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Abstract: In real life, human opinion cannot be limited to yes or no situations as shown in an ordinary
fuzzy sets and intuitionistic fuzzy sets but it may be yes, abstain, no, and refusal as treated in Picture
fuzzy sets or in Spherical fuzzy (SF) sets. In this article, we developed a comprehensive model to
tackle decision-making problems, where strong points of view are in the favour; neutral; and against
some projects, entities, or plans. Therefore, a new approach of covering-based spherical fuzzy rough
set (CSFRS) models by means of spherical fuzzy β-neighborhoods (SF β-neighborhoods) is adopted
to hybrid spherical fuzzy sets with notions of covering the rough set. Then, by using the principle of
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) to present the spherical
fuzzy, the TOPSIS approach is presented through CSFRS models by means of SF β-neighborhoods.
Via the SF-TOPSIS methodology, a multi-attribute decision-making problem is developed in an SF
environment. This model has stronger capabilities than intuitionistic fuzzy sets and picture fuzzy
sets to manage the vague and uncertainty. Finally, the proposed method is demonstrated through an
example of how the proposed method helps us in decision-making problems.

Keywords: fuzzy sets; spherical fuzzy sets; spherical fuzzy β-covering; spherical fuzzy β-covering
neighborhoods; covering based spherical fuzzy rough set; spherical fuzzy TOPSIS methodology

1. Introduction

The dominant notion of q Fuzzy set by Zadeh [1] plays a vital role in the field of mathematics.
This theory brought a revolution not only in the field mathematics but also in science and technology.
Different direct and indirect generalizationw of this theory have been made which are successfully
applied to solve the problems of real situations. Authors studied the different generalizations of fuzzy
sets, and one of the most significant and useful generalizations of this theory is the Intuitionistic fuzzy
set (IFS) initiated by Atanassove [2]. IFSs is a significant tool to tackle uncertainties and vague data by
defining the membership grade (MG) and nonmembership grade (NMG) with the condition that the
of sum of these two MG and NMG must belong to the unit of closed intervals of 0 and 1. However, a
fascinating scenario emerges when the sum of the MG and NMG of an object is given from the unit
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interval [0, 1] but their sum exceeds 1. Ordinary IFSs fail to handle such situations. Therefore, some
more comprehensive model is required for such situations.

Yager enquired this scenario in References [3,4] and initiated the notion of a Pythagorean fuzzy
set (PytFS). This concept became more favorable among the scholars and was considered a significant
generalization of IFSs. The main difference between IFSs and PytFSs is that, in the case of PytFSs, the
sum of MG and NMG is greater than 1, but their squares sum belong to the unit interval [0, 1] .

From the above analysis, it has been observed that all these notions are applied in different areas
with successful results, but in real life, there are some situations that cannot be accurately tackle by
IFSs and PytFSs because the most significant tool of neutral grade (NG) is missing in IFS and PytFS
theories. In some situations of real life, a decision maker requires more answers of the type like
yes, neutral/abstain, no, and refusal degrees which are not accurately handled with ordinary IFSs
and PytFSs. A new extension WASPAS method based on the use of intuitionistic fuzzy numbers is
proposed by Stanujkić and Karabašević [5]. In order to tackle such situations, a more comprehensive
model was needed to cover this space. Thus, Cuong [6] originated the notion of Picture fuzzy set
(PFS) which was consider as a successful extension of IFSs by put together the ideas of the MG, NG,
and NMG of an object with the condition that the sum of these three grades belong to the unit closed
interval [0, 1]; for details of the study, see References [7–9]. Joshi and kumar [10] studied the concept of
multi-criteria decision-making (MCDM) in PFS. Ashraf et al. [11] presented different approaches to
MCDM in a picture fuzzy environment. In Reference [12], Zeng et al. proposed the exponential jensen
picture fuzzy divergence measure and discussed their applications. In some situations of real life, a
decision maker assigns the values to MG, NG, and NMG of an object from the unit interval [0, 1], but
their sum exceed 1. In this case, ordinary PFSs failed to handle such situations. To tackle this situations,
Ashraf et al. [13] presented the new idea of spherical fuzzy set (SFS). The main difference between
PFSs and SFSs is that, in the later case, the sum of MG, NG, and NMG are greater than 1, but the sum
of their squares belong to the unit interval [0, 1]. Ashraf and saleem [14] proposed the spherical fuzzy
aggregation operators using t-norm and t-conorm and, in Reference [15], proposed the concept of
spherical linguistic fuzzy set and introduced the GRA method to deal with spherical fuzzy information.
Similarly, Mahmood et al. [16] studied the idea of SFSs and presented their applications in a medical
diagnosis; for details of the study, see References [17,18]. TOPSIS (Technique for Order Preference
by Similarity to an Ideal Solution) is one of the standard decision-making methods, having simple
mathematical calculations. Liu et al. [19] presented a model for evaluating and selecting a transport
service provider based on a single valued neutrosophic number. Hwang and Yoon [20] proposed that
TOPSIS could handle the problems related MCDM, where the target was to get the ideal solutions for
each alternative. Ashraf et al. [21] proposed the logarithmic aggregation operators for single-valued
neutrosophic information.

The basic idea of rough sets was initiated by Pawalk [22]. Dubios and Prade [23] originated the
combine study of fuzzy sets and rough sets to get the notions of rough fuzzy and fuzzy rough sets.
Liu and Lin [24] studied roughness in IFSs on the bases of conflict distance. Hussain et al. [25] initiated
the concept of rough Pythagorean fuzzy ideals in semigroups; for details of the study of rough sets,
see References [26,27]. Nowadays, many researchers are working on covering-based rough sets (CRSs)
models. Zakowski [28] presented the idea of CRSs, which is a extension of Pawlak rough sets. Xu and
Zhang [29] put forward a new CRS models which is based on the measure of roughness and discussed
the properties of this measure. Liu and Sai [30] made the comparison between different CRS models
presented in References [29,31,32]. Wang et al. [33] studied and improved the attribute reduction
scheme with the help of CRSs. Many researchers have studied covering-based fuzzy rough sets (CFRS).
D’eer et al. [34,35] presented the idea of fuzzy neighborhoods and fuzzy β-neighborhoods. Ma [36]
introduced the generalized structure of CFRSs.
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The Motivation and Organization of Our Research

Spherical fuzzy sets have their own importance in circumstances where an opinion is not only
constrained to yes or no but there is some sort of abstinence or refusal. A good example of a spherical
fuzzy set could be decision-making, such as when four decision makers have four different types of
opinion about a candidate, which could possibly be in the form of yes, abstain, no, or refusal. Another
example could be of voting where four types of voters vote in favor or vote against or refuse to vote
or abstain.

Similarly in many situation of real life, there exists many cases where people have quite different
strong points of view about certain situations, projects, plans, or entities. These points of view are
diverse and opposite to each other. For example, in a certain country, a government starts a project
to portray his performance. Leaders of the ruling party may rate their project highly in favor of the
project by giving a membership grade about 0.7, whereas the opposition considers the same project
as a waste of money and try to defame it by providing strongly opposite points of view. Therefore,
a nonmembership grade suggested may be 0.6, while a third party remains neutral. Therefore, the
neutral/abstain degree may be 0.1. In this case, 0.75+ 0.1+ 0.65 > 1, but in the case of SPS, their square
sum is (0.75)2 + (0.1)2 + (0.65)2 < 1.

In order to tackle such situations, the need for a more comprehensive model was felt. To cope
with such circumstances, the notion of SFS has been initiated in References [13,16]. Here, the square
sum of MG, NG, and NMG is a real number between 0 and 1. The concept of SFS gives more space
and freedom to the decision makers for the selection of MG, NG, and NMG.

According to the best of our knowledge, there does not exist any notion of SF rough sets via
SF β-neighborhood systems in SF environments. To fulfill this space in research, the current paper
was motivated to study CSFRS models via SF β-neighborhood systems. Therefore, a new approach
is adopted to hybrid spherical fuzzy sets with notions of covering rough set and TOPSIS, and their
application is presented in multi-attribute decision making. In real life, the CSFRSs model is a
significant tools to cope with complexities and uncertainties. The idea of CSFRSs model via SF
β-neighborhoods has been investigated from the hybridization of the prominent concepts of CRSs, SFSs,
and FRSs. Further, it has been observed that the CSFRSs is an important generalization of cover-based
intuitionistic fuzzy rough sets, cover-based Pythagorean fuzzy rough sets by adjusting the value of
the NG to zero, and cover-based picture fuzzy rough sets by adjusting 0 ≤ MG + NG + NMG ≤ 1.
This show that CSFRS models have stronger capabilities than IFS, PytFS, and PFS in managing
the uncertainty.

The arrangement of the manuscript is summarized as follows: Section 2 presents the basic notions
of IFS and their generalization. Section 3 consists of the notion of covering-based spherical fuzzy set
(CSFRS) models based on spherical fuzzy β-neighborhoods (SF β-neighborhoods). In Section 4, based
on the analysis of CSFRS models, we introduce the spherical fuzzy TOPSIS (SF-TOPSIS) method to
solve the problems of MCDM by applying SFSs. Further, Section 4.2 is devoted for the illustrated
example in which we demonstrate how SF-TOPSIS methodology works in decision-making problems
by using the concept of CSFRS models based on SF β-neighborhoods.

2. Preliminaries

This section consists of a brief review of IFSs and their generalizations such as PytFSs, PFSs, and
SFSs. Also in the same section, we present a brief study of the fuzzy covering approximation space
through fuzzy β-neighborhood.

Definition 1 ([2]). Let us consider a universal set X . An IFS A on a set X consists of two mappings which are
defined as

A = {< r, ψA(r), λA(r) > /r ∈ X}
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such that the mapping ψA : X → [0, 1] represents the MG and the mapping λA : X → [0, 1] represents
the NMG of r ∈ X to the set A, with the condition that 0 ≤ ψA(r) + λA(r) ≤ 1. Furthermore, πA(r) =

1− (ψA(r) + λA(r)) is known to be the degree of indeterminacy.

Definition 2 ([3,4]). Consider a universe set X . A PytFS P = {< r, ψP (r), λP (r) > /r ∈ X} where
ψP : X → [0, 1] represents the MG and λP : X → [0, 1] represents the NMG for r ∈ X to the set P , with the
condition that 0 ≤ (ψP (r))2 + (λP (r))2 ≤ 1. Furthermore, πP (r) =

√
1− {(ψP (r))2 + (λP (r))2} is said

to be the degree of indeterminacy.

Definition 3 ([6]). Suppose a universal set X and an PFS P in X is an object represented by the following form:

P = {< r, ψP (r), ηP (r), λP (r) > /r ∈ X},

such that ψP : X → [0, 1] represents the MG, ηP : X → [0, 1] represents the NG, and λP : X → [0, 1]
represents the NMG of an object r ∈ X to the set P , with the condition that 0 ≤ ψP (r) + ηP (r) + λP (r) ≤ 1.
Moreover, π(r) = 1− (ψP (r) + ηP (r) + λP (r)) is said to be the refusal degree of r ∈ X in P . The triplet
(ψP , ηP , λP ) is called a picture fuzzy number. The collection of PFSs on X is represented by PFS(X ) .

Definition 4 ([13]). Suppose a universal setX and a spherical fuzzy set (SFS)= inX consist of three mappings
which are defined as

= = {< r, ψ=(r), η=(r), λ=(r) > /r ∈ X},

such that ψ= : X → [0, 1] represents the MG, η= : X → [0, 1] represents the NG, and λ= : X → [0, 1]
represents the NMG of an object r ∈ X to the set =, with the condition that 0 ≤ (ψ=(r))2 + (η=(r))2 +

(λ=(r))2 ≤ 1 and π(r) =
√

1− {(ψ=(r))2 + (η=(r))2 + (λ=(r))2} is said to be the degree of refusal of
r ∈ X in =. The collection of SFSs on X is represented by SFS(X ) .
Let α = (ψ=, η=, λ=), then α is called a spherical fuzzy number (SFN), where 0 ≤ (ψ=)

2 + (η=)
2 + (λ=)

2 ≤ 1.

From the above definitions of SFS, it is clear that IFS, PytFS, and PFS are the special cases of SFS
because the notion of SFS provides a huge space for the decision makers by assigning their preference
domain from [0, 1].

Definition 5. Let α1 =
(
ψ=1 , η=1 , λ=1

)
and α2 =

(
ψ=2 , η=2 , λ=2

)
be the two SFNs. Then α1 ≤ α2, if and

only if ψ=1 ≤ ψ=2 , η=1 ≥ η=2 and λ=1 ≥ λ=2 .

Let =1={< r, ψ=1(r), η=1(r), λ=1(r) > /r ∈ X} and =2 = {< r, ψ=2(r), η=2(r), λ=2(r) > /r ∈
X} be the two SFSs.Then, Ashraf et al. [13] defined the basic operation on them as follows:

i =1 ∪ =2 = {< r, max(ψ=1(r), ψ=2(r)), min(η=1(r), η=2(r)), min(λ=1(r), λ=2(r)) > /r ∈ X};
ii =1 ∩ =2 = {< r, min(ψ=1(r), ψ=2(r)), min(η=1(r), η=2(r)), max(λ=1(r), λ=2(r)) > /r ∈ X};
iii =1 ⊆ =2 if and only if ψ=1(r) ≤ ψ=2(r), η=1(r) ≤ η=2(r), λ=1(r) ≥ λ=2(r) for all r ∈ X ;
iv =c

1 = {< r, λ=1(r), η=1(r), ψ=1(r) > /r ∈ X};
v =1 = =2 if and only if ψ=1(r) = ψ=2(r), η=1(r) = η=2(r), λ=1(r) = λ=2(r) for all r ∈ X ;

Definition 6 ([31]). Consider a universal set X and K= {A/A ⊆ X} are a collection of non-empty subsets
of X such that ∪

A∈K
A = X . Then, K is known to be a covering of X , and (X , K) is known to be a covering

approximation space (short CASp).

Definition 7 ([31]). Consider the CASp (X , K) . Then, NK(r) = ∩{A/A ∈K and r ∈ A} is known as the
neighborhood of r ∈ X with respect to (X , K) .
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Definition 8 ([37]). For a universal set X , I (X ) represents the collection of fuzzy power set of X . Let
L ={L1,L2, ...,Lm} with Li ∈ I (X ) (i = 1, ..., m), then L is known to be a fuzzy covering of X , if
∨
Li∈L
Li(r) = 1 for each r ∈ X . Then, the pair (X ,L) is known to be a fuzzy approximation space based on

fuzzy covering.

Definition 9 ([36]). Suppose that a universal set X . For any β ∈ (0, 1] and L ={L1,L2, ...,Lm} with

Li ∈ I (X ) (i = 1, ..., m), then L is known to be a fuzzy β-covering of X , if
m
∪

i=1
Li(r) < β for each r ∈ X and

the pair (X ,L) called fuzzy β-CASp.

Definition 10 ([36]). Let us consider (X ,L) as a fuzzy CASp. For some β ∈ (0, 1] , consider a fuzzy
β-covering L ={L1,L2, ...,Lm} of a set X . Then, Nβ

r = ∩{Li ∈ L/Li(r) < β(i = 1, 2, ..., m)} is said to be
a fuzzy β-neighborhood of r ∈ X .

Definition 11 ([36]). Let us consider a fuzzy CASp (X ,L). For some β ∈ (0, 1] , consider a fuzzy β-covering

L ={L1,L2, ...,Lm} of a set X . Then,
∗
N

β

y = {r ∈ X/Nβ
y (r) < β} is said to be β-neighborhood of y for each

y ∈ X .

3. Covering-Based Spherical Fuzzy Rough Set

This section is devoted to the new notion of covering-based spherical fuzzy rough sets.
According to the best of our knowledge, there does not exist any notion of SF rough sets via
SF β-neighborhoods system in the literature. To fulfil this space in research, the current work
was motivated to study CSFRS models through SF β-neighborhood systems. The idea of CSFRS
models through SF β-neighborhoods has been investigated from the hybridization of the prominent
concepts of CRSs, SFSs, and FRSs. Further, it has been observed that the CSFRSs is an important
generalization of cover-based intuitionistic fuzzy rough sets, cover-based Pythagorean fuzzy rough
sets by adjusting the value of the NG to zero, and cover-based picture fuzzy rough sets by adjusting
0 ≤ MG + NG + NMG ≤ 1. This shows that CSFRS models have stronger capabilities than IFS, PytFS,
and PFS to cope with complexities and uncertainties.

Definition 12.
(1) Suppose that a universal set X and C= {C1, C2, ..., Cm} where Ci ∈PFS(X ) for i = 1, 2, ..., m. Now, for any
picture fuzzy number (PFN) β = (ψ=, η=, λ=) , then C is said to be a picture fuzzy β-covering (PF β-covering)

of X , if (
m
∪

i=1
Ci)(r) < β ∀r ∈ X . Then, the pair (X , C) is called a picture fuzzy CASp (PFCAS).

(2) Suppose (X , C) is a PFCAS. Now, for some β = (ψ=, η=, λ=), C= {C1, C2, ..., Cm} is a PF β-covering of
X . Then, Nβ

C(r) = ∩{Cj ∈ C/Cj(r) < β, j = 1, 2, ..., m} is said to be a PF β-covering neighborhood of X .

(3) Let Nβ
C = {N

β
C(r)/r ∈ X} represent a PF β-neighborhood system induced by a PF β-covering C. With the

help of a picture fuzzy matrix, the following represents a PF β-neighborhood system.

Mβ
C =

[
Nβ

C(r)(r)
]
(ri ,rj)∈X×X

Proposition 1.
(1) By taking β = (1, 0, 0) , then PF β-coverings degenerate into a crisp covering.
(2) By taking β = (1, 0, 0) , then PF β-neighborhoods degenerate into a crisp neighborhood.
(3) By taking β = (a, 0, 0) where 0 < a < 1, then PF β-coverings degenerate into a fuzzy covering.
(4) By taking β = (a, 0, 0) , then PF β-neighborhoods degenerate into a fuzzy β-neighborhood.
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Definition 13. Suppose that a universal set X and C= {C1, C2, ..., Cm} where Ci ∈SFS(X ) for i = 1, 2, ..., m.
Now, for any SFN β = (ψ=, η=, λ=) , then C is said to be a spherical fuzzy β-covering (SF β-covering) of X ,

if (
m
∪

i=1
Ci)(r) < β ∀r ∈ X . Then, the pair (X , C) is called a spherical fuzzy CASp (SFCAS).

Definition 14.
(1) Suppose (X , C) is a SFCAS. Now, for some β = (ψ=, η=, λ=), C= {C1, C2, ..., Cm} is an SF β-covering of
X . Then, Nβ

C(r) = ∩{Cj ∈ C/Cj(r) < β, j = 1, 2, ..., m} is said to be an SF β-covering neighborhood of X .

(2) Let Nβ
C = {N

β
C(r)/r ∈ X} represent an SF β-neighborhood system induced by an SF β-covering C. With

the help of a spherical fuzzy matrix, the following represents an SF β-neighborhood system as follows.

Mβ
C =

[
Nβ

C(r)(r)
]
(ri ,rj)∈X×X

Proposition 2.
(1) By taking β = (1, 0, 0) , then SF β-coverings degenerate into a crisp covering.
(2) By taking β = (1, 0, 0) , then SF β-neighborhoods degenerate into a crisp neighborhood.
(3) By taking β = (a, 0, 0) where 0 < a < 1, then SF β-coverings degenerate into a fuzzy covering.
(4) By taking β = (a, 0, 0) , then SF β-neighborhoods degenerate into a fuzzy β-neighborhood.

Proof.
(1) Let us consider that C= {C1, C2, ..., Cm} is an SF β-covering. Then, by definition (

m
∪

i=1
Ci)(r) < β,

∀r ∈ X . If β = (1, 0, 0) , then there exists at least an SFN α = (ψ=, η=, λ=) = (1, 0, 0) such that
(1, 0, 0) = Cj(r), (for some j = 1, 2, ..., m) for r ∈ X . Thus, ∪

Ci∈C
Ci = X . Therefore, if β = (1, 0, 0) , then

SF β-coverings degenerate into crisp cover.
(2) Consider Nβ

C(r) = ∩{Cj ∈ C/Cj(r) < β, j = 1, 2, ..., m} is an SF β-covering neighborhood of X .
If β = (1, 0, 0) , then there exists at least an SFN α = (ψ=, η=, λ=) = (1, 0, 0) = Ci(r), such that
α = Ci(r) < β, for r ∈ X . Then, each Nβ

C(r) contains at least an SFN α = (ψ=, η=, λ=) = (1, 0, 0)

for r ∈ X . Thus, Nβ
r = ∩{Cj/Cj ∈ C and r ∈ Cj, j = 1, 2, ..., m}. Therefore, if β = (1, 0, 0) , then

SFβ-covering neighborhoods degenerate into crisp neighborhood.
Proofs of (3) and (4) are similar to (1) and (2) .

Definition 15. For any SFN α = (ψ=, η=, λ=) , the score function of α is denoted and defined as

S (α) = ψ2
= − η2

= − λ2
=, S (α) ∈ [−1, 1] .

The larger the value of score function, the better the score function is.

Example 1. Let us consider that (X , C) is an SFCAS and C= {C1, C2, C3, C4, C5} is the collection of SFSs of
X such that X={r1, r2, ..., r6} with β = (0.5, 0.3, 0.6) as follows from Table 1,

Table 1. A tabular representation of SF β-covering C in Example 1.

X/C C1 C2 C3 C4 C5

r1 (0.4, 0.3, 0.5) (0.8, 0.3, 0.5) (0.7, 0.5, 0.4) (0.6, 0.4, 0.5) (0.9, 0.3, 0.2)
r2 (0.7, 0.3, 0.6) (0.9, 0.2, 0.3) (0.7, 0.3, 0.4) (0.9, 0.4, 0.1) (0.7, 0.5, 0.5)
r3 (0.5, 0.4, 0.6) (0.8, 0.1, 0.5) (0.8, 0.3, 0.4) (0.5, 0.4, 0.7) (0.5, 0.4, 0.6)
r4 (0.6, 0.6, 0.2) (0.8, 0.3, 0.5) (0.7, 0.6, 0.3) (0.7, 0.3, 0.6) (0.9, 0.1, 0.4)
r5 (0.6, 0.3, 0.7) (0.9, 0.2, 0.3) (0.5, 0.6, 0.6) (0.7, 0.2, 0.6) (0.4, 0.3, 0.5)
r6 (0.6, 0.5, 0.4) (0.6, 0.3, 0.7) (0.5, 0.3, 0.4) (0.7, 0.6, 0.2) (0.6, 0.2, 0.5)
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Hence, C is an SF β-covering of X . Then
N(0.5,0.3,0.6)
C(r1)

= C2 ∩ C5, N(0.5,0.3,0.6)
C(r2)

= C1 ∩ C2 ∩ C3, N(0.5,0.3,0.6)
C(r3)

= C2 ∩ C3, N(0.5,0.3,0.6)
C(r4)

= C2 ∩ C4 ∩ C5,

N(0.5,0.3,0.6)
C(r5)

= C2 ∩ C4, and N(0.5,0.3,0.6)
C(r6)

= C3 ∩ C5

From Nβ
C = {N

β
C(r)/r ∈ X}, Table 2 is obtained.

Table 2. A tabular representation of N(0.5,0.3,0.6)
C in Example 1.

Nβ
C r1 r2 r3 r4 r5 r6

r1 (0.8, 0.3, 0.5) (0.7, 0.2, 0.5) (0.5, 0.1, 0.6) (0.8, 0.1, 0.5) (0.4, 0.2, 0.5) (0.6, 0.2, 0.7)
r2 (0.4, 0.3, 0.5) (0.7, 0.2, 0.6) (0.5, 0.1, 0.6) (0.6, 0.3, 0.5) (0.5, 0.2, 0.7) (0.5, 0.3, 0.7)
r3 (0.7, 0.3, 0.5) (0.7, 0.2, 0.4) (0.8, 0.1, 0.5) (0.7, 0.3, 0.5) (0.5, 0.2, 0.6) (0.5, 0.3, 0.7)
r4 (0.6, 0.3, 0.5) (0.7, 0.2, 0.5) (0.5, 0.1, 0.7) (0.7, 0.1, 0.6) (0.4, 0.2, 0.6) (0.6, 0.2, 0.7)
r5 (0.6, 0.3, 0.5) (0.9, 0.2, 0.3) (0.5, 0.1, 0.7) (0.7, 0.3, 0.6) (0.7, 0.2, 0.6) (0.6, 0.3, 0.7)
r6 (0.7, 0.3, 0.7) (0.7, 0.3, 0.5) (0.5, 0.3, 0.6) (0.7, 0.1, 0.4) (0.4, 0.3, 0.6) (0.5, 0.2, 0.5)

Therefore

M(0.5,0.3,0.6)
C =



r1 (0.8, 0.3, 0.5) (0.7, 0.2, 0.5) (0.5, 0.1, 0.6) (0.8, 0.1, 0.5) (0.4, 0.2, 0.5) (0.6, 0.2, 0.7)
r2 (0.4, 0.3, 0.5) (0.7, 0.2, 0.6) (0.5, 0.1, 0.6) (0.6, 0.3, 0.5) (0.5, 0.2, 0.7) (0.5, 0.3, 0.7)
r3 (0.7, 0.3, 0.5) (0.7, 0.2, 0.4) (0.8, 0.1, 0.5) (0.7, 0.3, 0.5) (0.5, 0.2, 0.6) (0.5, 0.3, 0.7)
r4 (0.6, 0.3, 0.5) (0.7, 0.2, 0.5) (0.5, 0.1, 0.7) (0.7, 0.1, 0.6) (0.4, 0.2, 0.6) (0.6, 0.2, 0.7)
r5 (0.6, 0.3, 0.5) (0.9, 0.2, 0.3) (0.5, 0.1, 0.7) (0.7, 0.3, 0.6) (0.7, 0.2, 0.6) (0.6, 0.3, 0.7)
r6 (0.7, 0.3, 0.7) (0.7, 0.3, 0.5) (0.5, 0.3, 0.6) (0.7, 0.1, 0.4) (0.4, 0.3, 0.6) (0.5, 0.2, 0.5)


Definition 16. Suppose that (X , C) is an SFCAS and C= {C1, C2, ..., Cm} is a set of SF
β-coverings of X for some β = (ψ=, η=, λ=) and X= {r1, ..., rn} . Consider that the
neighborhood system Nβ

C =
{
Nβ
C(r)/r ∈ X

}
induced by SF β-covering of C such that Nβ

C(ri)
=< ri, ψNβ

C(ri)

(
ri, rj

)
, ηNβ

C(ri)

(
ri, rj

)
, λNβ

C(rj)

(
ri, rj

)
> /j = 1, ...m

 for all i = 1, ..., n. Now, for any

= ∈SFS(X ) where == { < ψ=
(
rj
)

, η=
(
rj
)

, λ=
(
rj
)
> /j = 1, ..., m}, the lower and upper approximations

of = with respect to Nβ
C(r) is denoted and defined by

Nβ
C (=) =

(
Nβ
C (=) ,Nβ

C (=)
)

where

Nβ
C (=) =

{
< ri, ψNβ

C (=)
(ri) , ηNβ

C (=)
(ri) , λNβ

C (=)
(ri) > /i = 1, ..., n

}
(1)

and Nβ
C (=) =

{
< ri, ψ

Nβ
C (=)

(ri) , η
Nβ
C (=)

(ri) , λ
Nβ
C (=)

(ri) > /i = 1, ..., n
}

(2)
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such that

ψNβ
C (=)

(ri) =
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψ=

(
rj
)}

ηNβ
C (=)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ η=

(
rj
)}

λNβ
C (=)

(ri) =
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λ=

(
rj
)}

and ψ
Nβ
C (=)

(ri) =
m
∨

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∨ ψ=

(
rj
)}

η
Nβ
C (=)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ η=

(
rj
)}

λ
Nβ
C (=)

(ri) =
m
∧

j=1

{
λNβ

C(ri)

(
ri, rj

)
∧ λ=

(
rj
)}

Therefore, the operators Nβ
C (=) ,Nβ

C (=) :SFS(X ) →SFS(X ) are said to be lower and upper spherical fuzzy

rough approximation operators (SFRAOs) with respect to Nβ
C .

Hence, the covering-based spherical fuzzy rough set (CSFRS) is the pair Nβ
C (=) =

(
Nβ
C (=) ,Nβ

C (=)
)

,

whenever Nβ
C (=) 6= Nβ

C (=) .

Remark 1.
(a) : The notion of CSFRS is the generalized structure of intuitionistic fuzzy covering rough sets model given in
Reference [38], if 0 ≤ ψ= + λ= ≤ 1 and η= = 0.
(b) : The notion of CSFRS is the generalized structure of Pythagorean fuzzy covering rough sets model given in
Reference [39], if 0 ≤ (ψ=)

2 + (λ=)
2 ≤ 1 and η= = 0.

(c) : The notion of CSFRS is the generalized structure of picture fuzzy covering rough sets model, if 0 ≤
ψ= + η= + λ= ≤ 1, as defined in Definition 12.

Example 2. Consider that = ∈SFS(X ) , that is = = {< r1, 0.9, 0.2, 0.3 >,< r2, 0.8, 0.3, 0.5 >,
< r3, 0.7, 0.4, 0.5 >,< r4, 0.5, 0.3, 0.7 >,< r5, 0.7, 0.2, 0.6 >, < r6, 0.8, 0.4, 0.3 >}, and if we consider Mβ

C =[
Nβ
C(ri)

(
rj
)]
(ri ,rj)∈X×X

as from Example 1, where β = (0.5, 0.3, 0.6). Then, from Equations (1) and (2),

we have
Nβ
C (=) = {< r1, 0.4, 0.1, 0.7 >,< r2, 0.4, 0.1, 0.7 >,< r3, 0.5, 0.1, 0.7 >,< r4, 0.4, 0.1, 0.7 >,

< r5, 0.5, 0.1, 0.7 >, < r6, 0.4, 0.1, 0.7 >}
Nβ
C (=) = {< r1, 0.9, 0.1, 0.3 >,< r2, 0.9, 0.1, 0.3 >,< r3, 0.9, 0.1, 0.3 >,< r4, 0.9, 0.1, 0.3 >,

< r5, 0.9, 0.1, 0.3 >, < r6, 0.9, 0.1, 0.3 >}.

Definition 17. Let us consider that =1 = (ψ=1 , η=1 , λ=1) and =2 = (ψ=2 , η=2 , λ=2) are two SFSs. Then, the
distance between =1 and =2 are define as follows:

D (=1,=2) =

√
1

2n ∑
r∈X

{∣∣∣ψ2
=1
− ψ2

=2

∣∣∣+ ∣∣∣η2
=1
− η2
=2

∣∣∣+ ∣∣∣λ2
=1
− λ2

=2

∣∣∣}. (3)

Theorem 1. Let us consider (X , C) to be an SFCAS. Now, for some β = (ψ=, η=, λ=), C= {C1, C2, ..., Cm} is
an SF β-covering of set X . Consider a neighborhood system Nβ

C =
{
Nβ
C(r)/r ∈ X

}
induced by SF β-covering

C. Now, for any =1,=2 ∈SFS(X ) and from Equations (1) and (2), we have the following:
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i Nβ
C (=) ⊆ = ⊆ Nβ

C (=) ;

ii If =1 ⊆ =2, then Nβ
C (=1) ⊆ Nβ

C (=2) and Nβ
C (=1) ⊆ Nβ

C (=2) ;

iii ∼ Nβ
C (=1) = Nβ

C (∼ =1) and ∼ Nβ
C (=1) = Nβ

C (∼ =1)

iv Nβ
C (=1 ∩ =2) = Nβ

C (=1) ∩N
β
C (=2) ;

v Nβ
C (=1 ∪ =2) ⊇ Nβ

C (=1) ∪N
β
C (=2) ;

vi Nβ
C (=1 ∪ =2) = Nβ

C (=1) ∪N
β
C (=2);

vii Nβ
C (=1 ∩ =2) ⊆ Nβ

C (=1) ∩N
β
C (=2) .

Proof. Proofs of i: to iii: are straightforward and follows from Definition 16.
iv: As we know that

Nβ
C (=1 ∩ =2) =

{
< ri, ψNβ

C (=1∩=2)
(ri) , ηNβ

C (=1∩=2)
(ri) , λNβ

C (=1∩=2)
(ri) > /

i = 1, ..., n

}

and Nβ
C (=1) =

{
< ri, ψNβ

C (=1)
(ri) , ηNβ

C (=1)
(ri) , λNβ

C (=1)
(ri) > /i = 1, ..., n

}
N β
C (=2) =

{
< ri, ψNβ

C (=2)
(ri) , ηNβ

C (=1)
(ri) , λNβ

C (=2)
(ri) > /i = 1, ..., n

}

In order to show Nβ
C (=1 ∩ =2) = Nβ

C (=1) ∩N
β
C (=2) , we have to prove

ψNβ
C (=1∩=2)

(ri) = ψNβ
C (=1)

(ri) ∧ ψNβ
C (=2)

(ri)

ηNβ
C (=1∩=2)

(ri) = ηNβ
C (=1)

(ri) ∧ ηNβ
C (=2)

(ri)

and λNβ
C (=1∩=2)

(ri) = λNβ
C (=1)

(ri) ∨ λNβ
C (=2)

(ri)

Consider

ψNβ
C (=1∩=2)

(ri) =
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψ(=1∩=2)

(
rj
)}

=
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧
{

ψ(=1)

(
rj
)
∧ ψ(=2)

(
rj
)}}

=
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψ(=1)

(
rj
)}
∧

m
∧

j=1

 ψNβ

C(ri)

(
ri, rj

)
∧

ψ(=2)

(
rj
)


ψNβ
C (=1∩=2)

(ri) = ψNβ
C (=1)

(ri) ∧ ψNβ
C (=2)

(ri)

Now,

ηNβ
C (=1∩=2)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ η(=1∩=2)

(
rj
)}

=
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧
{

η(=1)

(
rj
)
∧ η(=2)

(
rj
)}}

=
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ η(=1)

(
rj
)}
∧

m
∧

j=1

 ηNβ

C(ri)

(
ri, rj

)
∧

η(=2)

(
rj
)


ηNβ
C (=1∩=2)

(ri) = ηNβ
C (=1)

(ri) ∧ ηNβ
C (=2)

(ri)
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Next,

λNβ
C (=1∩=2)

(ri) =
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λ(=1∩=2)

(
rj
)}

=
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨
{

λ(=1)

(
rj
)
∨ λ(=2)

(
rj
)}}

=
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λ(=1)

(
rj
)}
∨

m
∨

j=1

 λNβ

C(ri)

(
ri, rj

)
∨

λ(=2)

(
rj
)


λNβ
C (=1∩=2)

(ri) = λNβ
C (=1)

(ri) ∨ λNβ
C (=2)

(ri)

Therefore,
Nβ
C (=1 ∩ =2) = Nβ

C (=1) ∩N
β
C (=2)

v: Next, to prove
Nβ
C (=1 ∪ =2) ⊇ Nβ

C (=1) ∪N
β
C (=2)

we have to show ri ∈ X

ψNβ
C (=1∪=2)

(ri) ≥ ψNβ
C (=1)

(ri) ∨ ψNβ
C (=2)

(ri)

ηNβ
C (=1∪=2)

(ri) ≥ ηNβ
C (=1)

(ri) ∧ ηNβ
C (=2)

(ri)

and λNβ
C (=1∪=2)

(ri) ≤ λNβ
C (=1)

(ri) ∧ λNβ
C (=2)

(ri)

Consider

ψNβ
C (=1∪=2)

(ri) =
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψ(=1∪=2)

(
rj
)}

=
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧
{

ψ(=1)

(
rj
)
∨ ψ(=2)

(
rj
)}}

≥
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψ(=1)

(
rj
)}
∨

m
∧

j=1

 ψNβ

C(ri)

(
ri, rj

)
∧

ψ(=2)

(
rj
)


ψNβ
C (=1∪=2)

(ri) ≥ ψNβ
C (=1)

(ri) ∨ ψNβ
C (=2)

(ri)

Now,

ηNβ
C (=1∪=2)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ η(=1∪=2)

(
rj
)}

=
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧
{

η(=1)

(
rj
)
∧ η(=2)

(
rj
)}}

=
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ ψ(=1)

(
rj
)}
∧

m
∧

j=1

 ηNβ

C(ri)

(
ri, rj

)
∧

η(=2)

(
rj
)


ηNβ
C (=1∪=2)

(ri) = ηNβ
C (=1)

(ri) ∧ ηNβ
C (=2)

(ri)
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Further,

λNβ
C (=1∪=2)

(ri) =
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λ(=1∪=2)

(
rj
)}

=
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨
{

λ(=1)

(
rj
)
∧ λ(=2)

(
rj
)}}

≤
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λ(=1)

(
rj
)}
∧

m
∨

j=1

 λNβ

C(ri)

(
ri, rj

)
∨

λ(=2)

(
rj
)


λNβ
C (=1∪=2)

(ri) ≤ λNβ
C (=1)

(ri) ∧ λNβ
C (=2)

(ri)

Hence,
Nβ
C (=1 ∪ =2) ⊇ Nβ

C (=1) ∩N
β
C (=2)

Thus concludes, the proofs of vi and vii are similar to iv and v.

4. A New Proposal for Multi-Attribute Decision-Making Using Spherical Fuzzy Rough Sets
Hybrid with TOPSIS

In this section, a new technique for MADM is proposed. Here, concepts of CSFRS model will
be employed, which are stated in Section 3. Major steps for this decision-making method and its
associated algorithms are presented in the following.

In real life situations, MADM has an important role and an intelligent decision approach to
solve the complex and uncertain decisions under senior experts. The basic concepts of this proposed
method for MADM are given as follows. Let X = {r1, r2, ..., rn} be any set of n feasible alternatives
and C={C1, C2, ..., Cm} be the finite set of attributes. If all the attributes C={C1, C2, ..., Cm} are of same
type, then there is no need for normalization. Conversely, if these contain different scales and/or units,
then there is need to transform them all to the same scale and/or unit. Let us consider two types of
attributes, namely (a), the cost type, and (b), the benefit type. Considering their natures, a benefit
attribute (the bigger the values the better it is) and cost attribute (the smaller the values the better
it is) are of rather opposite types. In such cases, we need to first transform the attribute values of
cost type into the attribute values of benefit type. So, transform the Spherical fuzzy decision matrix
M =

[
αij
]

m×n , into a normalized decision matrixM∗ =
[
γ∗ij

]
m×n

where αij = (ψ=ij , η=ij , λ=ij) and

γ∗ij =

{
αij = (ψ=ij , η=ij , λ=ij) for benefit attribute, i = 1, 2, ..., m and j = 1, 2, ...n(
αij
)c

= (λ=ij , η=ij , ψ=ij) for cost attribute, i = 1, 2, ..., m and j = 1, 2, ...n

where
(
αij
)c is the complement of

(
αij
)

. Let ω = (ω1, ω2, ..., ωm)
T be the weight vector of all attributes

such that 0 ≤ ωi ≤ 1 and
m
∑

i=1
ωi = 1 with i = 1, ....m. Decision makers Dmem,Dnuet. mem, and Dnon−mem

put forward the assessment values of all the alternatives ri(i = 1, ...n) corresponding to the set of
attributes Cij(i = 1, 2, ..., n and j = 1, 2, ..., m) which is defined by a mapping F = { f (ri, Cij)/i =

1, 2, ..., n and j = 1, 2, ..., m} where Cij = (ψij, ηij, λij) from X to C. This means that the decision maker
Dmem provides MG ψij to the alternative ri according to the attribute Cj, the decision maker Dnuet. mem

provides NG ηij to the alternative ri according to the attribute Cj, and the decision maker Dnon−mem

provides NMG λij to the alternative ri according to the attribute Cj.
By the principle of the SF-TOPSIS method, to get the best SF decision making object (SFDMO)

D+ and the worst SFDMO D−, a new SFS D = (ψD, ηD, λD) = (ξD+ , ξD−) will be constructed. Hence,
a multi-attribute spherical fuzzy decision making information system (MASFDMIS) (X ,C,=, D) is
established. Then, by the preference evaluations, the rank of all objects of the decision-making problem
is determined.
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Here, we will first suggest the SF-TOPSIS method and, in this method, first calculate the most
favorable/best and worst SFDMOs. The most favorable/best and worst SFDMOs of the universe
according to the decision maker D w.r.t. the attribute C are defined as follows:

D+ = {(ri, max{ωi · f (ri, ψij)}, min{ωi · f (ri, ηij)}, min{ωi · f (ri, λij)})/r ∈ X , i = 1, 2, ..., n and
j = 1, 2, ..., m}

D− = {(ri, min{ωi · f (ri, ψij)}, min{ωi · f (ri, ηij)}, max{ωi · f (ri, λij)})/r ∈ X , i = 1, 2, ..., n and
j = 1, 2, ..., m}

Therefore, we get the two new SFS D+ = (ψD+ , ηD+ , λD+) and D− = (ψD− , ηD− , λD−).
Now, we are going to define the t-norm and t-conorm which will help us to finding the ranking

of alternatives.

Definition 18. A mapping T : [0, 1]× [0, 1]→ [0, 1] is known to be a triangular norm (briefly t-norm), if it
is commutative, associative, increasing, and satisfies the boundary condition that is T (r, 1, 1) = r ∀r ∈ [0, 1]
At the same time mapping T : [0, 1]× [0, 1]→ [0, 1] is known to be a triangular conorm (briefly t-conorm), if it
is commutative, associative, increasing, and satisfies the boundary condition that is T (r, 0, 0) = r ∀r ∈ [0, 1] .
Here, in this paper, t-norm and t-conorm are used for the MADM problem.

T= (r1, r2, r3) =
r1r2r3√

1 + (1− r2
1)(1− r2

2)(1− r2
3)

and T= (r1, r2, r3) =

√
r2

1 + r2
2 + r2

3
1 + r2

1r2
2r2

3

Further, by the use of Definition 16, to find the lower and upper approximations of best and worst
SFDMOs under the consistency consensus threshold α(0 < α ≤ 1), the following are presented.

ψNβ
C (D−)

(ri) =
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψD−

(
rj
)}

(4)

ηNβ
C (D−)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ ηD−

(
rj
)}

(5)

λNβ
C (D−)

(ri) =
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λD−

(
rj
)}

(6)

ψ
Nβ
C (D−)

(ri) =
m
∨

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∨ ψD−

(
rj
)}

(7)

η
Nβ
C (D−)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ ηD−

(
rj
)}

(8)

λ
Nβ
C (D−)

(ri) =
m
∧

j=1

{
λNβ

C(ri)

(
ri, rj

)
∧ λD−

(
rj
)}

(9)

and

ψ
Nβ
C (D+)

(ri) =
m
∨

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∨ ψD+

(
rj
)}

(10)

η
Nβ
C (D+)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ ηD+

(
rj
)}

(11)

λ
Nβ
C (D+)

(ri) =
m
∧

j=1

{
λNβ

C(ri)

(
ri, rj

)
∧ λD+

(
rj
)}

(12)
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ψNβ
C (D+)

(ri) =
m
∧

j=1

{
ψNβ

C(ri)

(
ri, rj

)
∧ ψD+

(
rj
)}

(13)

ηNβ
C (D+)

(ri) =
m
∧

j=1

{
ηNβ

C(ri)

(
ri, rj

)
∧ ηD+

(
rj
)}

(14)

λNβ
C (D+)

(ri) =
m
∨

j=1

{
λNβ

C(ri)

(
ri, rj

)
∨ λD+

(
rj
)}

(15)

In the final step, we use the principle of ranking through the lower and upper approximations of
the best and worst SFDMOs for all alternatives of the universal set X under the consistency consensus
threshold α(0 < α ≤ 1).

Now, we define the ranking function of the MASFDM problem for any alternative of the universal
set X .

Definition 19. Suppose the MASFDMIS is (X , C,=,D). For the best and worst SFDMOs D+ =

(ψD+ , ηD+ , λD+) and D− = (ψD− , ηD− , λD−) ∈SFS(X ) represents the preference information of the decision
maker D under the consistency consensus threshold α(0 < α ≤ 1). Then, we define the ranking function of
alternative ri(i = 1, ..., n) w.r.t. D+ and D− as

ξD− (ri) = αT=
(

µNβ
C (D−)

(ri) , ηNβ
C (D−)

(ri) , λNβ
C (D−)

(ri)

)
+

(1− α) · T=
(

µ
Nβ
C (D−)

(ri) , η
Nβ
C (D−)

(ri) , λ
Nβ
C (D−)

(ri)

) (16)

and

ξD+ (ri) = αT=
(

µNβ
C (D+)

(ri) , ηNβ
C (D+)

(ri) , λNβ
C (D+)

(ri)

)
+

(1− α) · T=
(

µ
Nβ
C (D+)

(ri) , η
Nβ
C (D+)

(ri) , λ
Nβ
C (D+)

(ri)

) (17)

From the definition of ranking function, it is cleared that 0 ≤ ξD− (ri) , ξD+ (ri) ≤ 1, ri ∈ X , i = 1, 2, ..., n.

Definition 20. Finally, we put forward the optimal object for the MASFDM problem with the help of ranking
function ξ (ri) for all alternatives; ri ∈ X , (i = 1, ..., n) can be calculated as

ξ (ri) =
1
2
{ξD+ (ri) + ξD− (ri)}, ri ∈ X , (i = 1, ..., n) (18)

From the definition of ranking function, it is cleared that 0 ≤ ξ (ri) ≤ 1.

4.1. Algorithm of Decision Making Problem Based on CSFRS

In this subsection, we presented the step wise algorithm of the proposed method for solving the
MADM approach based on CSFRS under the SF environment. The practical utility of the proposed
approach is demonstrated through a numerical example given in Section 4.2. With the help of the above
interpretation, the algorithm of the proposed approach based on CSFRS consist of the following steps:
input: MASFDMIS (X ,C,=,D);
output: The sort ordering for all alternatives;

step i Calculate the best and worst SFDMOs D+ = (ψD+ , ηD+ , λD+) and D− = (ψD− , ηD− ,
λD−) ∈SFS(X ) ,
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Step ii Next by using Equations (4) to (15) to find the lower and upper approximations
ψNβ
C (D−)

(ri) , ηNβ
C (D−)

(ri) , λNβ
C (D−)

(ri) , ψ
Nβ
C (D−)

(ri) , η
Nβ
C (D−)

(ri) , λ
Nβ
C (D−)

(ri) and

ψ
Nβ
C (D+)

(ri) , η
Nβ
C (D+)

(ri) , λ
Nβ
C (D+)

(ri) , ψNβ
C (D+)

(ri) , ηNβ
C (D+)

(ri) , λ
Nβ
C (D+)

(ri) ;

step iii Determine the ranking function ξD− (ri) , ξD+ (ri) and ξ (ri) , ri ∈ X , (i = 1, ..., n) by using
Equations (16) and (17);

step iv Finally, present the ranking order of all the alternatives through a ranking function by using
Equation (18) to get the optimal alternative.

4.2. Illustrative Example

Here, in this section, we will present the proposed method of MADM based on CSFRS models
which relates the assessment and rank of heavy rainfall in the Lasbella district and adjoining areas of
the Baluchistan, Pakistan. Then, SF-TOPSIS will provide the desired ranking.

A recent storm caused a spell of heavy rainfall in the Lasbella district, and adjoining areas of
Baluchistan, Pakistan were hit with unprecedented flash floods in February 2019. A large number of
roads, which connect the Lasbella district with other parts of Baluchistan had been destroyed in this
flood. In this context, the Pakistan government has to take a considerable number of road building
projects either to preserve the roads already built or to undertake the new roads.

These projects have been carried out by a limited number of the well-established contractors, and
the selection process has been on the basis of bid price alone. In recent years, the increased project
complexity, technical capability, higher performance, and safety and financial requirements have been
demanding the use of multi-attribute decision making methods. For this, Pakistan government has
issued a notice in the newspapers, and one construction company take the responsibility of selecting
the best construction company out of a set of six possible alternatives, X = {r1 = Ahmed Construction,
r2 = Matracon Pakistan Private(Pvt) Limited(Ltd), r3 = Eastern Highway Company, r4 = Banu
Mukhtar Concrete Pvt. Ltd. , r5 = Khyber Grace Pvt. Ltd., r6 = Experts Engineering Services} on the
basis of the attributes, C1 = technical capability, C2 = higher per f ormance, C3 = sa f ety, C4 = f inancial
requirements, C5 = time saving, that is bid for these projects, and all the criterion are of the benefit
type, so there is no need to normalized it. Then, the objective of the Government is to choose the best
construction company among them for the task. In order to fulfill it, let

ω1 = 0.2, ω2 = 0.18, ω3 = 0.22, ω4 = 0.25, ω5 = 0.15

be the weight vector corresponding to the six attributes such that they have evaluated each company
and gave their preferences in terms of spherical fuzzy information and, hence, constructed the following
decision matrices given in Table 3 as shown below:

Table 3. A tabular representation of SFSs for C.

X/C C1 C2 C3 C4 C5

r1 (0.9, 0.1, 0.2) (0.8, 0.2, 0.5) (0.7, 0.3, 0.5) (0.8, 0.2, 0.5) (0.9, 0.1, 0.3)
r2 (0.8, 0.2, 0.4) (0.3, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.2, 0.1) (0.5, 0.6, 0.2)
r3 (0.9, 0.3, 0.1) (0.6, 0.3, 0.5) (0.7, 0.2, 0.4) (0.3, 0.4, 0.1) (0.5, 0.4, 0.6)
r4 (0.8, 0.1, 0.5) (0.6, 0.2, 0.7) (0.5, 0.3, 0.4) (0.7, 0.3, 0.2) (0.8, 0.4, 0.3)
r5 (0.6, 0.5, 0.2) (0.9, 0.4, 0.3) (0.5, 0.3, 0.7) (0.3, 0.2, 0.1) (0.8, 0.5, 0.2)
r6 (0.8, 0.3, 0.5) (0.6, 0.3, 0.1) (0.9, 0.3, 0.2) (0.6, 0.2, 0.3) (0.5, 0.1, 0.4)
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Step i According to the steps of the algorithm, first to calculate the best and worst SFDMOs D+ and
D− ∈SFS(X ) ,

D+ =

{
(0.2,0.015,0.04)

r1
, (0.16,0.04,0.025)

r2
, (0.18,0.044,0.02)

r3
, (0.175,0.02,0.045)

r4
,

(0.162,0.05,0.025)
r5

, (0.198,0.015,0.018)
r6

}

D− =

{
(0.135,0.015,0.125)

r1
, (0.054,0.04,0.09)

r2
, (0.075,0.044,0.09)

r3
, (0.108,0.02,0.126)

r4
,

(0.075,0.05,0.154)
r5

, 0.075,0.015,0.1
r6

}

Consider the computation of the SF β- neighborhood of r in X , and where β = (0.6, 0.5, 0.4).
Then
N(0.6,0.5,0.4)
C(r1)

= C1 ∩ C5 N(0.6,0.5,0.4)
C(r2)

= C1 ∩ C3 ∩ C4 N(0.6,0.5,0.4)
C(r3)

= C1 ∩ C3

N(0.6,0.5,0.4)
C(r4)

= C4 ∩ C5 N(0.6,0.5,0.4)
C(r5)

= C1 ∩ C2 ∩ C5 N(0.6,0.5,0.4)
C(r6)

= C2 ∩ C3 ∩ C4

From N(0.6,0.5,0.4)
C =

{
N(0.6,0.5,0.4)
C(r) /r ∈ X

}
, Table 4 is obtained.

Table 4. A tabular representation of N(0.6,0.5,0.4)
C .

Nβ
C r1 r2 r3 r4 r5 r6

r1 (0.9, 0.1, 0.3) (0.5, 0.2, 0.4) (0.5, 0.3, 0.6) (0.8, 0.1, 0.5) (0.6, 0.5, 0.2) (0.5, 0.1, 0.5)
r2 (0.7, 0.1, 0.5) (0.6, 0.2, 0.4) (0.3, 0.2, 0.4) (0.5, 0.1, 0.5) (0.3, 0.2, 0.7) (0.6, 0.2, 0.5)
r3 (0.7, 0.1, 0.5) (0.7, 0.2, 0.4) (0.7, 0.2, 0.4) (0.5, 0.1, 0.5) (0.5, 0.3, 0.7) (0.8, 0.3, 0.5)
r4 (0.8, 0.1, 0.5) (0.5, 0.2, 0.2) (0.3, 0.4, 0.6) (0.7, 0.3, 0.3) (0.3, 0.2, 0.2) (0.5, 0.1, 0.4)
r5 (0.9, 0.1, 0.5) (0.3, 0.2, 0.5) (0.5, 0.3, 0.6) (0.6, 0.1, 0.7) (0.6, 0.4, 0.3) (0.5, 0.1, 0.5)
r6 (0.7, 0.2, 0.5) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.5, 0.2, 0.7) (0.3, 0.2, 0.7) (0.6, 0.2, 0.3)

Step ii Next to compute the lower and upper approximation, that is ψNβ
C (D−)

(ri) , ηNβ
C (D−)

(ri) ,

λNβ
C (D−)

(ri) , ψ
Nβ
C (D−)

(ri) , η
Nβ
C (D−)

(ri) , λ
Nβ
C (D−)

(ri) and ψ
Nβ
C (D+)

(ri) , η
Nβ
C (D+)

(ri) ,

λ
Nβ
C (D+)

(ri) , ψNβ
C (D+)

(ri) , ηNβ
C (D+)

(ri) , λ
Nβ
C (D+)

(ri), use Equations (4)–(15);

ψNβ
C (D−)

=
0.054

r1
,

0.054
r2

,
0.054

r3
,

0.054
r4

,
0.054

r5
,

0.054
r6

ηNβ
C (D−)

=
0.015

r1
,

0.015
r2

,
0.015

r3
,

0.015
r4

,
0.015

r5
,

0.015
r6

λNβ
C (D−)

=
0.6
r1

,
0.7
r2

,
0.7
r3

,
0.6
r4

,
0.7
r5

,
0.7
r6

ψ
Nβ
C (D−)

=
0.9
r1

,
0.7
r2

,
0.8
r3

,
0.8
r4

,
0.9
r5

,
0.7
r6

η
Nβ
C (D−)

=
0.015

r1
,

0.015
r2

,
0.015

r3
,

0.015
r4

,
0.015

r5
,

0.015
r6

λ
Nβ
C (D−)

=
0.09
r1

,
0.09
r2

,
0.09
r3

,
0.09
r4

,
0.09
r5

,
0.09
r6
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and

ψNβ
C (D+)

=
0.16
r1

,
0.16
r2

,
0.16
r3

,
0.16
r4

,
0.16
r5

,
0.16
r6

ηNβ
C (D+)

=
0.015

r1
,

0.015
r2

,
0.015

r3
,

0.015
r4

,
0.015

r5
,

0.015
r6

λNβ
C (D+)

=
0.6
r1

,
0.7
r2

,
0.7
r3

,
0.6
r4

,
0.7
r5

,
0.7
r6

ψ
Nβ
C (D+)

=
0.9
r1

,
0.7
r2

,
0.8
r3

,
0.8
r4

,
0.9
r5

,
0.7
r6

η
Nβ
C (D+)

=
0.015

r1
,

0.015
r2

,
0.015

r3
,

0.015
r4

,
0.015

r5
,

0.015
r6

λ
Nβ
C (D+)

=
0.018

r1
,

0.018
r2

,
0.018

r3
,

0.018
r4

,
0.018

r5
,

0.018
r6

Step iii Further, from Equations (16) and (17), determine the ranking functions ξD− (ri) and ξD+ (ri) ,
and consider the risk preference threshold α = 0.8, where (0 < α ≤ 1),;

ξD− =
0.00052655

r1
,

0.00052315
r2

,
0.00055456

r3
,

0.00048902
r4

,
0.00059210

r5
,

0.00052315
r6

ξD+ =
0.00094868

r1
,

0.0011293
r2

,
0.0011356

r3
,

0.00094117
r4

,
0.0011431

r5
,

0.0011293
r6

Next, calculate the optimal object for the MASFDM problem with the help of the ranking
function given in Equation (18);

ξ (ri) =
0.00073762

r1
,

0.00082623
r2

,
0.00084508

r3
,

0.00071510
r4

,
0.0008676

r5
,

0.00082623
r6

Step iv Finally, we are able to present the best optimal alternative sort of the well-established
construction company according to the values of the ranking function. Therefore, we can
rank all the alternative in order as

r5 > r3 > r2 ≈ r6 > r1 > r4

Hence, by the process of decision-making, finally, we get the optimal selection by the use of
CSFRS model based on the MADM method. Therefore, from the numerical calculation, it is
clear that the 5th construction company is the best optimal decision making.

4.3. Comparative Analysis

From the above analysis, it is clear that the proposed approach is better than IFSs, PFSs, and
PytFSs. The advantages of the proposed method with the existing literature is given below.
Advantages:

(a) If NG = 0 and 0 ≤ MG + NMG ≤ 1, then the covering-based spherical fuzzy rough set (CSFRS)
model was reduced to a covering-based intuitionistic fuzzy rough set model (CIFRS) initiated in
Reference [40].

(b) If NG = 0 and 0 ≤ (MG)2 + (NMG)2 ≤ 1, then the CSFRS model was reduced to a
covering-based Pythagorean fuzzy rough set model (CPytFRS) presented in Reference [39].

(c) If 0 ≤ MG + NG + NMG ≤ 1, then CSFRS model was reduced to a covering-based picture fuzzy
rough set (CPFRS) model defined in Definition 12. Therefore, it is clear that the CIFRS, CPytFRS,
and CPFRS models are the special cases of CSFRS.
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Now, the comparative study of the proposed method with the existing literature is given in Table 5
by considering the above Illustrative Example of Section 4.2.

The main difference of the proposed method with the existing methods given in Table 5 is that
the study of CIFRS [40] consists of MG and NMG with the condition that 0 ≤ MG + NMG ≤ 1 and
has no information about NG. So, due to lake information about NG, it failed to handle the example
of Section 4.2. Similarly, the study of CPytFRS [39] consists of MG and NMG with the condition that
0 ≤ (MG)2 + (NMG)2 ≤ 1 and has no information about NG. So, due to lake information about NG in
CPytFRS, it failed to handle the example of Section 4.2. Furthermore, in the case of CPFRSs, it consists
of all the three degrees, that is MG, NG, and NMG, with the condition that 0 ≤ MG + NG + NMG ≤ 1.
Here, if we assign values to MG, NG, and NMG as (ψ, η, λ) = (0.8, 0.3, 0.5), then in this case, their
sum is 0.8 + 0.3 + 0.5 = 1.6 > 1, but the sum of their square is 0.82 + 0.32 + 0.52 = 0.98 < 1. So, in this
case ordinary PFSs and CPFRS failed to tackle the situation. Thus, from the comparative study, it is
clear that the proposed method is more superior and provides more freedom to the decision makers
for the selection of MG, NG, and NMG as compared to existing literature.

Table 5. The comparative analysis of the proposed method with the existing literature.

Methods Score Values Ranking

CIFRS [40] Failed to handle ×
CPytFRS [39] Failed to handle ×

CPFRS
(def. 12) Failed to handle ×

CSFRS
0.00073762

r1
, 0.00082623

r2
, 0.00084508

r3
,

0.00071510
r4

, 0.0008676
r5

, 0.00082623
r6

r5 > r3 > r2 ≈ r6 > r1 > r4

5. Conclusions

In real life, the CSFRS model is a significant tool to handle uncertainties. The aim of this paper
is to develop a comprehensive model to tackle decision-making problems where strong points of
view are in the favour; neutral; and against some projects, entities, or plans. Therefore, a new
approach is adopted to hybrid spherical fuzzy sets with notions of covering rough set to presented
the new approach of SFCRS through SF β-neighborhoods. By using the proposed approach of SFCRS
via SF β-neighborhoods, the existing approach of TOPSIS is generalized to SF-TOPSIS to MADM.
An algorithm for the proposed method is given. The main difference of the presented method with
existing literature is given in Section 4.3. Proposed model is very useful in decision making problems
where decision makers have contradictory views about certain plan or proposal. For example, if
we assign values to MG, NG and NMG as (ψ, η, λ) = (0.75, 0.1, 0.65) , then the existing CIFRS [40],
CPytFRS [39] and CPFRS failed to handle the situations because the notion of CIFRS and CPytFRS
have no information about NG. Further in CPFRS sum of MG, NG and NMG belongs to [0, 1] but
in this case ψ + η + λ = 0.75 + 0.1 + 0.65 > 1, so CPFRS failed to cope the situation. Our proposed
method have the ability to cope this scenario easily, that is ψ + η + λ = 0.75 + 0.1 + 0.65 > 1, but in
case of CSFRS their square sum (0.75)2 + (0.1)2 + (0.65)2 < 1. Thus our proposed model has stronger
capability than the existing CIFRS, CPytFRS and also CPFRS to manage the uncertainty. An example is
given to demonstrate how the proposed method helps us in decision making problems.

Future Work:
In the future, we intend to further discuss these following topics:

i The investigation of SF-entropy of CSFRS models.
ii The investigation of SF soft sets and its applications in MADM.
iii Applying other decision-making methodology based CSFRS models to MASFDM problem.
iv The discussions of other applied methods in information systems.
v The applications of CSFRS models to management sciences and big data processing technique.
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