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Abstract: An abstract sampling theory associated with a unitary representation of a countable discrete
non abelian group G, which is a semi-direct product of groups, on a separable Hilbert space is studied.
A suitable expression of the data samples, the use of a filter bank formalism and the corresponding
frame analysis allow for fixing the mathematical problem to be solved: the search of appropriate dual
frames for `2(G). An example involving crystallographic groups illustrates the obtained results by
using either average or pointwise samples.

Keywords: semi-direct product of groups; unitary representation of a group; LCA groups; dual
frames; sampling expansions

1. Statement of the Problem

In this paper, an abstract sampling theory associated with non abelian groups is derived for the
specific case of a unitary representation of a semi-direct product of groups on a separable Hilbert space.
Semi-direct product of groups provide important examples of non abelian groups such as dihedral
groups, infinite dihedral group, Euclidean motion groups or crystallographic groups. Concretely, let
(n, h) 7→ U(n, h) be a unitary representation on a separable Hilbert spaceH of a semi-direct product
G = N oφ H, where N is a countable discrete LCA (locally compact abelian) group, H is a finite group,
and φ denotes the action of the group H on the group N (see Section 2 infra for the details); for a fixed
a ∈ H we consider the U-invariant subspace inH

Aa =
{

∑
(n,h)∈G

α(n, h)U(n, h)a : {α(n, h)}(n,h)∈G ∈ `2(G)
}

,

where we assume that {U(n, h)a} is a Riesz sequence forH, i.e., a Riesz basis for Aa (see Ref. [1] for a
necessary and sufficient condition). Given K elements bk in H, which do not belong necessarily
to Aa, the main goal in this paper is the stable recovery of any x ∈ Aa from the given data
(generalized samples)

Lkx(n) :=
〈

x, U(n, 1H)bk
〉
H , n ∈ N and k = 1, 2, . . . , K ,
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where 1H denotes the identity element in H. These samples are nothing but a generalization of average
sampling in shift-invariant subspaces of L2(Rd); see, among others, Refs. [2–9]. The case where G is a
discrete LCA group and the samples are taken at a uniform lattice of G has been solved in Ref. [10];
this work relies on the use of the Fourier analysis in the LCA group G (see also Ref. [11]). In the case
involved here, a classical Fourier analysis is not available and, consequently, we need to overcome this
drawback.

Having in mind the filter bank formalism in discrete LCA groups (see, for instance, Refs. [12–14]),
the given data {Lkx(n)}n∈N; k=1,2,...,K can be expressed as the output of a suitable K-channel analysis
filter bank corresponding to the input α = {α(n, h)}(n,h)∈G in `2(G). As a consequence, the problem
consists of finding a synthesis part of the former filter bank allowing perfect reconstruction; in addition,
only Fourier analysis on the LCA group N is needed. Then, roughly speaking, substituting the output
of the synthesis part in x = ∑(n,h)∈G α(n, h)U(n, h)a, we will obtain the corresponding sampling
formula in Aa.

This said, as it could be expected, the problem can be mathematically formulated as the search of
dual frames for `2(G) having the form{

Tnhk
}

n∈N; k=1,2,...,K and
{

Tngk
}

n∈N; k=1,2,...,K .

Here, hk, gk ∈ `2(G), Tnhk(m, h) = hk(m− n, h) and Tngk(m, h) = gk(m− n, h), (m, h) ∈ G, where
n ∈ N and k = 1, 2, . . . , K. In addition, for any x ∈ Aa, we have the expression for its samples

Lkx(n) =
〈
α, Tnhk

〉
`2(G)

, n ∈ N and k = 1, 2, . . . , K .

Needless to say, frame theory plays a central role in what follows; the necessary background on
Riesz bases or frame theory in a separable Hilbert space can be found, for instance, in Ref. [15]. Finally,
sampling formulas in Aa having the form

x =
K

∑
k=1

∑
n∈N
Lkx(n)U(n, 1H)ck inH ,

for some ck ∈ Aa, k = 1, 2, . . . , K, will come out by using, for g ∈ `2(G) and n ∈ N, the shifting property
TU,a

(
Tng
)
= U(n, 1H)

(
TU,ag

)
that satisfies the natural isomorphism TU,a : `2(G)→ Aa which maps

the usual orthonormal basis {δ(n,h)}(n,h)∈G for `2(G) onto the Riesz basis
{

U(n, h)a
}
(n,h)∈G for Aa.

All these steps will be carried out throughout the remaining sections. For the sake of completeness,
Section 2 includes some basic preliminaries on semi-direct product of groups and Fourier analysis on
LCA groups. The paper ends with an illustrative example involving the quasi regular representation
of a crystallographic group on L2(Rd); sampling formulas involving average or pointwise samples are
obtained for the corresponding U-invariant subspaces in L2(Rd).

2. Some Mathematical Preliminaries

In this section, we introduce the basic tools in semi-direct product of groups and in harmonic
analysis in a discrete LCA group that will be used in the sequel.

2.1. Preliminaries on Semi-Direct Product of Groups

Given groups (N, ·) and (H, ·), and a homomorphism φ : H → Aut(N), their semi-direct product
G := N oφ H is defined as follows: The underlying set of G is the set of pairs (n, h) with n ∈ N and
h ∈ H, along with the multiplication rule

(n1, h1) · (n2, h2) := (n1φh1(n2), h1h2) , (n1, h1), (n2, h2) ∈ G ,
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where we denote φ(h) := φh; usually, the homomorphism φ is referred to as the action of the
group H on the group N. Thus, we obtain a new group with identity element (1N , 1H), and inverse
(n, h)−1 = (φh−1(n−1), h−1).

In addition, we have the isomorphisms N ' N × {1H} and H ' {1N} × H. Unless φh equals
the identity for all h ∈ H, the group G = N oφ H is not abelian, even for abelian N and H groups.
The subgroup N is a normal subgroup in G. Some examples of semi-direct product of groups:

1. The dihedral group D2N is the group of symmetries of a regular N-sided polygon; it is the
semi-direct product D2N = ZN oφ Z2 where φ0̄ ≡ IdZN and φ1̄(n̄) = −n̄ for each n̄ ∈ ZN .
The infinite dihedral group D∞ defined as Zoφ Z2 for the similar homomorphism φ is the group
of isometries of Z.

2. The Euclidean motion group E(d) is the semi-direct product Rd oφ O(d), where O(d) is the
orthogonal group of order d and φA(x) = Ax for A ∈ O(d) and x ∈ Rd. It contains as a subgroup
any crystallographic group MZd oφ Γ, where MZd denotes a full rank lattice of Rd and Γ is any
finite subgroup of O(d) such that φγ(MZd) = MZd for each γ ∈ Γ.

3. The orthogonal group O(d) of all orthogonal real d× d matrices is isomorphic to the semi-direct
product SO(d)oφ C2, where SO(d) consists of all orthogonal matrices with determinant 1 and
C2 = {I, R} a cyclic group of order 2; φ is the homomorphism given by φI(A) = A and φR(A) =

RAR−1 for A ∈ SO(d).

Suppose that N is an LCA group with Haar measure µN and H is a locally compact group with
Haar measure µH . Then, the semi-direct product G = N oφ H endowed with the product topology
becomes also a topological group. For the left Haar measure on G, see Ref. [1].

2.2. Some Preliminaries on Harmonic Analysis on Discrete LCA Groups

The results about harmonic analysis on locally compact abelian (LCA) groups are borrowed from
Ref. [16]. Notice that, in particular, a countable discrete abelian group is a second countable Hausdorff
LCA group.

For a countable discrete group (N, ·), not necessarily abelian, the convolution of x, y : N → C is
formally defined as (x ∗ y)(m) := ∑n∈N x(n)y(n−1m), m ∈ N. If, in addition, the group is abelian,
therefore denoted by (N,+), the convolution reads as

(x ∗ y)(m) := ∑
n∈N

x(n)y(m− n) , m ∈ N .

Let T = {z ∈ C : |z| = 1} be the unidimensional torus. We said that ξ : N 7→ T is a character of
N if ξ(n + m) = ξ(n)ξ(m) for all n, m ∈ N. We denote ξ(n) = 〈n, ξ〉. Defining (ξ + γ)(n) = ξ(n)γ(n),
the set of characters N̂ with the operation + is a group, called the dual group of N; since N is discrete
N̂ is compact ([16], Prop. 4.4). For x ∈ `1(N), we define its Fourier transform as

X(ξ) = x̂(ξ) := ∑
n∈N

x(n)〈n, ξ〉 = ∑
n∈N

x(n)〈−n, ξ〉 , ξ ∈ N̂ .

It is known ([16], Theorem 4.5) that Ẑ ∼= T, with 〈n, z〉 = zn, and Ẑs ∼= Zs := Z/sZ, with
〈n, m〉 = Wnm

s , where Ws = e2πi/s.
There exists a unique measure, the Haar measure µ on N̂ satisfying µ(ξ + E) = µ(E), for every

Borel set E ⊂ N̂ ([16], Section 2.2), and µ(N̂) = 1. We denote
∫

N̂ X(ξ)dξ =
∫

N̂ X(ξ)dµ(ξ). If N = Z,

∫
N̂

X(ξ)dξ =
∫
T

X(z)dz =
1

2π

∫ 2π

0
X(eiw)dw ,

and, if N = Zs, ∫
N̂

X(ξ)dξ =
∫
Zs

X(n)dn =
1
s ∑

n∈Zs

X(n) .
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If N1, N2, . . . Nd are abelian discrete groups, then the dual group of the product group is
(

N1 ×
N2 × . . .× Nd

)∧ ∼= N̂1 × N̂2 × . . .× N̂d (see ([16], Prop. 4.6)) with〈
(n1, n2, . . . , nd) , (ξ1, ξ2 . . . , ξd)

〉
= 〈n1, ξ1〉〈n2, ξ2〉 · · · 〈nd, ξd〉 .

The Fourier transform on `1(N) ∩ `2(N) is an isometry on a dense subspace of L2(N̂); Plancherel
theorem extends it in a unique manner to a unitary operator of `2(N) onto L2(N̂) ([16], p. 99).
The following lemma, giving a relationship between Fourier transform and convolution, will be
used later (see Ref. [17]):

Lemma 1. Assume that a, b ∈ `2(N) and â(ξ) b̂(ξ) ∈ L2(N̂). Then, the convolution a ∗ b belongs to `2(N)

and â ∗ b(ξ) = â(ξ) b̂(ξ), a.e. ξ ∈ N̂.

3. Filter Bank Formalism on Semi-Direct Product of Groups

In what follows, we will assume that G = N oφ H where (N,+) is a countable discrete abelian
group and (H, ·) is a finite group. Having in mind the operational calculus (n, h) · (m, l) = (n+φh(m), hl),
(n, h)−1 = (φh−1(−n), h−1) and (n, h)−1 · (m, l) = (φh−1(m − n), h−1l), the convolution α ∗ h of
α, h ∈ `2(G) can be expressed as

(α ∗ h)(m, l) = ∑
(n,h)∈G

α(n, h) h
[
(n, h)−1 · (m, l)

]
= ∑

(n,h)∈G
α(n, h) h

(
φh−1(m− n), h−1l

)
, (m, l) ∈ G .

(1)

For a function α : G → C, its H-decimation ↓H α : N → C is defined as (↓H α)(n) := α(n, 1H) for
any n ∈ N. Thus, we have

↓H (α ∗ h)(m) = (α ∗ h)(m, 1H) = ∑
(n,h)∈G

α(n, h) h
(
φh−1(m− n), h−1)

= ∑
(n,h)∈G

α(n, h) h[(n−m, h)−1] , m ∈ N .
(2)

Defining the polyphase components of α and h as αh(n) := α(n, h) and hh(n) := h[(−n, h)−1]

respectively, we write

↓H (α ∗ h)(m) = ∑
h∈H

∑
n∈N

αh(n) hh(m− n) = ∑
h∈H

(
αh ∗N hh

)
(m) , m ∈ N .

For a function c : N → C, its H-expander ↑H c : G → C is defined as

(↑H c)(n, h) =

{
c(n) if h = 1H ,

0 if h 6= 1H .

In case ↑H c and g belong to `2(G), we have

(↑H c ∗ g)(m, l) = ∑
(n,h)∈G

(↑H c)(n, h) g
[
(n, h)−1 · (m, l)

]
= ∑

(n,h)∈G
(↑H c)(n, h) g

(
φh−1(m− n), h−1l

)
= ∑

n∈N
c(n) g(m− n, l) =

(
c ∗N gl

)
(m) , m ∈ N , l ∈ H ,

where gl(n) := g(n, l) is the polyphase component of g.
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From now on, we will refer to a K-channel filter bank with analysis filters hk and synthesis filters gk,
k = 1, 2, . . . , K as the one given by (see Figure 1)

ck :=↓H (α ∗ hk) , k = 1, 2, . . . , K , and β =
K

∑
k=1

(↑H ck) ∗ gk , (3)

where α and β denote, respectively, the input and the output of the filter bank. In polyphase notation,

ck(m) = ∑
h∈H

(
αh ∗N hk,h

)
(m) , m ∈ N , k = 1, 2, . . . , K ,

βl(m) =
K

∑
k=1

(
ck ∗N gl,k

)
(m) , m ∈ N , l ∈ H ,

(4)

where αh(n) := α(n, h), βl(n) := β(n, l), hk,h(n) := hk[(−n, h)−1] and gl,k(n) := gk(n, l) are the
polyphase components of α, β, hk and gk, k = 1, 2, . . . , K, respectively. We also assume that hk, gk ∈ `2(G)

with ĥk,h, ĝh,k ∈ L∞(N̂) for k = 1, 2, . . . , K and h ∈ H; from Lemma 1, the filter bank (3) is well defined
in `2(G).

α(m, l) h1 ↓ H ↑ H

c1(m)
g1

h2 ↓ H ↑ H

c2(m)
g2

hK ↓ H ↑ H

cK(m)
gK β(m, l)

...
...

...

Figure 1. The K-channel filter bank scheme.

The above K-channel filter bank (3) is said to be a perfect reconstruction filter bank if and only
if it satisfies α = ∑K

k=1(↑H ck) ∗ gk for each α ∈ `2(G), or equivalently, αh = ∑K
k=1

(
ck ∗N gh,k

)
for

each h ∈ H.

Since N is an LCA group where a Fourier transform is available, the polyphase expression (4) of
the filter bank (3) allows us to carry out its polyphase analysis.

Polyphase Analysis: Perfect Reconstruction Condition

For notational ease, we denote L := |H|, the order of the group H, and its elements as
H = {h1, h2, . . . , hL}. Having in mind Lemma 1, the N-Fourier transform in ck(m) = ∑h∈H

(
αh ∗N

hk,h
)
(m) gives ĉk(γ) = ∑h∈H ĥk,h(γ) α̂h(γ) a.e. γ ∈ N̂ for each k = 1, 2, . . . , K. In matrix notation,

C(γ) = H(γ)A(γ) a.e. γ ∈ N̂ ,

where C(γ) =
(
ĉ1(γ), ĉ2(γ), . . . , ĉK(γ)

)> , A(γ) =
(
α̂h1(γ), α̂h2(γ), . . . , α̂hL(γ)

)>, and H(γ) is the
K× L matrix

H(γ) =


ĥ1,h1(γ) ĥ1,h2(γ) · · · ĥ1,hL(γ)

ĥ2,h1(γ) ĥ2,h2(γ) · · · ĥ2,hL(γ)

· · · · · · · · · · · ·
ĥK,h1(γ) ĥK,h2(γ) · · · ĥK,hL(γ)

 , (5)

where ĥk,hi
∈ L2(N̂) is the Fourier transform of hk,hi

(n) := hk[(−n, hi)
−1] ∈ `2(N).
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The same procedure for βl(m) = ∑K
k=1

(
ck ∗N gl,k

)
(m) gives β̂l(γ) = ∑K

k=1 ĝl,k(γ) ĉk(γ) a.e. γ ∈ N̂.
In matrix notation,

B(γ) = G(γ)C(γ) a.e. γ ∈ N̂ ,

where B(γ) =
(

β̂h1
(γ), β̂h2

(γ), . . . , β̂hL
(γ)
)> , C(γ) =

(
ĉ1(γ), ĉ2(γ), . . . , ĉK(γ)

)> and G(γ) is the
L× K matrix

G(γ) =


ĝh1,1(γ) ĝh1,2(γ) · · · ĝh1,K(γ)

ĝh2,1(γ) ĝh2,2(γ) · · · ĝh2,K(γ)

· · · · · · · · · · · ·
ĝhL ,1(γ) ĝhL ,2(γ) · · · ĝhL ,K(γ)

 , (6)

where ĝhi ,k ∈ L2(N̂) is the Fourier transform of ghi ,k(n) := gk(n, hi) ∈ `2(N).

Thus, in terms of the polyphase matrices G(γ) and H(γ), the filter bank (3) can be expressed as

B(γ) = G(γ)H(γ)A(γ) a.e. γ ∈ N̂ . (7)

As a consequence of Equation (7), we have:

Theorem 1. The K-channel filter bank given in Equation (3), where hk, gk belong to `2(G) and ĥk,hi
, ĝhi ,k

belong to L∞(N̂) for k = 1, 2, . . . , K and i = 1, 2, . . . , L, satisfies the perfect reconstruction property if and only
if G(γ)H(γ) = IL a.e. γ ∈ N̂, where IL denotes the identity matrix of order L.

Proof. First of all, note that the mapping α ∈ `2(G) 7→ A ∈ L2
L(N̂) is a unitary operator. Indeed, for

each α, β ∈ `2(G), we have the isometry property

〈α, β〉`2(G) = ∑
(m,h)∈G

α(m, h) β(m, h) = ∑
h∈H
〈αh, βh〉`2(N)

= ∑
h∈H
〈α̂h, β̂h〉L2(N̂) = 〈A, B〉L2

L(N̂) .

It is also surjective since the N-Fourier transform is a surjective isometry between `2(N) and
L2(N̂). Having in mind this property, Equation (7) tells us that the filter bank satisfies the perfect
reconstruction property if and only if G(γ)H(γ) = IL a.e. γ ∈ N̂.

Notice that, in the perfect reconstruction setting, the number of channels K must be necessarily
bigger or equal that the order L of the group H, i.e., K ≥ L.

4. Frame Analysis

For m ∈ N, the translation operator Tm : `2(G)→ `2(G) is defined as

Tmα(n, h) := α
(
(m, 1H)

−1 · (n, h)
)
= α(n−m, h) , (n, h) ∈ G . (8)

The involution operator α ∈ `2(G) 7→ α̃ ∈ `2(G) is defined as α̃(n, h) := α
(
(n, h)−1

)
, (n, h) ∈ G.

As expected, the classical relationship between convolution and translation operators holds. Thus, for
the K-channel filter bank (3), we have (see (2)):

ck(m) =↓H (α ∗ hk)(m) =
〈
α, Tmh̃k

〉
`2(G)

, m ∈ N , k = 1, 2, . . . , K .

In addition,

(↑H ck ∗ gk)(m, h) = ∑
n∈N

ck(n) gk(m− n, h) = ∑
n∈N
〈α, Tnh̃k〉`2(G) Tngk(m, h) .
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In the perfect reconstruction setting, for any α ∈ `2(G), we have

α =
K

∑
k=1

∑
n∈N
〈α, Tnh̃k〉`2(G) Tngk in `2(G) . (9)

Given K sequences fk ∈ `2(G), k = 1, 2, . . . , K, our main tasks now are: (i) to characterize the
sequence

{
Tnfk

}
n∈N; k=1,2,...,K as a frame for `2(G), and (ii) to find its dual frames having the form{

Tngk
}

n∈N; k=1,2,...,K.

To the first end, we consider a K-channel analysis filter bank with analysis filters hk := f̃k, i.e., the
involution of fk, k = 1, 2, . . . , K; let H(γ) be its associated K× L polyphase matrix (5). First, we check
that Equation (5) is:

H(γ) =
(
f̂k,hi

(γ)
)

k=1,2,...,K
i=1,2,...,L

, (10)

where f̂k,hi
(γ) denotes the Fourier transform in L2(N̂) of fk,hi

(n) = fk(n, hi) in `2(N). Indeed, for
k = 1, 2, . . . , K and i = 1, 2, . . . , L, having in mind that hk,hi

(n) = hk[(−n, hi)
−1] for analysis filters,

we have

ĥk,hi
(γ) = ∑

n∈N
hk,hi

(n)〈−n, γ〉 = ∑
n∈N

hk[(−n, hi)
−1]〈−n, γ〉 = ∑

n∈N
f̃k[(−n, hi)

−1]〈−n, γ〉

= ∑
n∈N

fk(−n, hi)〈−n, γ〉 = ∑
n∈N

fk(n, hi)〈−n, γ〉 = f̂k,hi
(γ) , γ ∈ N̂ .

Next, we consider its associated constants

AH := ess inf
γ∈N̂

λmin
[
H∗(γ)H(γ)

]
and BH := ess sup

γ∈N̂
λmax

[
H∗(γ)H(γ)

]
.

Theorem 2. For fk in `2(G), k = 1, 2, . . . , K, consider the associated matrix H(γ) given in Equation (10).
Then,

1. The sequence
{

Tnfk
}

n∈N; k=1,2,...,K is a Bessel sequence for `2(G) if and only if BH < ∞.
2. The sequence

{
Tnfk

}
n∈N; k=1,2,...,K is a frame for `2(G) if and only if the inequalities 0 < AH ≤ BH < ∞

hold.

Proof. Using Plancherel theorem ([16], Theorem 4.25), for each α ∈ `2(G), we get

〈α, Tnfk〉`2(G) = ∑
h∈H
〈αh, fk,h(· − n)〉`2(N) = ∑

h∈H

∫
N̂

α̂h(γ)̂fk,h(γ)〈−n, γ〉dγ

=
∫

N̂
∑

h∈H
α̂h(γ)̂fk,h(γ) 〈−n, γ〉dγ =

∫
N̂

Hk(γ)A(γ)〈−n, γ〉dγ ,

where A(γ) =
(
α̂h1(γ), α̂h2(γ), . . . , α̂hL(γ)

)> and Hk(γ) denotes the k-th row of H(γ).
Since

{
〈−n, γ〉

}
n∈N is an orthonormal basis for L2(N̂), in case that H(γ)A(γ) ∈ L2

K(N̂), we have

K

∑
k=1

∑
n∈N
|〈α, Tnfk〉|2 =

K

∑
k=1

∫
N̂

∣∣Hk(γ)A(γ)
∣∣2dγ =

∫
N̂

∥∥H(γ)A(γ)
∥∥2dγ .

If BH < ∞, having in mind that ‖α‖2
`2(G)

= ‖A‖2
L2

L(N̂)
=
∫

N̂

∥∥A(γ)
∥∥2dγ, the above equality and

the Rayleigh–Ritz theorem ([18], Theorem 4.2.2) prove that {Tnfk}n∈N; k=1,2,...,K is a Bessel sequence for
`2(G) with Bessel bound less or equal than BH.
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On the other hand, if K < BH, then there exists a set Ω ⊂ N̂ having a strictly positive measure
such that λmax

[
H∗(γ)H(γ)

]
> K for γ ∈ Ω. Consider α such that its associated A(γ) is 0 if γ /∈ Ω,

and A(γ) is a unitary eigenvector corresponding to the largest eigenvalue of H∗(γ)H(γ) if γ ∈ Ω.
Thus, we have that

K

∑
k=1

∑
n∈N
|〈α, Tnfk〉|2 =

∫
N̂

∥∥H(γ)A(γ)
∥∥2dγ > K

∫
N̂

∥∥A(γ)
∥∥2dγ = K ‖α‖2

`2(G).

As a consequence, if BH = ∞, the sequence is not Bessel, and, if BH < ∞, the optimal bound is
precisely BH.

Similarly, by using inequality
∥∥H(γ)A(γ)

∥∥2 ≥ λmin
[
H∗(γ)H(γ)

]∥∥A(γ)
∥∥2, and that equality

holds whenever A(γ) is a unitary eigenvector corresponding to the smallest eigenvalue of H∗(γ)H(γ);
one proves the other inequality in part 2.

Corollary 1. The sequence
{

Tnfk
}

n∈N; k=1,2,...,K is a Bessel sequence for `2(G) if and only if for each

k = 1, 2, . . . , K and i = 1, 2, . . . , L the function f̂k,hi
belongs to L∞(N̂).

Proof. It is a direct consequence of the equivalence between the spectral and Frobenius norms for
matrices [18].

It is worth mentioning that fk in `1(G), k = 1, 2, . . . , K, implies that the sequence{
Tnfk

}
n∈N; k=1,2,...,K is always a Bessel sequence for `2(G) since each function f̂k,hi

is continuous and N̂
is compact. In this case, the frame condition for

{
Tnfk

}
n∈N; k=1,2,...,K reduces to rank H(γ) = L for all

γ ∈ N̂ or, equivalently,
min
γ∈N̂

(
det[H∗(γ)H(γ)]

)
> 0 .

To the second end, a K-channel filter bank formalism allows, in a similar manner, to obtain
properties in `2(G) of the sequences

{
Tnfk

}
n∈N; k=1,2,...,K and

{
Tngk

}
n∈N; k=1,2,...,K. In case they are

Bessel sequences for `2(G), the idea is to consider a K-channel filter bank (3) where the analysis filters
are hk := f̃k and the synthesis filters are gk, k = 1, 2, . . . , K. As a consequence, the corresponding
polyphase matrices H(γ) and G(γ), given in Equations (5) and (6), are

H(γ) =
(
f̂k,hi

(γ)
)

k=1,2,...,K
i=1,2,...,L

and G(γ) =
(
ĝhi ,k(γ)

)
i=1,2,...,L
k=1,2,...,K

, γ ∈ N̂ . (11)

Theorem 3. Let
{

Tnfk
}

n∈N; k=1,2,...,K and
{

Tngk
}

n∈N; k=1,2,...,K be two Bessel sequences for `2(G), and H(γ)

and G(γ) their associated matrices (11). Under the above circumstances, we have:

(a) The sequences
{

Tnfk
}

n∈N; k=1,2,...,K and
{

Tngk
}

n∈N; k=1,2,...,K are dual frames for `2(G) if and only if

condition G(γ)H(γ) = IL a.e. γ ∈ N̂ holds.
(b) The sequences

{
Tnfk

}
n∈N; k=1,2,...,K and

{
Tngk

}
n∈N; k=1,2,...,K are biorthogonal sequences in `2(G) if and

only if condition H(γ)G(γ) = IK a.e. γ ∈ N̂ holds.
(c) The sequences

{
Tnfk

}
n∈N; k=1,2,...,K and

{
Tngk

}
n∈N; k=1,2,...,K are dual Riesz bases for `2(G) if and only

if K = L and G(γ) = H(γ)−1 a.e. γ ∈ N̂.
(d) The sequence

{
Tnfk

}
n∈N; k=1,2,...,K is an A-tight frame for `2(G) if and only if condition H∗(γ)H(γ) =

AIL a.e. γ ∈ N̂ holds.
(e) The sequence

{
Tnfk

}
n∈N; k=1,2,...,K is an orthonormal basis for `2(G) if and only if K = L and H∗(γ) =

H(γ)−1 a.e. γ ∈ N̂.

Proof. Having in mind Equation (9) and Corollary 1, part (a) is nothing but Theorem 1.
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The output of the analysis filter bank (3) corresponding to the input gk′ is a K-vector
whose k-entry is

ck,k′(m) =↓H (gk′ ∗ hk)(m) = 〈gk′ , Tmh̃k〉`2(G) = 〈gk′ , Tmfk〉`2(G) ,

and whose N-Fourier transform is Ck′(γ) = H(γ)Gk′(γ) a.e. γ ∈ N̂, where Gk′ is the k′-column of
the matrix G(γ). Note that

{
Tnfk

}
n∈N; k=1,2,...,K and

{
Tngk

}
n∈N; k=1,2,...,K are biorthogonal if and only if

〈gk′ , Tmfk〉`2(G) = δ(k− k′)δ(m). Therefore, the sequences
{

Tnfk
}

n∈N; k=1,2,...,K and
{

Tngk
}

n∈N; k=1,2,...,K
are biorthogonal if and only if H(γ)G(γ) = IK. Thus, we have proved (b).

Having in mind ([15], Theorem 7.1.1), from (a) and (b), we obtain (c).
We can read the frame operator corresponding to the sequence

{
Tnfk

}
n∈N; k=1,2,...,K, i.e.,

S(α) =
K

∑
k=1

∑
n∈N
〈α, Tnfk〉`2(G) Tnfk, α ∈ `2(G) ,

as the output of the filter bank (3), whenever hk = f̃k and gk = fk, for the input α. For this filter
bank, the (k, hl)-entry of the analysis polyphase matrix H(γ) is f̂k,hl

(γ) and the (hl , k)-entry of the
synthesis polyphase matrix G(γ) is f̂k,hl

(γ); in other words, G(γ) = H∗(γ). Hence, the sequence{
Tnfk

}
n∈N; k=1,2,...,K is an A-tight frame for `2(G), i.e.,

α =
1
A

K

∑
k=1

∑
n∈N
〈α, Tnfk〉`2(G) Tnfk, α ∈ `2(G) ,

if and only if H∗(γ)H(γ) = AIL for all γ ∈ N̂. Thus, we have proved (d).
Finally, from (c) and (d), the sequence

{
Tnfk

}
n∈N; k=1,2,...,K is an orthonormal system if and only

if H∗(γ) = H(γ)−1 a.e. γ ∈ N̂.

5. Getting on with Sampling

Suppose that
{

U(n, h)
}
(n,h)∈G is a unitary representation of the group G = N oφ H on a separable

Hilbert spaceH, and assume that for a fixed a ∈ H the sequence
{

U(n, h)a
}
(n,h)∈G is a Riesz sequence

forH (see Ref. ([1], Theorem A)). Thus, we consider the U-invariant subspace inH

Aa =
{

∑
(n,h)∈G

α(n, h)U(n, h)a : {α(n, h)}(n,h)∈G ∈ `2(G)
}

.

For K fixed elements bk ∈ H, k = 1, 2, . . . , K, not necessarily in Aa, we consider for each x ∈ Aa

its generalized samples defined as

Lkx(m) :=
〈

x, U(m, 1H) bk
〉
H , m ∈ N and k = 1, 2, . . . , K . (12)

The task is the stable recovery of any x ∈ Aa from the data
{
Lkx(m)

}
m∈N; k=1,2,...,K.

In what follows, we propose a solution involving a perfect reconstruction K-channel filter bank.
First, we express the samples in a more suitable manner. Namely, for each x = ∑(n,h)∈G α(n, h)U(n, h) a
in Aa, we have

Lkx(m) = ∑
(n,h)∈G

α(n, h)
〈
U(n, h) a, U(m, 1H) bk

〉
= ∑

(n,h)∈G
α(n, h)

〈
a, U

[
(n, h)−1 · (m, 1H)

]
bk
〉
=↓H (α ∗ hk)(m) , m ∈ N ,

where α = {α(n, h)}(n,h)∈G ∈ `2(G), and hk(n, h) :=
〈

a, U(n, h) bk
〉
H also belongs to `2(G) for each

k = 1, 2, . . . , K.
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Suppose also that there exists a perfect reconstruction K-channel filter-bank with analysis filters
the above hk and synthesis filters gk, k = 1, 2, . . . , K, such that the sequences

{
Tnh̃k

}
n∈N; k=1,2,...K

and
{

Tngk
}

n∈N; k=1,2,...K are Bessel sequences for `2(G). Having in mind Equation (9), for each
α = {α(n, h)}(n,h)∈G in `2(G), we have

α =
K

∑
k=1

∑
n∈N
↓H (α ∗ hk)(n) Tngk =

K

∑
k=1

∑
n∈N
Lkx(n) Tngk in `2(G) . (13)

In order to derive a sampling formula in Aa, we consider the natural isomorphism TU,a :
`2(G) → Aa which maps the usual orthonormal basis {δ(n,h)}(n,h)∈G for `2(G) onto the Riesz basis{

U(n, h) a
}
(n,h)∈G for Aa, i.e.,

TU,a : δ(n,h) 7−→ U(n, h)a for each (n, h) ∈ G .

This isomorphism TU,a possesses the following shifting property:

Lemma 2. For each m ∈ N, consider the translation operator Tm operator defined in Equation (8). For each
m ∈ N, the following shifting property holds

TU,a
(
Tmf

)
= U(m, 1H)

(
TU,af

)
, f ∈ `2(G) . (14)

Proof. For each δ(n,h), it is easy to check that Tmδ(n,h) = δ(m+n,h). Hence,

TU,a
(
Tmδ(n,h)

)
= U(m + n, h) a = U(m, 1H)U(n, h) a = U(m, 1H)

(
TU,aδ(n,h)

)
.

A continuity argument proves the result for all f in `2(G).

Now, for each x = TU,aα ∈ Aa, applying the isomorphism TU,a and the shifting property (14) in
Equation (13), we get for each x ∈ Aa the expansion

x =
K

∑
k=1

∑
n∈N
Lkx(n) TU,a

(
Tngk

)
=

K

∑
k=1

∑
n∈N
Lkx(n)U(n, 1H)

(
TU,agk

)
=

K

∑
k=1

∑
n∈N
Lkx(n)U(n, 1H)ck,g inH ,

(15)

where ck,g = TU,agk, k = 1, 2, . . . , K. In fact, the following sampling theorem in the subspace Aa holds:

Theorem 4. For K fixed bk ∈ H, let Lk : Aa → CN be its associated U-system defined in Equation (12) with
corresponding hk ∈ `2(G), k = 1, 2, . . . , K. Assume that its polyphase matrix H(γ) given in Equation (5) has
all its entries in L∞(N̂). The following statements are equivalent:

1. The constant AH = ess inf
γ∈N̂

λmin
[
H∗(γ)H(γ)

]
> 0.

2. There exist gk in `2(G), k = 1, 2, . . . , K, such that the associated polyphase matrix G(γ) given in (6) has
all its entries in L∞(N̂), and it satisfies G(γ)H(γ) = IL a.e. γ ∈ N̂.

3. There exist K elements ck ∈ Aa such that the sequence
{

U(n, 1H)ck
}

n∈N; k=1,2,...,K is a frame for Aa and,
for each x ∈ Aa, the sampling formula

x =
K

∑
k=1

∑
n∈N
Lkx(n)U(n, 1H)ck inH (16)

holds.
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4. There exists a frame
{

Ck,n
}

n∈N; k=1,2,...,K for Aa such that for each x ∈ Aa the expansion

x =
K

∑
k=1

∑
n∈N
Lkx(n)Ck,n inH

holds.

Proof. (1) implies (2). The L × K Moore–Penrose pseudo-inverse H†(γ) of H(γ) is given by
H†(γ) =

[
H∗(γ)H(γ)

]−1 H∗(γ). Its entries are essentially bounded in N̂ since the entries of H(γ)

belong to L∞(N̂) and det−1 [H∗(γ)H(γ)
]

is essentially bounded N̂ since 0 < AH. In addition,
H†(γ)H(γ) = IL a.e. γ ∈ N̂. The inverse N-Fourier transform in L2(N̂) of the k-th column of H†(γ)

gives gk, k = 1, 2, . . . , K.
(2) implies (3). According to Theorems 2 and 3, the sequences

{
Tnh̃k

}
n∈N; k=1,2,...K and{

Tngk
}

n∈N; k=1,2,...K form a pair of dual frames for `2(G). We deduce the sampling expansion as
in Formula (15). In addition, the sequence

{
U(n, 1H)ck,g

}
n∈N; k=1,2,...,K is a frame for Aa.

Obviously, (3) implies (4). Finally, (4) implies (1). Applying T −1
U,a , we get that the sequences{

Tnh̃k
}

n∈N; k=1,2,...K and {T −1
U,a (Ck,n)}n∈N; k=1,2,...,K form a pair of dual frames for `2(G); in particular,

by using Theorem 2, we obtain that 0 < AH.

All the possible solutions of G(γ)H(γ) = IL a.e. γ ∈ N̂ with entries in L∞(N̂) are given in terms
of the Moore–Penrose pseudo inverse by the L×K matrices G(γ) := H†(γ)+U(γ)

[
IK−H(γ)H†(γ)

]
,

where U(γ) denotes any L× K matrix with entries in L∞(N̂).
Notice that K ≥ L where L is the order of the group H. In case K = L, we obtain:

Corollary 2. In the case K = L, assume that its polyphase matrix H(γ) given in Equation (5) has all entries
in L∞(N̂). The following statements are equivalent:

1. The constant AH = ess inf
γ∈N̂

λmin
[
H∗(γ)H(γ)

]
> 0.

2. There exist L unique elements ck, k = 1, 2, . . . , L, in Aa such that the associated sequence{
U(n, 1H)ck

}
n∈N; k=1,2,...,L is a Riesz basis for Aa and the sampling formula

x =
L

∑
k=1

∑
n∈N
Lkx(n)U(n, 1H)ck inH

holds for each x ∈ Aa.

Moreover, the interpolation property Lkck′(n) = δk,k′δn,0N , where n ∈ N and k, k′ = 1, 2, . . . , L, holds.

Proof. In this case, the square matrix H(γ) is invertible and the result comes out from Theorem 3. From
the uniqueness of the coefficients in a Riesz basis expansion, we get the interpolation property.

Denote H = {h1, h2, . . . , hL}; for a fixed b ∈ H, we consider the samples

Lkx(m) :=
〈

x, U(m, hk)b
〉

, m ∈ N and k = 1, 2, . . . , L ,

of any x ∈ Aa. Since U(m, hk)b = U(m, 1H)U(0N , hk)b = U(m, 1H)bk, where bk := U(0N , hk)b,
k = 1, 2, . . . , L, we are in a particular case of Equation (12) with K = L.

Notice also that the subspace Aa can be viewed as the multiple generated U-invariant subspace
ofH

span
{

U(n, 1H)ah : n ∈ N , h ∈ H
}

with L generators ah := U(0N , h)a ∈ H, h ∈ H, obtained from a ∈ H by the action of the group H.



Symmetry 2019, 11, 529 12 of 15

5.1. An Example Involving Crystallographic Groups

The Euclidean motion group E(d) is the semi-direct product Rd oφ O(d) corresponding to
the homomorphism φ : O(d) → Aut(Rd) given by φA(x) = Ax, where A ∈ O(d) and x ∈ Rd.
The composition law on E(d) = Rd oφ O(d) reads (x, A) · (x′, A′) = (x + Ax′, AA′).

Let M be a non-singular d × d matrix and Γ a finite subgroup of O(d) of order L such that
A(MZd) = MZd for each A ∈ Γ. We consider the crystallographic group CM,Γ := MZd oφ Γ and its
quasi regular representation (see Ref. [1]) on L2(Rd)

U(n, A) f (t) = f [A>(t− n)] , n ∈ MZd, A ∈ Γ and f ∈ L2(Rd) .

For a fixed ϕ ∈ L2(Rd) such that the sequence
{

U(n, A)ϕ
}
(n,A)∈CM,Γ

is a Riesz sequence for

L2(Rd) (see, for instance, Refs. [19,20]) we consider the U-invariant subspace in L2(Rd)

Aϕ =
{

∑
(n,A)∈CM,Γ

α(n, A) ϕ[A>(t− n)] : {α(n, A)} ∈ `2(CM,Γ)
}

=
{

∑
(n,A)∈CM,Γ

α(n, A) ϕ(At− n) : {α(n, A)} ∈ `2(CM,Γ)
}

.

Choosing K functions bk ∈ L2(Rd), k = 1, 2, . . . , K, we consider the average samples of f ∈ Aϕ

Lk f (n) = 〈 f , U(n, I)bk〉 = 〈 f , bk(· − n)〉 , n ∈ MZd .

Under the hypotheses in Theorem 4, there exist K ≥ L sampling functions ψk ∈ Aϕ for k = 1, 2, . . . , K,
such that the sequence {ψk(· − n)}n∈MZd ; k=1,2,...,K is a frame for Aϕ, and the sampling expansion

f (t) =
K

∑
k=1

∑
n∈MZd

〈
f , bk(· − n)

〉
L2(Rd)

ψk(t− n) in L2(Rd) (17)

holds.
If the generator ϕ ∈ C(Rd) and the function t 7→ ∑n |ϕ(t− n)|2 is bounded on Rd, a standard

argument shows that Aϕ is a reproducing kernel Hilbert space (RKHS) of bounded continuous
functions in L2(Rd). As a consequence, convergence in L2(Rd)-norm implies pointwise convergence
which is absolute and uniform on Rd.

Notice that the infinite dihedral group D∞ = Zoφ Z2 is a particular crystallographic group with
lattice Z and Γ = Z2. Its quasi regular representation on L2(R) reads

U(n, 0) f (t) = f (t− n) and U(n, 1) f (t) = f (−t + n) , n ∈ Z and f ∈ L2(R) .

Thus, we could obtain sampling formulas as (17) for K ≥ 2 average functions bk.
The quasi regular unitary representation of a crystallographic group CM,Γ on L2(Rd) motivates

the next section:

5.2. The Case of Pointwise Samples

Let {U(n, h)}(n,h)∈G be a unitary representation of the group G = N oφ H on the Hilbert space
H = L2(Rd). If the generator ϕ ∈ L2(Rd) satisfies that, for each (n, h) ∈ G, the function U(n, h)ϕ is
continuous on Rd, and the condition

sup
t∈Rd

∑
(n,h)∈G

∣∣[U(n, h)ϕ](t)
∣∣2 < ∞ ,



Symmetry 2019, 11, 529 13 of 15

then the subspace Aϕ is an RKHS of bounded continuous functions in L2(Rd); proceeding as in [21],
one can prove that the above conditions are also necessary.

For K fixed points tk ∈ Rd, k = 1, 2, . . . , K, we consider for each f ∈ Aϕ the new samples given by

Lk f (n) :=
[
U(−n, 1H) f

]
(tk) , n ∈ N and k = 1, 2, · · · , K . (18)

For each f = ∑(m,h)∈G α(m, h)U(m, h) ϕ in Aϕ and k = 1, 2, . . . , K, we have

Lk f (n) =
[

∑
(m,h)∈G

α(m, h)U[(−n, 1H) · (m, h)] ϕ
]
(tk)

= ∑
(m,h)∈G

α(m, h)
[
U(m− n, h)ϕ

]
(tk) =

〈
α, Tnfk

〉
`2(G)

, n ∈ N ,

where α = {α(m, h)}(m,h)∈G and fk(m, h) :=
[
U(m, h)ϕ

]
(tk), (m, h) ∈ G. Notice that fk belongs to

`2(G), k = 1, 2, · · · , K. As a consequence, under the hypotheses in Theorem 4 (on these new hk := f̃k,
k = 1, 2, . . . , K), a sampling formula such as (16) holds for the data sequence

{
Lk f (n)

}
n∈N; k=1,2,...,K

defined in Equation (18).

In the particular case of the quasi regular representation of a crystallographic group CM,Γ = MZd oφ Γ,
for each f ∈ Aϕ, the samples (18) read

Lk f (n) =
[
U(−n, I) f

]
(tk) = f (tk + n) , n ∈ MZd and k = 1, 2, . . . , K .

Thus (under hypotheses in Theorem 4), there exist K functions ψk ∈ Aϕ, k = 1, 2, . . . , K, such that
for each f ∈ Aϕ the sampling formula

f (t) =
K

∑
k=1

∑
n∈MZd

f (tk + n)ψk(t− n) , t ∈ Rd

holds. The convergence of the series in the L2(Rd)-norm sense implies pointwise convergence which
is absolute and uniform on Rd.

6. Conclusions

In this paper, we have derived an abstract regular sampling theory associated with a unitary
representation (n, h) 7→ U(n, h) of a group G which is a semi-direct product of two groups, N countable
discrete abelian group and H finite, on a separable Hilbert space H; here, regular sampling means
that we are taken the samples at the group N. Concretely, the sampling theory is obtained in the
U-invariant subspace ofH generated by a ∈ H that is

Aa =
{

∑
(n,h)∈G

α(n, h)U(n, h)a : {α(n, h)}(n,h)∈G ∈ `2(G)
}

,

and the samples of x ∈ Aa are given by Lkx(n) :=
〈

x, U(n, 1H)bk
〉
H, n ∈ N, where bk, k = 1, 2, . . . , K,

denote K fixed elements inH which do not belong necessarily to Aa. We look for K elements ck ∈ Aa

such that the sequence
{

U(n, 1H)ck
}

n∈N; k=1,2,...,K is a frame for Aa and, for each x ∈ Aa, the sampling

formula x = ∑K
k=1 ∑n∈N Lkx(n)U(n, 1H)ck holds.

A similar problem was solved when the group G is a discrete LCA group and the samples are
taken at a uniform lattice of G (see Ref. [10]). In the case of an abelian group, we have the Fourier
transform, a basic tool in this previous work. In the present work, a classical Fourier analysis on G is
not available, but if G is a semi-direct product of the form G = N oφ H, where N is a countable discrete
abelian group and H is a finite group, the Fourier transform on the abelian group N allows us to solve
the problem by means of a filter bank formalism. Recalling the filter bank formalism in discrete LCA
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groups, the defined samples are expressed as the output of a suitable K-channel analysis filter bank
corresponding to the input x ∈ Aa. The frame analysis of this filter bank along with the synthesis
one giving perfect reconstruction allows us to obtain a pair of suitable dual frames for obtaining the
desired sampling result, which is written as a list of equivalent statements (see Theorem 4).

Although the semi-direct product of groups represents, so to speak, the simplest case of
non-abelian groups, this paper can be a good starting point for finding sampling theorems associated
with unitary representations of non abelian groups that are not isomorphic to a semi-direct
product of groups.
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