that z is the periodic point of f .

4. Extension of Non-Unique Fixed Point of Pachpatte on Modular Metric Spaces

In this section, non-unique fixed point theorems for Pachpatte-type contractions are proved in the
setting of modular metric spaces. We start this section with the following definition.

Definition 7. Let ω be a metric modular on M. A mapping f : M∗ω → M∗ω is called a strong Pachpatte-type
ω-contraction if there exists k ∈ (0, 1) and λ0 = λ0(k), such that

min
{
[ωkλ( f x, f y)]2 , ωkλ(x, y)ωkλ( f x, f y), [ωkλ(y, f y)]2

}
−min {ωkλ(x, f x), ωkλ(y, f y), ωkλ(x, f y)ωkλ(y, f x)} ≤ kωλ(x, f x)ωλ(y, f y)

(22)
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holds, for all λ0 > λ > 0, and x, y ∈ M∗ω.

Theorem 6. Let ω be a convex modular on M. Suppose f : M∗ω → M∗ω is an orbitally continuous mapping on
a f -orbitally ω-complete modular space M∗ω and f is a strong Pachpatte-type ω-contraction. Assume, for every
λ > 0, there exists an x ∈ M∗ω such that ωλ(x, f x) = C < ∞. Then, for each x ∈ M∗ω , the sequence { f nx}∞

n=1
converges to a fixed point of f .

Proof. Let x ∈ M∗ω be arbitrary, such that ωλ(x, f x) = C < ∞. Define the iterative sequence {xn} by

x0 = x, x1 = f x0 = f x, x2 = f x1 = f 2x, · · · , xn = f xn−1 = f nx.

We shall show that {xn} is an ω-Cauchy sequence. As ωλ(xj−1, xj) = 0 for some j ∈ N
immediately implies that {xn} is ω-Cauchy sequence, we assume that ωλ(xn−1, xn) > 0 for all
n ∈ N and λ > 0. By (22) with x = xn−1 and y = xn, we get

min
{
[ωkλ(xn, xn+1)]

2 , ωkλ(xn−1, xn)ωkλ(xn, xn+1), [ωkλ(xn, xn+1)]
2
}

−min {ωkλ(xn−1, xn), ωkλ(xn, xn+1), ωkλ(xn−1, xn+1)ωkλ(xn, xn)}

= min
{
[ωkλ(xn, xn+1)]

2 , ωkλ(xn−1, xn)ωkλ(xn, xn+1)
}
≤ kωλ(xn−1, xn)ωλ(xn, xn+1).

From the fact that 0 < kλ < λ, we have

ωλ(xn−1, xn)ωλ(xn, xn+1) ≤ ωkλ(xn, xn+1)ωkλ(xn−1, xn).

As

ωkλ(xn−1, xn)ωkλ(xn, xn+1) ≤ kωλ(xn−1, xn)ωλ(xn, xn+1) ≤ kωkλ(xn−1, xn)ωkλ(xn, xn+1)

is impossible (as k < 1), we have

[ωkλ(xn, xn+1)]
2 ≤ kωλ(xn−1, xn)ωλ(xn, xn+1) ≤ kωλ(xn−1, xn)ωkλ(xn, xn+1),

or

ωkλ(xn, xn+1) ≤ kωλ(xn−1, xn), (23)

for all n ∈ N and 0 < λ < λ0. As 0 < knλ < λ < λ0, by (23), we obtain

ωknλ(xn, xn+1) = ωkkn−1λ(xn, xn+1) ≤ kωkn−1λ(xn−1, xn),

or, inductively,

ωknλ(xn, xn+1) ≤ knωλ(x, f x) = knC,

for all n ∈ N and 0 < λ < λ0. By letting n→ ∞, we get

lim
n→∞

ωknλ(xn, xn+1) = 0, (24)

for all n ∈ N and 0 < λ < λ0. Following the same procedure as in the proof of Theorem 2, we conclude
that {xn} is an ω-Cauchy sequence in M∗ω. By the f -orbitally ω-completeness of M∗ω, there is some z
in M∗ω such that limn f nx = z. The orbital continuity of f implies that

f z = lim
n

f f nx = z,
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which shows that z is a fixed point of f .

Theorem 7. Let ω be a modular on M and f : M∗ω → M∗ω be an orbitally continuous mapping on a modular
space M∗ω. Suppose that, whenever x 6= y, f satisfies the following

min
{
[ωλ( f x, f y)]2 , ωλ(x, y)ωλ( f x, f y), [ωλ(y, f y)]2

}
−min {ωλ(x, f x), ωλ(y, f y), ωλ(x, f y)ωλ(y, f x)} < ωλ(x, f x)ωλ(y, f y),

(25)

for all λ > 0 and x, y ∈ M∗ω . If, for some x ∈ M∗ω , the sequence { f nx}∞
n=1 has a limit point z ∈ M∗ω , then z is

a fixed point of f .

Proof. If for some m ∈ N, ωλ(xm−1, xm) = 0, then xn = xm = z for n ≥ m, and the assertion holds.
Suppose, then, that ωλ(xm−1, xm) 6= 0 for all m ∈ N. Let lim

i
xni = z. Then, by (25), for xn−1, xn ∈ M∗ω,

we have

min
{
[ωλ(xn, xn+1)]

2 , ωλ(xn−1, xn)ωλ(xn, xn+1), [ωλ(xn, xn+1)]
2
}

−min {ωλ(xn−1, xn), ωλ(xn, xn+1), ωλ(xn−1, xn+1)ωλ(xn, xn)}

= min
{
[ωλ(xn, xn+1)]

2 , ωλ(xn−1, xn)ωλ(xn, xn+1)
}
< ωλ(xn−1, xn)ωλ(xn, xn+1).

As ωλ(xn−1, xn)ωλ(xn, xn+1) < ωλ(xn−1, xn)ωλ(xn, xn+1) is impossible, we have ωλ(xn, xn+1) <

ωλ(xn−1, xn) for all λ > 0. Therefore, {ωλ(xn+1, xn)}n∈N is a decreasing, and hence convergent,
sequence of real numbers. As lim

i
ωλ(xni , xni+1) = ωλ(z, f z) and

{
ωλ(xni , xni+1)

}
⊆ {ωλ(xn, xn+1)},

it follows that

lim
n

ωλ(xn, xn+1) = ωλ(z, f z). (26)

Furthermore, as lim
i

xni+1 = f z, lim
i

xni+2 = f 2z and
{

ωλ(xni+1, xni+2)
}
⊆ {ωλ(xn, xn+1)}, by (26),

we have

ωλ( f z, f 2z) = ωλ(z, f z). (27)

If ωλ(z, f z)ωλ( f z, f 2z) > 0, then (25) implies ωλ( f z, f 2z) < ωλ(z, f z), a contradiction. Hence,
ωλ(z, f z)ωλ( f z, f 2z) = 0. From (27), we have ωλ(z, f z) = 0; that is, f z = z. This completes the
proof of the Theorem.

Remark 1. The conclusion of Theorem 6 remains true if we replace condition (22) by

min
{
[ωkλ( f x, f y)]2 , ωkλ(x, y)ωkλ( f x, f y), [ωkλ(y, f y)]2

}
−min {ωkλ(x, f y), ωkλ(y, f x)}

≤ kωλ(x, f x)ωλ(y, f y),

and, similarly, the conclusion of Theorem 7 remains true if we replace condition (25) by

min
{
[ωλ( f x, f y)]2 , ωλ(x, y)ωλ( f x, f y), [ωλ(y, f y)]2

}
−min {ωλ(x, f y), ωλ(y, f x)}

< ωλ(x, f x)ωλ(y, f y).

5. Extension of Non-Unique Fixed Point of Achari on Modular Metric Spaces

In this section, non-unique fixed point theorems for Achari-type contractions are proved in the
setting of modular metric spaces. We start this section with the following definition.
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Definition 8. Let ω be a metric modular on M. A mapping f : M∗ω → M∗ω is called a strong Achari-type
ω-contraction if there exists k ∈ (0, 1) and λ0 = λ0(k), such that

A(x, y)− B(x, y)
C(x, y)

≤ kωλ(x, y) (28)

holds for all λ0 > λ > 0, and x, y ∈ M∗ω, where

A(x, y) = min {ωkλ( f x, f y)ωkλ(x, y), ωkλ(x, f x)ωkλ(y, f y)} ,

B(x, y) = min {ωkλ(x, f x)ωkλ(x, f y), ωkλ(y, f y)ωkλ(y, f x)} ,

and
C(x, y) = min {ωkλ(x, f x), ωkλ(y, f y)} ,

such that ωkλ(x, f x) 6= 0, ωkλ(y, f y) 6= 0.

Theorem 8. Let ω be a convex modular on M. Suppose f : M∗ω → M∗ω is an orbitally continuous mapping
on a f -orbitally ω-complete modular space M∗ω and f is a strong Achari-type ω-contraction. Assume that,
for every λ > 0, there exists an x ∈ M∗ω such that ωλ(x, f x) = C < ∞. Then, for each x ∈ M∗ω , the sequence
{ f nx}∞

n=1 converges to a fixed point of f .

Proof. Let x ∈ M∗ω be arbitrary, such that ωλ(x, f x) = C < ∞. Define the iterative sequence {xn} by

x0 = x, x1 = f x0 = f x, x2 = f x1 = f 2x, · · · , xn = f xn−1 = f nx.

We shall show that {xn} is an ω-Cauchy sequence. As ωλ(xj−1, xj) = 0 for some j ∈ N
immediately implies that {xn} is an ω-Cauchy sequence, we assume that ωλ(xn−1, xn) > 0 for all
n ∈ N and λ > 0. By inequality (28) with x = x0 and y = x1, we get

ωkλ(x1, x2)ωkλ(x0, x1)

min {ωkλ(x1, x2), ωkλ(x0, x1)}
≤ kωλ(x0, x1).

From the fact 0 < kλ < λ, we have ωλ(x0, x1) ≤ ωkλ(x0, x1). As ωkλ(x0, x1) ≤ kωλ(x0, x1) ≤
kωkλ(x0, x1) is not possible (as k < 1), we have

ωkλ(x1, x2) ≤ kωλ(x0, x1), (29)

for all 0 < λ < λ0. As 0 < knλ < λ < λ0, proceeding in the same manner, we obtain

ωknλ(xn, xn+1) = ωkkn−1λ(xn, xn+1) ≤ kωkn−1λ(xn−1, xn) · · · ≤ knωλ(x0, x1) = knC,

for all n ∈ N and 0 < λ < λ0. By letting n→ ∞, we get

lim
n→∞

ωknλ(xn, xn+1) = 0, (30)

for all n ∈ N and 0 < λ < λ0. By setting λ1 = (1− k)λ0 < λ0, we obtain

ωknλ1(xn, xn+1) ≤ knωλ1(x, f x) = knC,

for all n ∈ N. By letting n→ ∞, we get

lim
n→∞

ωknλ1(xn, xn+1) = 0, (31)
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for all 0 < λ1 < λ0. Following the same procedure as in the proof of Theorem 2, we conclude that
{xn} is an ω-Cauchy sequence in M∗ω . By the f -orbitally ω-completeness of M∗ω , there is some z in M∗ω
such that limn f nx = z. The orbital continuity of f implies that

f z = lim
n

f f nx = z,

which shows that z is a fixed point of f .

Theorem 9. Let ω be a modular on M and f : M∗ω → M∗ω be an orbitally continuous mapping on a modular
space M∗ω. Suppose that whenever x 6= y, f satisfies

P(x, y)−Q(x, y)
R(x, y)

< ωλ(x, y), (32)

for all λ > 0, and x, y ∈ M∗ω; where

P(x, y) = min {ωλ( f x, f y)ωλ(x, y), ωλ(x, f x)ωλ(y, f y)} ,

Q(x, y) = min {ωλ(x, f x)ωλ(x, f y), ωλ(y, f y)ωλ(y, f x)} ,

and
R(x, y) = min {ωλ(x, f x), ωλ(y, f y)} ,

such that ωλ(x, f x) 6= 0, ωλ(y, f y) 6= 0. If, for some x ∈ M∗ω, the sequence { f nx}∞
n=1 has a limit point

z ∈ M∗ω, then z is a fixed point of f .

Proof. If, for some m ∈ N, ωλ(xm−1, xm) = 0, then xn = xm = z for n ≥ m, and the assertion holds.
Suppose, then, that ωλ(xm−1, xm) 6= 0 for all m ∈ N. Let lim

i
xni = z. Then, by (32), for xn−1, xn ∈ M∗ω,

we have

min {ωλ(xn, xn+1)ωλ(xn−1, xn), ωλ(xn, xn+1)ωλ(xn−1, xn)} − 0
min {ωλ(xn−1, xn), ωλ(xn, xn+1)}

< ωλ(xn−1, xn),

or

ωλ(xn, xn+1)ωλ(xn−1, xn)

min {ωλ(xn−1, xn), ωλ(xn, xn+1)}
< ωλ(xn−1, xn).

If min {ωλ(xn−1, xn), ωλ(xn, xn+1)} = ωλ(xn, xn+1), then ωλ(xn−1, xn) < ωλ(xn−1, xn) is impossible.
Hence, we have ωλ(xn, xn+1) < ωλ(xn−1, xn) for all λ > 0 and n ∈ N. Therefore, {ωλ(xn+1, xn)}n∈N
is a decreasing, and hence convergent, sequence of real numbers. As lim

i
ωλ(xni , xni+1) = ωλ(z, f z)

and
{

ωλ(xni , xni+1)
}
⊆ {ωλ(xn, xn+1)}, it follows that

lim
n

ωλ(xn, xn+1) = ωλ(z, f z). (33)

Furthermore, as lim
i

xni+1 = f z, lim
i

xni+2 = f 2z, and
{

ωλ(xni+1, xni+2)
}
⊆ {ωλ(xn, xn+1)}, by (33),

we have

ωλ( f z, f 2z) = ωλ(z, f z). (34)

If ωλ(z, f z) > 0, then (32) implies ωλ( f z, f 2z) < ωλ(z, f z), a contradiction. Hence, ωλ(z, f z) = 0;
that is, f z = z. This completes the proof of the Theorem.
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Remark 2. The conclusion of Theorem 8 remains true if we replace condition (28) by

A(x, y)−min {ωkλ(x, f y), ωkλ(y, f x)}
C(x, y)

≤ kωλ(x, y),

and, similarly, the conclusion of Theorem 9 remains true if we replace condition (32) by

P(x, y)−min {ωλ(x, f y), ωλ(y, f x)}
R(x, y)

< ωλ(x, y).

6. Conclusions

Several generalizations of the concept of metric spaces have been introduced. Among them,
modular metric spaces [31], partial metric spaces [39], extended b-metric spaces [40], and cone
metric spaces [41] have been studied by the several researchers recently. Non-unique fixed points of
Ćirić-type were investigated in extended b-metric spaces [19], partial metric spaces [23], and cone
metric spaces [25]. This approach can be applied in several abstract spaces and has various applications
in (fractional) differential equations and integral equations. Inspired by this work, we studied
non-unique fixed points of Ćirić-type in modular metric spaces. We obtained various theorems
about fixed points and periodic points for self-maps on modular spaces which are not necessarily
continuous and satisfy certain contractive conditions. Our results unify and extend some existing
results in the literature. The study of non-unique fixed points in the current context would be an
interesting topic for future study.
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