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Abstract: An abstract sampling theory associated with a unitary representation of a countable discrete
non abelian group G, which is a semi-direct product of groups, on a separable Hilbert space is studied.
A suitable expression of the data samples, the use of a filter bank formalism and the corresponding
frame analysis allow for fixing the mathematical problem to be solved: the search of appropriate dual
frames for £2(G). An example involving crystallographic groups illustrates the obtained results by
using either average or pointwise samples.
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1. Statement of the Problem

In this paper, an abstract sampling theory associated with non abelian groups is derived for the
specific case of a unitary representation of a semi-direct product of groups on a separable Hilbert space.
Semi-direct product of groups provide important examples of non abelian groups such as dihedral
groups, infinite dihedral group, Euclidean motion groups or crystallographic groups. Concretely, let
(n,h) — U(n, h) be a unitary representation on a separable Hilbert space # of a semi-direct product
G = N x4 H, where N is a countable discrete LCA (locally compact abelian) group, H is a finite group,
and ¢ denotes the action of the group H on the group N (see Section 2 infra for the details); for a fixed
a € H we consider the U-invariant subspace in H

As = {( % a(n,h) U(n,h)a = {a(n,h)}omec € KZ(G)},
nh)eG

where we assume that {U(n, h)a} is a Riesz sequence for 7, i.e., a Riesz basis for A, (see Ref. [1] for a
necessary and sufficient condition). Given K elements by in H, which do not belong necessarily
to A,, the main goal in this paper is the stable recovery of any x € A, from the given data
(generalized samples)

Lix(n) = <x,ll(n,1H)bk>H, ne€Nandk=1,2,...,K,
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where 1p denotes the identity element in H. These samples are nothing but a generalization of average
sampling in shift-invariant subspaces of L?(R?); see, among others, Refs. [2-9]. The case where G is a
discrete LCA group and the samples are taken at a uniform lattice of G has been solved in Ref. [10];
this work relies on the use of the Fourier analysis in the LCA group G (see also Ref. [11]). In the case
involved here, a classical Fourier analysis is not available and, consequently, we need to overcome this
drawback.

Having in mind the filter bank formalism in discrete LCA groups (see, for instance, Refs. [12-14]),
the given data {£xx (1) },eN:k=12,. k can be expressed as the output of a suitable K-channel analysis
filter bank corresponding to the input & = {a(n,h)}(, 4)ec in /2(G). As a consequence, the problem
consists of finding a synthesis part of the former filter bank allowing perfect reconstruction; in addition,
only Fourier analysis on the LCA group N is needed. Then, roughly speaking, substituting the output
of the synthesis part in x = Y., jyec «(n,h) U(n, h)a, we will obtain the corresponding sampling
formula in A,.

This said, as it could be expected, the problem can be mathematically formulated as the search of
dual frames for ¢2(G) having the form

{T"hk}neN;kzl,z,...,K and {T"gk}neN;k:LZ,...,K .

Here, hy, gi € 0%(G), Tuhi(m, h) = hi(m —n,h) and T,gi(m, h) = ge(m —n,h), (m,h) € G, where
ne Nandk=1,2,...,K. Inaddition, for any x € A,, we have the expression for its samples

Lix(n) = <a,Tnhk>Kz(G), neNandk=1,2,...,K.

Needless to say, frame theory plays a central role in what follows; the necessary background on
Riesz bases or frame theory in a separable Hilbert space can be found, for instance, in Ref. [15]. Finally,
sampling formulas in 4, having the form

K
x=Y Y Lix(n)U(n1y)cx inH,
k=1neN

forsomec; € A;, k=1,2,...,K, will come out by using, for g € /2(G)and n € N, the shifting property
Tua(Tug) = U(n,15)(Tu,eg) that satisfies the natural isomorphism 7y, : £2(G) — A, which maps
the usual orthonormal basis {8 ,, 1) } (s n)ec for £2(G) onto the Riesz basis {U<”'h)u}(n,h)ec for A,.
All these steps will be carried out throughout the remaining sections. For the sake of completeness,
Section 2 includes some basic preliminaries on semi-direct product of groups and Fourier analysis on
LCA groups. The paper ends with an illustrative example involving the quasi regular representation
of a crystallographic group on L?(R%); sampling formulas involving average or pointwise samples are
obtained for the corresponding U-invariant subspaces in L*(R9).

2. Some Mathematical Preliminaries

In this section, we introduce the basic tools in semi-direct product of groups and in harmonic
analysis in a discrete LCA group that will be used in the sequel.

2.1. Preliminaries on Semi-Direct Product of Groups

Given groups (N, -) and (H, -), and a homomorphism ¢ : H — Aut(N), their semi-direct product
G := N x¢ H is defined as follows: The underlying set of G is the set of pairs (1, h) with n € N and
h € H, along with the multiplication rule

(n1,h1) - (n2,ha) == (mgy, (n2), mha),  (n1,h), (n2,h2) € G,
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where we denote ¢(h) := ¢; usually, the homomorphism ¢ is referred to as the action of the
group H on the group N. Thus, we obtain a new group with identity element (1y,1p), and inverse
()~ = (@ (n1),H7Y).

In addition, we have the isomorphisms N ~ N x {1y} and H ~ {15} x H. Unless ¢, equals
the identity for all h € H, the group G = N X H is not abelian, even for abelian N and H groups.
The subgroup N is a normal subgroup in G. Some examples of semi-direct product of groups:

1. The dihedral group D,y is the group of symmetries of a regular N-sided polygon; it is the
semi-direct product Doy = Zn X¢ Z2 where ¢y = ldz,, and ¢1(i) = —n for each 1 € Zy.
The infinite dihedral group D defined as Z xy Z; for the similar homomorphism ¢ is the group
of isometries of Z.

2. The Euclidean motion group E(d) is the semi-direct product R? Xy O(d), where O(d) is the
orthogonal group of order d and ¢4 (x) = Ax for A € O(d) and x € R?. It contains as a subgroup
any crystallographic group MZ? Xy I', where MZ? denotes a full rank lattice of RY and T is any
finite subgroup of O(d) such that ¢, (MZ?) = MZ for each y € T.

3. The orthogonal group O(d) of all orthogonal real d x d matrices is isomorphic to the semi-direct
product SO(d) x¢ C;, where SO(d) consists of all orthogonal matrices with determinant 1 and
Cy = {I, R} a cyclic group of order 2; ¢ is the homomorphism given by ¢;(A) = A and ¢r(A) =
RAR™ ! for A € SO(d).

Suppose that N is an LCA group with Haar measure uy and H is a locally compact group with
Haar measure pp. Then, the semi-direct product G = N x4 H endowed with the product topology
becomes also a topological group. For the left Haar measure on G, see Ref. [1].

2.2. Some Preliminaries on Harmonic Analysis on Discrete LCA Groups

The results about harmonic analysis on locally compact abelian (LCA) groups are borrowed from
Ref. [16]. Notice that, in particular, a countable discrete abelian group is a second countable Hausdorff
LCA group.

For a countable discrete group (N, -), not necessarily abelian, the convolution of x,y : N — C is
formally defined as (x x y)(m) := ¥,y x(n)y(n~'m), m € N. If, in addition, the group is abelian,

therefore denoted by (N, +), the convolution reads as

(x*xy)(m) = %x(n)y(m—n), méeE N.

Let T = {z € C: |z| = 1} be the unidimensional torus. We said that ¢ : N — T is a character of
Nif¢(n+m) = ¢(n)é(m) for all n,m € N. We denote ¢(n) = (n,¢). Defining ({ + v)(n) = &(n)y(n),

the set of characters N with the operation + is a group, called the dual group of N; since N is discrete
N is compact ([16], Prop. 4.4). For x € /! (N), we define its Fourier transform as

X@)=%(¢) =) x(m){ng) =} x(n){-n¢), ¢eN.
neN neN
It is known ([16], Theorem 4.5) that 7 =~ T, with (n,z) = 2", and Zs = Zs := 7./s7, with
(n,m) = W™, where Wy = e27/5,
There exists a unique measure, the Haar measure y on N satisfying (& + E) = u(E), for every
Borel set E C N ([16], Section 2.2), and 4(N) = 1. We denote [ X(£)d¢ = [ X(&)du(¢). N =Z,

1 27 )
éx@@zﬁx@ﬂzﬂﬁ X(e®)dw,
and,if N = Z,,

[ xX@de = [ X(oydn =3 ¥ Xn).

s Nnels



Symmetry 2019, 11, 529 4 0f 15

If N1, Ny, ... Ny are abelian discrete groups, then the dual group of the product group is (Nj x
Ny X ... x Nd)A =~ Nj x Np X ... x Ny (see ([16], Prop. 4.6)) with

((n1,m2,...,mq), (G1,82---,8a) ) = (m1,81)(n2, G2) -~ (1, &y) -

The Fourier transform on £!(N) N ¢2(N) is an isometry on a dense subspace of LZ(N ); Plancherel
theorem extends it in a unique manner to a unitary operator of £2(N) onto L*(N) ([16], p. 99).
The following lemma, giving a relationship between Fourier transform and convolution, will be
used later (see Ref. [17]):

Lemma 1. Assume that a,b € (2(N) and @(&)b(Z) € L2(N). Then, the convolution a b belongs to (2(N)
and a « b(&) = (&) b(¢), ae. & € N.

3. Filter Bank Formalism on Semi-Direct Product of Groups

In what follows, we will assume that G = N x4 H where (N, +) is a countable discrete abelian
group and (H, -) is a finite group. Having in mind the operational calculus (n, 1) - (m, 1) = (n+ ¢, (m), hl),
(n,h)"t = (¢-1(—n), k1) and (n,h)~1- (m,1) = (¢-1(m —n),h~11), the convolution & * h of
«,h € (2(G) can be expressed as

() (o (o, 1) W[, )7 (o, )
nh)EG

a(n,h)h(py1(m—n),h 1), (m1)€G

nh)eG

)

For a function &« : G — C, its H-decimation |y« : N — C is defined as (g «)(n) := a(n,1g) for
any n € N. Thus, we have

bar (o ) o) = (o) o ) = % (i, 1) h (@1 (m — ), b
nh)eG
= X a(n,h)h[(n—m,h)"], meN.
(n,h)eG

@)

Defining the polyphase components of « and h as aj,(n) := a(n,h) and hy(n) := h[(—=n, k)]
respectively, we write

Li(asn)m) = Y Y an)hy(m—n) = Y (wyewhy)(m), meN.

heHneN heH

For a function ¢ : N — C, its H-expander Tyc : G — C is defined as

c(n) ifh=1p,

(The)(n,h) = {0 h L1y

In case 15 c and g belong to /2(G), we have

(Tre*g)( (te)(n,h)g[(n, k)~ - (m,1)]

m—mn,l)= (cxng)(m), meN,leH,

= e

Z (tre)(n,h) g(@p-1(m —n), k')
(n,h)e
Z

eN

where g;(n) := g(n,1) is the polyphase component of g.
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From now on, we will refer to a K-channel filter bank with analysis filters hy and synthesis filters gy,
k=1,2,...,Kas the one given by (see Figure 1)

K
o =lu(axhy), k=12,...,K, and B=Y (Thcx)*g, (3)
k=1

where « and B denote, respectively, the input and the output of the filter bank. In polyphase notation,

c(m) =Y (ap*nhep)(m), meN, k=12,..K,

heH

K 4)
B,(m) =Y (ck*ngix)(m), meN,le€H,

where a;(n) = a(n,h), B;(n) = B(n,1), hyp(n) := h[(—n,h)"1] and g (n) := gr(n,1) are the
polyphase components of &, B, hy and gi, k = 1,2,..., K, respectively. We also assume that hy, g € ¢%(G)
with Hk,h/é\h,k € L®(N) fork =1,2,...,Kand h € H; from Lemma 1, the filter bank (3) is well defined

in 2(G).
atm, ) — LRz}
SO @SS

B N o s W T

Figure 1. The K-channel filter bank scheme.

The above K-channel filter bank (3) is said to be a perfect reconstruction filter bank if and only
if it satisfies @ = Y& (T cx) * g for each & € (2(G), or equivalently, &, = Yk ;| (cx *n gnx) for
each h € H.

Since N is an LCA group where a Fourier transform is available, the polyphase expression (4) of
the filter bank (3) allows us to carry out its polyphase analysis.

Polyphase Analysis: Perfect Reconstruction Condition

For notational ease, we denote L := |H|, the order of the group H, and its elements as
H = {h,hy,...,h }. Having in mind Lemma 1, the N-Fourier transform in ¢ (m) = Y ey (a7 *n
hin) (m) gives € () = Lnen ﬁk,h('y) @),(y) a.e. v € N foreach k = 1,2,..., K. In matrix notation,

C(y) =H(7)A(y) ae 7€N,

where C(7) = (&1(7),@(1), ., &), A(Y) = @i (1), @iy (1), &y (7)), and H(7) is the
K x L matrix

Eun (7) El,hZ (r) - El,hL (7)
Hiy) = | P27 P ) ®
E1<,h] (7) H1<,hz(’Y) o H1<,hL (1)

where Hk,hi € L2(N) is the Fourier transform of hiy, (1) == he[(—n, h;) 1] € £2(N).
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The same procedure for §;(m) = Yk_ (cx +n g1x) (m) gives ,/B\,('y) =YK 8x(7)e(y)ae v EN.
In matrix notation,

B(y) =G(7)C(y) ae v€N,

where B(7) = (B, (), By, (1), B, (1), C(7) = (@(7),@(7),.... % (7)) and G(7) is the
L x K matrix

81 (v) 8u2(r) o Brk(7)
Gi) = | et Be2l) Bk ©
8 1(Y) 8 2(Y) o Buk(7)

where g, i € L2(N) is the Fourier transform of g k(n) == ge(n,hy) € /%(N).
Thus, in terms of the polyphase matrices G(vy) and H(y), the filter bank (3) can be expressed as
B(7) = G(7)H(7)A(y) ae 7EN. )
As a consequence of Equation (7), we have:

Theorem 1. The K-channel filter bank given in Equation (3), where hy, g belong to £2(G) and Hk,hi,ghi,k
belong to L®(N) fork=1,2,...,Kandi=1,2,...,L, satisfies the perfect reconstruction property if and only
if G(y)H(y) =1 ae. v € N, where 1y denotes the identity matrix of order L.

Proof. First of all, note that the mapping & € ¢2(G) +— A € L?(N) is a unitary operator. Indeed, for
each a, B € ((G), we have the isometry property

(0B = ), almh)p(mh)="Y (anBy)en

(m,h)eG heH
= Y @i Bi)ian) = (AB) 2 x)-
heH

It is also surjective since the N-Fourier transform is a surjective isometry between ¢2(N) and
[2(N). Having in mind this property, Equation (7) tells us that the filter bank satisfies the perfect
reconstruction property if and only if G(y) H(y) = I  ae. y € N. O

Notice that, in the perfect reconstruction setting, the number of channels K must be necessarily
bigger or equal that the order L of the group H, i.e,, K > L.

4. Frame Analysis

For m € N, the translation operator Ty, : (>(G) — £?(G) is defined as
Twa(n,h) :=a((m, 1)~ - (n,h)) = a(n —m,h), (n,h) € G. (8)
The involution operator & € (*(G) + & € (>(G) is defined as &(n,h) := a((n,h)~1), (n,h) € G.
As expected, the classical relationship between convolution and translation operators holds. Thus, for
the K-channel filter bank (3), we have (see (2)):
ck(m) =i (ax he) (m) = (&, Tuhy) oy, m €N, k=1,2,...,K.

In addition,

(tree* ge)(mh) = Y cx(n) ge(m —n,h) = Y (@, Tuhi) () Tugi(m, ).
neN neN
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In the perfect reconstruction setting, for any & € £2(G), we have

I Mw

2 a, Tuhi) 2 (c) Tagr in £2(G). ©)
EN

Given K sequences f; € €2(G), k=1,2,...,K, our main tasks now are: (i) to characterize the

sequence { T, f} eN:k—12,.. k as a frame for ¢2(G), and (ii) to find its dual frames having the form

{T”gk}neN;k:LZ,...,K'

To the first end, we consider a K-channel analysis filter bank with analysis filters hy := f, i.e., the
involution of fy, k = 1,2, ..., K; let H(*y) be its associated K x L polyphase matrix (5). First, we check
that Equation (5) is:

H(y) = (Fon (1) ) (10)
where /f\k/hi (7) denotes the Fourier transform in L2(N) of fin, (1) = fi(n,h;) in £2(N). Indeed, for
k=1,2,...,Kandi = 1,2,...,L, having in mind that hk,h,-(”) = hg[(—n,h;)71] for analysis filters,

we have
hin, (7) = X;\]hk,hi(ﬂ)<—n,”y> = %hk[(_”fhi)_lK—n,v) _ X;V?k[(—nrhi)_lK—n,'ﬂ
= ZNW<_”,'Y> = Zl\jfk(n,hi)<—n,ry> :?k,hi(’Y), ye N

Next, we consider its associated constants

Ay = essinf Apin [H*(’Y)H(’Y)} and By := essSup Amax [H*(V)H('V)] '
YEN yeN

Theorem 2. For f, in EZ(G), k=1,2,...,K, consider the associated matrix H(vy) given in Equation (10).
Then,

1. The sequence {Tyf} }
2. The sequence { T, f;}
hold.

is a Bessel sequence for ¢2(G) if and only if By < co.

neN;k=12,..K
is a frame for (%(G) if and only if the inequalities 0 < Ag < By < o0

neN;k=1,2,...,.K

Proof. Using Plancherel theorem ([16], Theorem 4.25), for each « € 02 (G), we get

(&, Tufi) o) = ) (e Fen(- = 1)) ey = ) / & (7)fin (7) (=, 7)dy

heH heH

= Nhgfh(v)ﬂ,h(v) (—=n,y)dy = /ﬁHk(v)A('M—n,wd%

where A(7y) = (&, (7), &, (7)., &, ('y))T and Hy () denotes the k-th row of H(7y).
i

Since {(— 1cn is an orthonormal basis for L2(N), in case that H(y)A(7y) € L%(N), we have
K 2
¥ ¥l Tt z/ [HeA@) Py = [ [HEAM [ dr.
k=1neN

If By < o0, having in mind that ||a||%2(c) = HAH%Z(m =[5 ||A(Y) ||2dfy, the above equality and
L

the Rayleigh-Ritz theorem ([18], Theorem 4.2.2) prove that { T;,fy } ,en.k—12,. K is a Bessel sequence for
¢2(G) with Bessel bound less or equal than By.



Symmetry 2019, 11, 529 8 of 15

On the other hand, if K < By, then there exists a set O ¢ N having a strictly positive measure
such that Amax [H*(7)H(7)] > K for ¢ € Q. Consider & such that its associated A(7y) is 0if ¥ ¢ O,
and A(7) is a unitary eigenvector corresponding to the largest eigenvalue of H*(y)H(y) if v € Q.
Thus, we have that

K
L L T = [ A Py > K [ APy = K ol

As a consequence, if By = oo, the sequence is not Bessel, and, if By < oo, the optimal bound is
precisely By.
. o : 2 .
Similarly, by using inequality ||[H(7)A(7)||” > Amin [H*(7)H(7)]||A(7)
holds whenever A(vy) is a unitary eigenvector corresponding to the smallest eigenvalue of H*(«v)H(7y);
one proves the other inequality in part 2. [J

2, and that equality

Corollary 1. The sequence {T,fy} is a Bessel sequence for (*(G) if and only if for each

neN; k:1,2,/.;.,K ~
k=1,2,...,Kandi=1,2,...,L the function fi j, belongs to L*(N).

Proof. It is a direct consequence of the equivalence between the spectral and Frobenius norms for
matrices [18]. [

It is worth mentioning that f; in 2 (G), k = 1,2,...,K, implies that the sequence
{Tnfk}n cN-k—12 _k is always a Bessel sequence for /2(G) since each function fy 5, is continuous and N

is compact. In this case, the frame condition for { T;f; } « reduces to rank H(y) = L for all

~ neN;k=12,...,
7Y € N or, equivalently,

min (det[H*(7)H(7)]) > 0.
YEN

To the second end, a K-channel filter bank formalism allows, in a similar manner, to obtain
properties in £2(G) of the sequences {Tufi} peniietn, k A {Tugk} e ko1 o, k- I case they are
Bessel sequences for ¢2(G), the idea is to consider a K-channel filter bank (3) where the analysis filters
are hy := ?k and the synthesis filters are g, k = 1,2,...,K. As a consequence, the corresponding

polyphase matrices H(7y) and G(y), given in Equations (5) and (6), are

L yeN. (11)

1 L
1,2,...,K

H(y) = (i (1) ) 1., and G(1) = (Bik())

=1,2,.. i
=1.2,.. k

Theorem 3. Let {Tufi} 1o 1 @1 {Tugk},cn ko1 g b€ two Bessel sequences for £2(G), and H(y)
and G(y) their associated matrices (11). Under the above circumstances, we have:

(a)  The sequences {Tufi},cn.x—10. x 914 { Tu8k} ey pe1o,. x A7€ dual frames for (%(G) if and only if
condition G(7)H(y) = 11 a.e. v € N holds.

(b)  The sequences {T”fk}neN; k=12,..K and {T"gk}neN; k=12,..K
only if condition H(v)G(7y) = Ix a.e. v € N holds.

(c)  The sequences { Tufi}, cn.k—10. x 9 {Tu8k} yeniketn.. k
ifK=Land G(y) =H(y) lae v e N.

(d)  The sequence {T”fk}neN;kzl,Z,...,K is an A-tight frame for (%(G) if and only if condition H* (y)H(v) =
Al a.e. v € N holds.

(e)  The sequence {Tyfy}

H(y) Yae yeN.

are biorthogonal sequences in (%(G) if and

are dual Riesz bases for (%(G) if and only

HEN:K=12,.. K is an orthonormal basis for 22(G) ifand only if K = L and H*(y) =

Proof. Having in mind Equation (9) and Corollary 1, part (a) is nothing but Theorem 1.
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The output of the analysis filter bank (3) corresponding to the input gy is a K-vector
whose k-entry is

cigr (m) =L (gr * i) (m) = (g, Tuhi) 26y = (s Tufi) 2(c)

and whose N-Fourier transform is Cy/(7) = H(y) Gp/(7) a.e. 7 € N, where Gy is the k’-column of
the matrix G(+y). Note that { T,,f; }, _ Nik—12,. x and {Tugi} e N;k—12,. x are biorthogonal if and only if
(grr, Tuf) 2(G) = 0(k — k')6(m). Therefore, the sequences { Tufy }, o n.x—15 a0 {Tugk }eniforn.
are biorthogonal if and only if H()G(v) = Ix. Thus, we have proved (b).
Having in mind ([15], Theorem 7.1.1), from (a) and (b), we obtain (c).
We can read the frame operator corresponding to the sequence { T,f; }

K

neN;k=1.2,..., K" 1€

K
Sw) =Y Y (& Tufi)pc) Tnfe, a € 3(G),
k=1neN

as the output of the filter bank (3), whenever h; = Fk and gy = fi, for the input «. For this filter

bank, the (k, h;)-entry of the analysis polyphase matrix H(7y) is ?k,h, (7) and the (h;, k)-entry of the
synthesis polyphase matrix G(7) is /f\k,h, (7); in other words, G(y) = H*(-y). Hence, the sequence
{ T fx }neN'kzl , g isan A-tight frame for 2(G),ie.,

1 K
== Z 2 (&, Tnfk>£2(c) T.f,, « € (*(G),
k=1neN

if and only if H*(y) H(y) = Al for all 7 € N. Thus, we have proved (d).
Finally, from (c) and (d), the sequence { Ty f; } is an orthonormal system if and only

if H*(y) =H(y) tae.yeN. O

neN;k=1,2,...,.K

5. Getting on with Sampling

Suppose that {U(n,h)} (nh)eG
Hilbert space H, and assume that for a fixed a €  the sequence {U(n, h)a}(n n)eG is a Riesz sequence
for H (see Ref. ([1], Theorem A)). Thus, we consider the U-invariant subspace in H

is a unitary representation of the group G = N X4 H on a separable

Ao = {( Z) a(n B U(n,)a = {a(n, )} unec € P(G) ).
nh)eG

For K fixed elements by € H,k =1,2,...,K, not necessarily in .4,, we consider for each x € A,
its generalized samples defined as

Lix(m) == (x,U(m,1p) bk>H , meéNandk=1,2,...,K. (12)
The task is the stable recovery of any x € A, from the data { L;x(m) }meN‘k:l ) K
In what follows, we propose a solution involving a perfect reconstruction K-channel filter bank.

First, we express the samples in a more suitable manner. Namely, foreach x = Y, y)ec a(n,h) U(n, h) a
in A;, we have

Lix(m) =Y a(n,h)(U(nh)a U(m, 1) by)
(n,h)eG

= Y a(mnh){a,U[(nh)"" (m,1n)] be) =lu(a*hg)(m), meN,
(n,h)eG

where & = {a(n, 1)}, mec € 2(G), and hy(n, h) := (a,U(n, ) by),, also belongs to £*(G) for each
k=1,2,...,K.
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Suppose also that there exists a perfect reconstruction K-channel filter-bank with analysis filters

the above h; and synthesis filters gr, k = 1,2,...,K, such that the sequences {Tnﬁk}n N k12 K

and {T”gk}neN- «_12 g are Bessel sequences for ¢?(G). Having in mind Equation (9), for each
= {a(n, 1)} pec in ?%(G), we have

K
=) 2 (% hy)(n) Thg = 2 Y Lix(n) Tuge in £%(G). (13)
k=1neN

k=1neN

In order to derive a sampling formula in A,, we consider the natural isomorphism 7,
?2(G) — A, which maps the usual orthonormal basis {¢ (i) (e for /%2(G) onto the Riesz basis

{U(n,h)a} (nh)eG for A, ie.,

Tua = Ouu — U(n,h)a foreach (n,h) € G.
This isomorphism 7;;, possesses the following shifting property:

Lemma 2. For each m € N, consider the translation operator Ty, operator defined in Equation (8). For each
m € N, the following shifting property holds

Tua(Tuf) = U(m, 1) (Tuaf), € L%(G). (14)
Proof. For each §, ), it is easy to check that Ty, ) = & (11 n)- Hence,
Tua(Tnd(upy) = U(m+n,h)a=U(m,1z)U(n,h)a=U(m,1g)(Tuadmn)) -

A continuity argument proves the result for all f in ¢2(G). O

Now, for each x = Tij,& € A, applying the isomorphism 7y , and the shifting property (14) in
Equation (13), we get for each x € A, the expansion

x = Z Y Lyx(n) Tua(Tug) = Z Y Lix(n) U(n, 1) (Tuq8x)

=1neN =1neN (15)
= Z Y. Lix(n)U(n,1g)ckg inH,
k=1neN

where ¢, = Tuag k=1,2,...,K. Infact, the following sampling theorem in the subspace A, holds:

Theorem 4. For K fixed by € H, let Ly : Ay — CN be its associated U-system defined in Equation (12) with
corresponding hy € 62( ), k=1,2,...,K. Assume that its polyphase matrix H(vy) given in Equation (5) has
all its entries in L®(N). The followmg statements are equivalent:

1. The constant Ay = essinf Amin [H*(7v)H(7)] > 0.
YEN
2. Thereexist g in £2(G ) k=1,2,...,K, such that the associated polyphase matrix G(vy) given in (6) has

all its entries in L°(N), and it satzsﬁes G(y)H(y) =Iae v € N.
3. There exist K elements cy € A, such that the sequence {U(n, 1)cx }
for each x € Ay, the sampling formula

neN: k=12, K 18  frame for Ag and,

I Mx

Z Lix(n)U(n, 1)y inH (16)
eN

holds.
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4. There exists a frame {Cy. , }  for Aq such that for each x € A, the expansion

neN;k=1,2,...,

X—Z Z,Ckx Ckn inH
=1neN

holds.

Proof. (1) implies (2). The L x K Moore-Penrose pseudo-inverse H'(v) of H(y) is given by
HY(y) = [H* ('y) H(7)] ! H*('y) Its entries are essentially bounded in N since the entries of H()
belong to L®(N) and det ! [H*(v)H()] is essentially bounded N since 0 < Ag. In addition,
H'(y)H(y) = I ae. v € N. The inverse N-Fourier transform in L2(N) of the k-th column of H(7)
givesg,, k=1,2,..., K.

(2) implies (3). According to Theorems 2 and 3, the sequences {T,hy} and

neN;k=1,2,..K
{Tugr}, eN:k=12,.x form a pair of dual frames for /2(G). We deduce the sampling expansion as

in Formula (15). In addition, the sequence {U (1, 157)ci g } is a frame for A,.

neN;k=12,..K
Obviously, (3) implies ( ). Finally, (4) implies (1). Applying Tu, !, we get that the sequences

by using Theoreiii 2, we obtain that 0 < AH O

All the possible solutions of G(7)H(y) = I a.e. 7 € N with entries in L*(N) are given in terms
of the Moore-Penrose pseudo inverse by the L x K matrices G(v) := H () + U(v) [Ix — H(v)H' (7)],
where U(+y) denotes any L x K matrix with entries in L®(N).

Notice that K > L where L is the order of the group H. In case K = L, we obtain:

Corollary 2. In the case K = L, assume that its polyphase matrix H(vy) given in Equation (5) has all entries
in L°(N). The following statements are equivalent:

1. The constant Ay = essinf Apmin [H*(7)H(7)] > 0.
YEN
2. There exist L unique elements ¢, k = 1,2,...,L, in A, such that the associated sequence

{U(n, 1) ek} ko1 2 g 18 @ Riesz basis for A, and the sampling formula
x—z Zﬁkx U(n,1g)ey inH
=1neN
holds for each x € A,.

Moreover, the interpolation property Licy (n) = 0 r0n0,, wheren € N and k,k' =1,2,...,L, holds.

Proof. In this case, the square matrix H(y) is invertible and the result comes out from Theorem 3. From
the uniqueness of the coefficients in a Riesz basis expansion, we get the interpolation property. [

Denote H = {hy,hy,...,hr}; for a fixed b € H, we consider the samples
Lix(m) = (x,U(m, )by, meNandk=1,2,...,L,

of any x € A,. Since U(m, hy)b = U(m,1y)U(ON, hx)b = U(m,1y)by, where by := U(On, I )b,
k=1,2,...,L, we are in a particular case of Equation (12) with K = L.
Notice also that the subspace A, can be viewed as the multiple generated U-invariant subspace
of H
span{U(n,1y)a, : n € N,h € H}

with L generators a;, := U(On, h)a € H, h € H, obtained from a € # by the action of the group H.
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5.1. An Example Involving Crystallographic Groups

The Euclidean motion group E(d) is the semi-direct product R? x4 O(d) corresponding to
the homomorphism ¢ : O(d) — Aut(R?) given by ¢p4(x) = Ax, where A € O(d) and x € R
The composition law on E(d) = R? x4 O(d) reads (x, A) - (x/, A’) = (x + Ax', AA").

Let M be a non-singular d x d matrix and T a finite subgroup of O(d) of order L such that
A(MZ?) = MZ" for each A € T. We consider the crystallographic group Cpyr := MZ x4 T and its
quasi regular representation (see Ref. [1]) on L?(R9)

U(n, A)f(t) = fIAT(t—n)], neMZ AcTand f e L2(RY).

For a fixed ¢ € L?*(R?) such that the sequence {U(n, A)g} is a Riesz sequence for

(n ,A) eC M,T
L2(R?) (see, for instance, Refs. [19,20]) we consider the U-invariant subspace in L?(R%)

Ap={ T alnA)glAT(t=m] : {a(nA)} € 2(Cur)}
(n,A)eCpmr

={ L aayeat—n) : {a(nA)} € PCur)}.
(n,A)eCpr

Choosing K functions b € L>(R?), k =1,2,...,K, we consider the average samples of f € A,

Liof(n) = (£, Uln, D) = (£,be(- —n)), e MZC.

Under the hypotheses in Theorem 4, there exist K > L sampling functions ¢ € A, fork =1,2,...,K,
such that the sequence { (- — 1)}, cpzd k=12 .k is a frame for Ay, and the sampling expansion

Z Y {Fbe( = 1) 2y it = n) in L3(RY) (17)
=lneMzd
holds.

If the generator ¢ € C(RY) and the function t + ¥, |¢(t — n)|? is bounded on R¢, a standard
argument shows that A, is a reproducing kernel Hilbert space (RKHS) of bounded continuous
functions in L2(R9). As a consequence, convergence in L (R%)-norm implies pointwise convergence
which is absolute and uniform on R¥,

Notice that the infinite dihedral group Do = Z X Z, is a particular crystallographic group with
lattice Z and T = Z,. Its quasi regular representation on L?(RR) reads

U(n,0)f(t) = f(t—n) and U(n,1)f(t) = f(~t+n), necZandfc L*(R).

Thus, we could obtain sampling formulas as (17) for K > 2 average functions by.
The quasi regular unitary representation of a crystallographic group Cy;r on L2(R?) motivates
the next section:

5.2. The Case of Pointwise Samples

Let {U(n, 1)}, n)ec be a unitary representation of the group G = N X H on the Hilbert space
H = L?(R?). If the generator ¢ € L2(R?) satisfies that, for each (1,h) € G, the function U(n, h)¢ is
continuous on R?, and the condition

sup Y [[U(nm)el(t)]* < oo,
teRY (n,h)eG
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then the subspace A, is an RKHS of bounded continuous functions in L?(R%); proceeding as in [21],
one can prove that the above conditions are also necessary.
For K fixed points t, € R?, k = 1,2,...,K, we consider for each f € Ay the new samples given by

Lif(n):= [U(=n,1g)f] (), neNandk=12,--- K. (18)

For each f = Y., nyeg &(m, h) U(m, h) ¢ in Ap and k =1,2,..., K, we have

Lef(m)=| X a(mh)Ul(=n10) - (m,h)] 9| (1)

(m,h)eG

= Y a(mh)[U(m—n,h)e](ty) = (a, Tnfk>£2(c) , n€N,
(m,h)eG

where a = {a(m, 1)} pmec and fi(m, 1) := [U(m,h)e](t;), (m, 1) € G. Notice that f; belongs to
Ez(G), k=1,2,---,K. As a consequence, under the hypotheses in Theorem 4 (on these new hj := Fka/
k=1,2,...,K), a sampling formula such as (16) holds for the data sequence {L;f(n)}
defined in Equation (18).

neN; k=1,.2,...K

In the particular case of the quasi regular representation of a crystallographic group Cyrr = MZ4 x oL,
for each f € A,, the samples (18) read

Lif(n) = [U(—n,Df](ty) = f(tx+n), neMZ% and k=1,2,...,K.

Thus (under hypotheses in Theorem 4), there exist K functions ¢ € Ay, k =1,2,...,K, such that
for each f € A, the sampling formula

K
=YY flk+n)yp(t—n), teR?

k=1nemzd

holds. The convergence of the series in the L?(R?)-norm sense implies pointwise convergence which
is absolute and uniform on R.

6. Conclusions

In this paper, we have derived an abstract regular sampling theory associated with a unitary
representation (1, h) — U(n, h) of a group G which is a semi-direct product of two groups, N countable
discrete abelian group and H finite, on a separable Hilbert space H; here, regular sampling means
that we are taken the samples at the group N. Concretely, the sampling theory is obtained in the
U-invariant subspace of H generated by a € H that is

Aa = {( Z): a(n,h)U(n,h)a = {a(n,h)}mec € Ez(G)},
nh)eG

and the samples of x € A, are given by Lix(n) := (x,U(n, 1H)bk>H, n € N,whereby, k=1,2,...,K,
denote K fixed elements in H which do not belong necessarily to .4,. We look for K elements ¢; € A,
such that the sequence {U(n, 1 H)Ck}n ENsk=12....K is a frame for A, and, for each x € A, the sampling
formula x = YK | ¥, cn Lrx(n) U(n, 1)cx holds.

A similar problem was solved when the group G is a discrete LCA group and the samples are
taken at a uniform lattice of G (see Ref. [10]). In the case of an abelian group, we have the Fourier
transform, a basic tool in this previous work. In the present work, a classical Fourier analysis on G is
not available, but if G is a semi-direct product of the form G = N x4 H, where N is a countable discrete
abelian group and H is a finite group, the Fourier transform on the abelian group N allows us to solve
the problem by means of a filter bank formalism. Recalling the filter bank formalism in discrete LCA
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groups, the defined samples are expressed as the output of a suitable K-channel analysis filter bank
corresponding to the input x € A,. The frame analysis of this filter bank along with the synthesis
one giving perfect reconstruction allows us to obtain a pair of suitable dual frames for obtaining the
desired sampling result, which is written as a list of equivalent statements (see Theorem 4).

Although the semi-direct product of groups represents, so to speak, the simplest case of
non-abelian groups, this paper can be a good starting point for finding sampling theorems associated
with unitary representations of non abelian groups that are not isomorphic to a semi-direct
product of groups.
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