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Abstract: We explore the phase diagram and the modification of mesonic observables in a hot
and dense medium using the (2 + 1) Polyakov-Nambu-Jona-Lasinio model. We present the phase
diagram in the (T, µB)-plane, with its isentropic trajectories, paying special attention to the chiral
critical end point (CEP). Chiral and deconfinement transitions are examined. The modifications of
mesonic observables in the medium are explored as a tool to analyze the effective restoration of chiral
symmetry for different regions of the phase diagram. It is shown that the meson masses, namely that
of the kaons, change abruptly near the CEP, which can be relevant for its experimental search.
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1. Introduction

Since its creation in 1961 by Yoichiro Nambu and Giovanni Jona-Lasinio [1,2], the Nambu-
Jona-Lasinio (NJL) model has been used in multiple applications. The NJL model is a pre-Quantum
Chromodynamics (QCD) model that was introduced to describe the pion as a bound state of a nucleon
and an antinucleon. Indeed, in its first version, the NJL model was formulated as an effective theory of
nucleons and mesons, constructed from Dirac fermions that interact via four-fermion interactions with
chiral symmetry, analogous with Cooper pairs in the Bardeen-Cooper-Schrieffer theory (BCS) theory
of superconductivity (simultaneously and independently, the analogy between the four fermion masses
and gaps in superconductors was also proposed by V. G. Vaks and A. I. Larkin [3]). The key idea was
that the mass gap in the Dirac spectrum of the nucleon can be generated analogously with the energy
gap of a superconductor in BCS theory. Later, the nucleon fields were replaced by quark fields (u, d
and s) and it is still used to this day as an effective low-energy and model of QCD. The introduction of
quark degrees of freedom, in the chiral limit (the bare quark mass is mi = 0), and the description of
hadrons were made by T. Eguchi and K. Kikkawa [4,5] and in a more realistic version with mi 6= 0 by
D. Ebert and M. Volkov [6–8].

The central point of the NJL model becomes the fact that its Lagrangian density contains the most
important symmetries of QCD that are also observed in nature, namely chiral symmetry, which is
fundamental to understand the physics of the lightest hadrons. The NJL model also embodies a
spontaneous symmetry breaking mechanism. As matter of fact, within this approach, mesons can
be interpreted as quark-antiquark excitations of the vacuum and baryons as bound states of quarks
(solitons or quark-diquarks structures) [9].

Symmetry 2019, 11, 507; doi:10.3390/sym11040507 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-4809-6542
https://orcid.org/0000-0003-3794-7719
http://dx.doi.org/10.3390/sym11040507
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/4/507?type=check_update&version=2


Symmetry 2019, 11, 507 2 of 31

Another relevant aspect is the fact that the interaction between quarks is assumed to be point-like
(the gluon degrees of freedom are considered to be frozen into point-like quark-(anti-)quark vertices),
attractive leading to a quark-antiquark pair condensation in the vacuum. However, the result of this
point-like interaction is that the NJL model is not a renormalizable field theory and a regularization
scheme must be specified to deal with the improper integrals that occur. Another well-known
shortcoming of NJL-type models is the absence of gluons and the lack of the QCD property of color
confinement, which implies that some care must be taken when applying the theory to high energies.

Over time, the model has undergone several improvements, a very important one was
the introduction of a term simulating the UA(1) anomaly [10–12], which is known as the
Kobayashi-Maskawa-’t Hooft (KMT) term [13–16]. This new KMT term is a six-fermion interaction that
can be written in a determinantal form. It breaks the unwanted axial UA(1) symmetry of the four-quark
NJL Lagrangian. Indeed, it is well know that in the chiral limit, i.e., mu = md = ms = 0, QCD has
a U(3) chiral symmetry. When this symmetry is spontaneously broken, it implies the existence of
nine massless Goldstone bosons. However, in nature, only eight light pseudoscalar mesons exist:
π0, π+, π−, K+, K−, K0, K0 and η. The Adler-Bell-Jackiw UA(1) anomaly solves this discrepancy,
and the eventual ninth Goldstone boson, the η′, gets a mass (around 1 GeV) due to the fact that the
density of topological charges in the QCD vacuum is nonzero [17,18]. Since the origin of the mass
of the η′-meson is different from the masses of the other pseudoscalar mesons, this meson cannot be
seen as the remnant of a Goldstone boson. Interestingly, the KMT term also induces a mixing between
different quark flavors with very important consequences in the scalar and pseudoscalar mesons.
We emphasize the following review works on this model [9,19–21].

Over the past decade, two major improvements of the NJL model took place: the introduction
of eight-quark interactions with the purpose of stabilizing the asymmetric ground state of the model
with four and six-quark ’t Hooft interactions [22–24]; the introduction of the Polyakov loop effective
field in order to consider characteristics of both the chiral symmetry breaking and the deconfinement.
The latter resulted in the so-called Polyakov loop—Nambu-Jona-Lasinio (PNJL) model [25–27].

In the PNJL model, the Lagrangian contains static degrees of freedom that are introduced through
an effective gluon potential in terms of the Polyakov loop [25–32]. This coupling of quarks to the
Polyakov loop effectively induces the reduction of the weight of the quark degrees of freedom at
low temperature. This is a consequence of the restoration of the ZNc symmetry related with the color
confinement. Indeed, in these new types of models, the Polyakov loop effective field is not a dynamical
degree of freedom because the Lagrangian does not contain any dynamical term. The gluon dynamics
are simply reduced to a chiral-point coupling between quarks, combined with a static background
field representing the Polyakov loop [27].

One of the first big achievements of the NJL model was the study of meson properties at finite
temperature and density, first in SU(2) sector [33–35] then in the (2 + 1)-flavors, where the role of
strangeness was taken in consideration [11,36–44]. The chiral symmetry restoration through the point
of view of the chiral partners has entered in the agenda. Indeed, experimentally, the manifestation
of chiral symmetry would be the existence of parity doublets, that is, a multiplet of particles with
the same mass and opposite parity for each multiplet of isospin (the so-called chiral partners) in
the hadronic spectrum, a situation is not verified in nature. However, as the temperature increases,
the chiral partners should have the same mass [45–47]. The same happens for increasing densities,
even for different environment scenarios [47–50].

The study on the modification of the mesonic observables in the hot medium (used as a tool for
understanding the restoration of chiral and axial symmetries) was extended to the (2 + 1)-flavor PNJL
model to infer the role of the Polyakov loop. It was concluded that the partial restoration of the chiral
symmetry is faster in the PNJL model than in the NJL model [51]. The properties of the mesons in the
PNJL were also studied in [48–50,52,53].

Interestingly, the NJL model has also been used to study mesons containing charmed quarks like
D and B-mesons [54–57], in order to describe both the light and heavy quarks in one model. The same
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mesons were studied within the PNJL model, with particular focus on the modification of the D-meson
properties (masses and widths) in hot and dense matter. The purpose was to find the consequences of
the possible non dropping of the D-meson masses in the medium for J/ψ suppression scenarios [58].

Another aspect where the NJL model (and its extensions) proved to be very useful was in the
study of the possible phases of strongly-interacting matter. Since the first conjecture by N. Cabibbo and
G. Parisi [59], the QCD phase diagram has been widely studied by both theoretical and experimental
physicists (for a general review see [60]). In fact, in the hot and dense region of the phase diagram,
the QCD phase structure is replete of rich details [61,62], namely the nature of the hadron matter-quark
gluon plasma (QGP) transition and the possible existence of the QCD chiral critical endpoint
(CEP), have been subject of remarkable theoretical and experimental efforts. In this region, QCD is
non-perturbative, meaning that the set of theoretical tools available to study the phase transitions and
meson behavior is limited. Some options on the table are lattice gauge theory applied to QCD (lattice
QCD), Dyson-Schwinger equations and effective models. Lattice QCD is a first principles method
however, at finite density, it suffers from the so-called sign problem, which renders the importance
sampling needed in Monte Carlo simulations not appropriate [63]. Different methods are currently
trying to fix, or circumvent, this issue like reweighting, Taylor expansions, considering an imaginary
chemical potential and complex Langevin [63,64]. Dyson-Schwinger equations are a method based
on the QCD effective action [65,66]. This method generates an infinite tour of integro-differential
equations for the Green’s function of the theory that need to be truncated at some order. Making
a proper truncation is not a simple task and several techniques have been developed and applied
throughout the years [67]. The use of effective models of QCD allows access to the entire phase
diagram rooting the model to experimental or lattice QCD data. The main disadvantage of using
effective models is that they are not derived from first principles; one should only study the model
inside its range of applicability.

One interesting and very timely topic of the phase diagram of strong interactions, is the possible
existence and location of the chiral CEP. The CEP is a conjectured second order phase transition point in
the (T − µB(ρB) )-plane (belonging to the three-dimensional Ising universality class), which separates
the crossover transition at zero density predicted by lattice QCD calculations [68,69] and a possible
first-order phase transition in the cold and dense region of the diagram. Old lattice results [70],
Dyson-Schwinger calculations [71,72] and several models predict its existence but this remains a
matter of debate.

Experimentally, a major goal of heavy ion collision (HIC) experiments is not only to map the the
QCD phase boundaries but also settle the question about the existence of the elusive CEP. Indeed,
the search for the CEP is already being carried out in several facilities such as the Relativistic Heavy
Ion Collider (RHIC) (STAR Collaboration) at Brookhaven National Laboratory [73–75] and in the Super
Proton Synchrotron (SPS) (NA61/SHINE Collaboration) at CERN [76,77]; Future facilities like the
J-PARC Heavy Ion Project at Japan Proton Accelerator Research Complex (J-PARC) [78], the Facility for
Antiproton and Ion Research (FAIR) at GSI Helmholtzzentrum für Schwerionenforschung [79] and the
Nuclotron-based Ion Collider fAcility (NICA) at Joint Institute for Nuclear Research [80], have planned
experiments to its search (a review on the experimental search of the CEP can be found in Ref. [81]).

One of the first suggestions for a first-order phase transition in the framework of the standard
SU(2) NJL model was made in [82] and the study of the phase diagram in the same version of the model
at finite temperature and density was presented in [83]. Also in the framework of the standard SU(2)
NJL model, the calculation of the hadronization cross section in a quark plasma at finite temperatures
and densities was done in Reference [84]. After that, several studies have addressed the peculiarities
of the different versions of the model, namely the SU(2) [85–87] and (2 + 1)-flavors [88–90]. The PNJL
model brings with it some changes relative to the NJL model, in both SU(2) and (2 + 1)-flavor versions,
particularly concerning to a higher temperature for the position of the CEP and also a larger size of the
critical region [91–95].
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The applications of NJL and PNJL models are indeed very wide, see for example their usefulness
in the study of neutron stars [96–102] or the influence of strong magnetic fields [103–109].

In the present work, we will consider the PNJL model to explore the QCD phase diagram and the
in-medium behavior of scalar and pseudoscalar mesons, especially the hot and dense regions near the
chiral transition.

This paper is organized as follows. In Section 2, we present the PNJL model used throughout the
work to study the phase diagram of QCD and the behavior of scalar and pseudoscalar mesons.
In Section 3, we present the phase diagram and analyze some features of both the chiral and
deconfinement transitions. Special attention is given to the isentropic trajectories near the CEP.
In Section 4, we study the behavior of scalar and pseudoscalar mesons in six different paths that cross
the phase diagram: zero density, zero temperature, crossover, CEP, first-order and a path following an
isentropic line. Finally, we present the concluding remarks in Section 5.

2. Model and Formalism

2.1. The PNJL Model

The SU f (3) Nambu−Jona-Lasinio model, including the ’t Hooft interaction (the inclusion of this
term is not only important to correctly reproduce the symmetries of QCD, but also allows to reproduce
the correct mass split between the η and η′ mesons in SU f (3) [13,19]), which explicitly breaks UA(1),
is defined via the following Lagrangian density:

LNJL = ψ(i/∂ − m̂)ψ +
gS
2

8

∑
a=0

[(
ψλaψ

)2
+
(

ψiγ5λaψ
)2
]

+ gD
[
det

(
ψ(1 + γ5)ψ

)
+ det

(
ψ(1− γ5)ψ

)]
. (1)

Here, the quark field ψ, is a 3-component vector in flavor space, where each component is a Dirac
spinor, m̂ = diag (mu, md, ms) is the quark current mass matrix, diagonal in flavor space. The matrices
λa with a = 1, ..., 8, are the Gell-Mann matrices and λ0 =

√
2/313×3.

Following [51], the bosonization procedure can be easily carried out after the ’t Hooft six-quark
interaction is reduced to a four-quark interaction. One gets:

Leff = ψ(i/∂ − m̂)ψ +
1
2

Sab

[(
ψλaψ

)(
ψλbψ

)]
+

1
2

Pab

[(
ψiγ5λaψ

)(
ψiγ5λbψ

)]
, (2)

where the projectors Sab , Pab are given by

Sab = gSδab + gDDabc 〈qλcq〉 , (3)

Pab = gSδab − gDDabc 〈qλcq〉 . (4)

The constants Dabc coincide with the SU f (3) structure constants for a, b, c = (1, 2, . . . , 8),

while D0ab = − 1√
6

δab and D000 =
√

2
3 . The quark fields can then be integrated out using the

Hubbard-Stratonovich transformation.
The main shortcoming of the NJL model as an effective model of QCD is its inability to

describe confinement physics. To remedy this situation and study the deconfinement transition,
the Polyakov-NJL model was introduced by K. Fukushima [25], by coupling the NJL model to an order
parameter that describes the Z(Nc) symmetry breaking: the Polyakov loop.

One important global symmetry of QCD is the center symmetry of SU(Nc), the Z(Nc) symmetry.
The breaking of this symmetry is associated to the deconfinement transition: Z(Nc) is respected
in the confined phase and broken in the deconfined phase. When considering pure glue theory
at finite temperature, the boundary conditions of QCD are respected by the Z(Nc) symmetry.
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An order parameter for the possible Z(Nc) symmetry breaking can be defined using the thermal
Wilson line L (x),

L (x) = P exp
[

i
∫ β

0
dτ A4 (τ, x)

]
. (5)

P is the path ordering operator and A4 the gluon field in the time direction,

A4 = igAa
µ

λa

2
δ

µ
0 , a = 1, ..., N2

c − 1 (6)

= iA0, A0 = gAa
µ

λa

2
δ

µ
0 . (7)

Here, Aa
µ is the gluon field of color index a. The Polyakov loop Φ can be defined as the trace over

color of the thermal Wilson line:

Φ =
1

Nc
tr
c

L (x) . (8)

In the confined phase Φ→ 0 while in the deconfined phase, Φ→ 1.
The NJL model can be minimally coupled to the gluon field in the temporal direction, through the

introduction of the covariant derivative:

∂µ → Dµ = ∂µ − A0
4δ0

µ. (9)

One has also to add to the Lagrangian density the effective Polyakov-loop potential, U
(
Φ, Φ; T

)
,

which represents the effective glue potential at finite temperature.
The ansatz for the Polyakov loop effective potential can be written in terms of the order parameter,

using the Ginzburg-Landau theory of phase transitions. The potential has to respect the Z(Nc)

symmetry and to reproduce its spontaneous breaking at some high temperature. There are several
potentials in the literature that fulfill these properties, e.g., [26,110,111]. We choose to adopt the one
proposed in Reference [25,110]:

U
(
Φ, Φ; T

)
T4 = −1

2
a (T)ΦΦ + b (T) ln

[
X(Φ, Φ)

]
, (10)

with the T-dependent parameters [110],

a (T) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
, (11)

b (T) = b3

(
T0

T

)3
, (12)

and where the argument in the logarithm is written as:

X(Φ, Φ) = 1− 6ΦΦ + 4(Φ3 + Φ3
)− 3(ΦΦ)2. (13)

The parameters T0, a0, a1, a2 and a3 are fixed by reproducing lattice QCD results at µ = 0 [112–114].
A commonly used set is:

T0 = 270 (in the pure gauge sector),

a0 = 3.51, a1 = −2.47,

a2 = 15.2, a3 = −1.75.
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To study the effects of finite density one can add to the Lagrangian density the term ψγ0µ̂ψ,
where µ̂ = diag (µu, µd, µs). If considering the A4 as a constant background mean field, it can be
absorbed in the definition of the chemical potential, µ̂ → µ̂ − iA4 = µ̃. The main effect of A4 in
the effective chemical potential is to change the distribution functions for particles and antiparticles,
as shown in Reference [27].

In the present work, temperature and finite density effects will be introduced through the
Matsubara formalism, which can be translated in the usual substitution, p0 → iωn + µ̂:

∫ d4 p

(2π)4 →
1
−iβ

∫ d3 p

(2π)3 ∑
n

. (14)

where β = 1/T and the sum is made over the Matsubara frequencies, ωn.

2.2. Gap Equations

Considering the mean field approximation, the effective quark masses (the gap equations) can be
derive from Equation (2) (see Reference [19]). One gets:

Mi = mi − 2gS 〈qiqi〉 − 2gD

〈
qjqj

〉
〈qkqk〉 , (15)

where the quark condensates 〈qiqi〉, with i, j, k = u, d, s, in cyclic order.
The SU f (3) PNJL grand canonical potential is:

Ω = U
(
Φ, Φ; T

)
+ gS ∑

i=u,d,s
〈qiqi〉2 + 4gD 〈ququ〉 〈qdqd〉 〈qsqs〉 − 2Nc ∑

i=u,d,s

∫ d3 p
(2π)3 Ei

− 2 ∑
i=u,d,s

∫ d3 p
(2π)3 [F (p, T, µi) +F ∗ (p, T, µi)] . (16)

Here, Ei is the quasiparticle energy for the quark i: Ei =
√

p2 + M2
i and the thermal functions F

and F ∗ are defined as:

F (p, T, µi) = T ln
[
1 + e−3(Ei−µi)/T + NcΦe−(Ei−µi)/T + NcΦe−2(Ei−µi)/T

]
, (17)

F ∗ (p, T, µi) = T ln
[
1 + e−3(Ei+µi)/T + NcΦe−(Ei+µi)/T + NcΦe−2(Ei+µi)/T

]
, (18)

To obtain the mean field equations, we apply the thermodynamic consistency relations, i.e.,
calculate the minima of the thermodynamical potential density, Equation (16), with respect to
〈qiqi〉 (i = u, d, s), Φ, and Φ:

∂Ω
∂ 〈qiqi〉

=
∂Ω
∂Φ

=
∂Ω
∂Φ

= 0, i = u, d, s. (19)

These relations define the value of the i−flavor quark condensate:

〈qiqi〉 = −i tr [Si(q)] = −2 Nc

∫ d3 p
(2π)3

Mi
Ei

(1− νi − νi) . (20)

Here, Si(q) is the quark propagator of flavor i, νi and νi are the particle and antiparticle occupation
numbers in the PNJL model, defined as:
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νi =
3

Nc
e−3(Ei−µi)/T + Φe−(Ei−µi)/T + 2Φe−2(Ei−µi)/T

1 + e−3(Ei−µi)/T + NcΦe−(Ei−µi)/T + NcΦe−2(Ei−µi)/T
, (21)

νi =
3

Nc
e−3(Ei+µi)/T + Φe−(Ei+µi)/T + 2Φe−2(Ei+µi)/T

1 + e−3(Ei+µi)/T + NcΦe−(Ei+µi)/T + NcΦe−2(Ei+µi)/T
. (22)

The gap equations for the Polyakov loop fields Φ and Φ are:

− 1
2

a (T)Φ−
6b (T)

(
Φ− 2Φ2 + Φ2Φ

)
X(Φ, Φ)

=
2Nc

T3 ∑
i=u,d,s

∫ d3 p
(2π)3

[
e−(Ei+µi)/T

eF ∗(p,T,µi)/T
+

e−2(Ei−µi)/T

eF (p,T,µi)/T

]
, (23)

− 1
2

a (T)Φ−
6b (T)

(
Φ− 2Φ2

+ ΦΦ2
)

X(Φ, Φ)
=

2Nc

T3 ∑
i=u,d,s

∫ d3 p
(2π)3

[
e−(Ei−µi)/T

eF (p,T,µi)/T
+

e−2(Ei+µi)/T

eF ∗(p,T,µi)/T

]
. (24)

In the T = 0 limit, the PNJL grand canonical potential is reduced to the usual NJL model. Indeed,
in this limit, the Polyakov loop potential and the thermal function F ∗ vanish while the function F
becomes a step-function. For more details, see the Appendix B. We draw attention to the fact that this
feature is a consequence of the definition of the Polyakov loop potential in Equation (10). Actually, one
can try to build a different Polyakov loop potential that does not vanish in the T → 0 limit, by including
for example, an explicit dependence in the chemical potential. Of course, such a modified potential
would have to respect the Z(Nc) of QCD, as well as, reproduce lattice observables.

2.3. Pseudoscalar and Scalar Meson Nonets

To study the meson mass spectrum and decays, we need to calculate the meson propagators.
Following the same procedure outlined in detail in Reference [45,51], we expand the effective action to
second order in the meson fields, yielding the following meson propagator:

DM
ab (q) =

1
M−1

ab −ΠM
ab(q)

. (25)

Here, Mab are the so-called projectors which, for scalar mesons are Sab and for pseudoscalar
mesons Pab, defined in Equations (3) and (4). The polarization operator for the meson channel M, is:

ΠM
ab(q) = iNc

∫ d4 p
(2π)4 tr

[
Sa(p)ΓM

a Sb(p + q)ΓM
b

]
. (26)

The trace has to be made over flavor and Dirac spaces and ΓM
a = λa ⊗ ΓM, where ΓM = {1, iγ5}.

The explicit expression is presented in the Appendix A. As already stated, the introduction of the
Polyakov loop is made in the quark propagator, Si(q), by the use of the modified Fermi functions,
defined in Equations (21) and (22).

The calculation of the masses of the scalar and pseudoscalar mesons is done from the zeros of the
inverse meson propagators in the rest frame, i.e.,

1−MabΠM
ab

(
MM − i

ΓM
2

, q = 0
)
= 0. (27)

Here, MM and ΓM are the mass and decay width of the meson channel M. The Mott dissociation
is commonly identified by mass poles for mesons becoming complex: the real part being the “mass”,
MM, of the resonance; and the imaginary part being related to a finite width, ΓM, due to its decay into
the quark constituents (reflecting the fact that the NJL model does not confine the quarks). These two
quantities are extracted from the zeroes of the complete real and imaginary components of Equation (27)
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that can be written in the form of a system of two coupled equations. Usually, different approaches can
also be used to compute MM and ΓM. In [95], the meson masses were calculated by supposing that
the pole is near the real axis and the imaginary part of the solution in the argument of Equation (A3)
of the Appendix A is neglected. In [47,51,115] only the Γ2

M contribution coming from (MM − iΓM/2)
was neglected.

The quark-meson coupling constants are given by the residue at the poles of the propagators
defined in Equation (25). It yields:

g−2
Mqq = − 1

2M
∂

∂q0

[
ΠM

ab(q0)
]
|q0=MM

, (28)

where MM is the mass of the bound state containing quark flavors a, b.
To calculate the masses of the η and η′ mesons, we consider the basis of π0 − η − η′ system

(for more details see [116]). In the case where the π0 is decoupled (this happens if 〈qu qu〉 = 〈qd qd〉)
from the η − η′, the following inverse propagators can be defined:

D−1
η (q) = (A + C)−

√
(C− A)2 + 4B2 (29)

D−1
η′ (q) = (A + C) +

√
(C− A)2 + 4B2 (30)

with A = P88 − ∆ΠP
00(q), C = P00 − ∆ΠP

88(q), B = −(P08 + ∆ΠP
08(q) and ∆ = P00P88 − P2

08. Here, Pab
is defined in Equation (4).

In the rest frame, D−1
η (q0 = Mη , q = 0) = 0, D−1

η′ (P0 = Mη′ , q = 0) = 0. The mixing η − η′

pseudoscalar angle θP, is given by:

tan 2θP =
2B

A− C
. (31)

Turning now to the scalar mesons σ and f0, the approach is identical to the one followed above.
The propagators for these mesons and scalar angle θS, are be identical to the ones in Equations (29)–(31).
However, A, B and C are obtained by substituting Pab → Sab and ΠP

ab(q)→ ΠS
ab(q).

2.4. Thermodynamics

Thermodynamic quantities are of great importance. Some of these quantities can be compared
with the results that have become accessible in first principles calculations on the lattice at non-zero
chemical potential (e.g., results of fluctuations of conserved charges such as baryon number, electric
charge, and strangeness [117]). Also, it is interesting to study isentropic trajectories due to their
importance for studying the thermodynamics of matter created in relativistic heavy-ion collisions.

The equations of state and other quantities of interest like the particle density (ρi), energy
density (ε), and entropy density (S), can be derived from the thermodynamical potential Ω(T, µ)

(Equation (16)), using the following relations [118]:

p = −Ω, (32)

ρi = −
(

∂Ω
∂µi

)
T

, (33)

S = −
(

∂Ω
∂T

)
µ

, (34)

ε = −P + TS + ∑
i

µiρi. (35)

The pressure and the energy density are defined in such way that their values are zero in the
vacuum state [21].
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2.5. Model Parameters and Regularization Procedure

Concerning the numerical calculations, the model is fixed by the coupling constants gS, and gD
in the Lagrangian (1), the cutoff parameter Λ which regularizes momentum space integrals Ii

1

(Equation (A2)) and Iij
2 (Equation (A3)), and the current quark masses mi (i = l, s; with mu = md = ml).

We employ the parameters of [45]. The (2 + 1)-flavors version of the NJL (PNJL) model has five
parameters. These parameters are fixed in order to fit the observables Mπ = 135.0 MeV, fπ = 92.4 MeV,
MK = 497.7 MeV, and Mη′ = 957.8 MeV, while ml = 5.5 MeV. The parameters and the numerical
results are given in Table 1.

Table 1. Physical quantities in the vacuum state and the parameter set used in this work. The asterisk
signalize the results of the model for such physical quantities.

Physical Quantities Parameter Set and Constituent Quark Masses

fπ = 92.4 MeV mu = md = 5.5 MeV
Mπ = 135.0 MeV ms = 140.7 MeV
MK = 497.7 MeV Λ = 602.3 MeV
Mη′ = 957.8 MeV gSΛ2 = 3.67
Mη = 514.8 MeV ∗ gDΛ5 = −12.36

fK = 93.1 MeV ∗ Mu= Md = 367.7 MeV ∗

Mσ = 728.9 MeV ∗ Ms = 549.5 MeV ∗

Ma0 = 880.2 MeV ∗

Mκ = 1050.5 MeV ∗

M f0 = 1198.3 MeV ∗

θP = −5.8◦ ∗ ; θS = 16◦∗

An important aspect of both, NJL and PNJL models, is the lack of renormalizability which
comes from the point-like nature of the quark-quark interaction. As a consequence, a procedure for
regularizing divergent quantities in both models is required. Therefore, the regularization scheme
determines the model. As pointed out in [19], it is needed to look to physical and not just to the
mathematical content. Therefore, the regularization process must be carried out in such a way that
physically expected properties of the model and symmetry considerations are maintained [19].

Several regularization procedures are available: three dimensional cut-off [19], four dimensional
cut-off [9,19,119] Pauli-Villars regularization [120–122], regularization in proper time [121,123]. For a
detailed analysis of the regularization procedures and more references to the corresponding literature
see [19,124,125].

In this work, we will use a three dimensional cut-off, Λ, in all integrals and not just the divergent
ones. The effect of the inclusion of the Polyakov loop and the regularization procedure in the medium
was studied in [93]. A regularization that includes high momentum quark states (Λ → ∞ in finite
integrals), is necessary to get the required increase of extensive thermodynamic quantities, allowing the
convergence to the Stefan-Boltzmann (SB) limit of QCD. However, this leads to unphysical behavior
of the quark condensates at very high temperatures (the quark condensates change sign because
the constituent quark masses go below the respective current value) [126,127]. In Reference [128] a
regularization procedure was proposed that prevents the unphysical behavior of the quark condensates
ensuring, at the same time, that the pressure reaches the SB limit at high temperatures. On the other
hand, in [129] it was shown that the inclusion of a temperature and chemical potential dependent term
(which arises as a constant of integration when integrate the gap equations to obtain the thermodynamic
potential) leads to the correct asymptotics for all observables considered.

The parameter T0 is the temperature for the deconfinement phase transition in pure gauge.
According to lattice findings, it is usually fixed to 270 MeV [130,131]. With this value of T0, an almost
exact coincidence between the chiral crossover and the deconfinement transition at zero chemical
potential is obtained, as seen in lattice calculations. However, different criteria for fixing T0 are found
in the literature as in [132] where an explicit N f dependence of T0 is given considering renormalization
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group arguments. Since the results for the Polyakov loop coming from lattice calculations with (2 + 1)
flavors and with fairly realistic quark masses are identical to the SU f (2) case [133], it was chosen
to maintain the same parameters that were used in SU f (2) PNJL [110] for the effective potential
U
(
Φ, Φ; T

)
.

In the present work, we rescale T0 to 195 MeV in order to get an agreement between the
deconfinement pseudocritical temperature obtained in the model, with the results obtained on the
lattice: 170 MeV [134]. This modification of T0 (which is the only free parameter of the Polyakov loop
since the effective potential is fixed) has a rescaling effect without drastically changing the physics of
the model. With this choice of parameters, Φ and Φ are always lower than 1.

To conclude this section, some comments regarding the the number of parameters and the
nature of the Polyakov field are needed. It is important to mention that NJL parameters and the
Polyakov potential are not on the same footing. In fact, while the NJL parameters can be directly
related with physical quantities, the role of the Polyakov loop potential is to insure the recovering
of pure gauge lattice expectations. This means that the potential for the Polyakov loop can be seen
as an unique but functional parameter. The pure gauge critical temperature, T0, is the only true
parameter and fixes the temperature scale of the system. However, in the Landau-Ginzburg framework,
the characteristic temperature for a phase transition is not expected to be a prediction. Therefore, this
parameter is changed in order to fix the correct energy scale and obtain the result for the deconfinement
pseudocritical temperature, coming from lattice QCD calculations.

Finally it is important to point out that the Polyakov loop effective field is not a dynamical degree
of freedom. This is due to the the absence of dynamical term in the Polyakov loop potential at the
Lagrangian level: it is a background gauge field in which quarks propagate.

3. The Phase Diagram in the PNJL Model

We will start our analysis of the PNJL model by the respective phase diagram. We briefly discuss
the chiral and deconfinement transitions as well as the Mott dissociation of the pion and sigma mesons
at finite temperature and/or baryonic chemical potential. Isentropic trajectories will also be drawn
and discussed.

3.1. Characteristic Temperatures at Zero Density

At zero temperature and density (baryonic chemical potential µB), the chiral symmetry of QCD
is broken, both explicitly and spontaneously. It is then expected that chiral symmetry gets restored
at high temperatures and an eventual phase transition will occur separating the regions of low and
high temperatures.

We start the discussion of the results by identifying the characteristic temperatures, at µB = 0,
that splits the different thermodynamic phases in the PNJL model [27]. On the one hand,
the pseudocritical temperature associated to the “deconfinement” transition is TΦ

c . This temperature
corresponds to the crossover location of Φ, defined by its inflexion point of, i.e., ∂2Φ/∂T2 = 0.
The terminology “deconfinement” is used here to designate the transition between Φ ' 0 and Φ ' 1
(see Reference [27] for a detailed discussion of this subject). On the other hand, the chiral transition
characteristic temperature, Tχ

c , is given by the inflexion point (chiral crossover) of the light chiral
condensate 〈qiqi〉 (i = u, d), i.e., ∂2 〈qiqi〉/∂T2 = 0. However, since the presence of nonzero current
quark mass terms break the chiral symmetry, the restoration of chiral symmetry is realized through
parity doubling rather than by massless quarks. The temperature of effective restoration of chiral
symmetry (in the light sector), Tχ

e f f , is provided by the degeneracy of the respective chiral partners

[π, σ] and [η, a0] or, in other words, by the merging of their spectral functions [27,51]. Tχ
e f f is then

defined as the temperature where Mσ −Mπ < 1% (Mvac
σ −Mvac

π ) MeV. Indeed, one key point of this
work is the effective restoration of symmetries through the mesonic properties perspective.

In Figure 1, the strange and nonstrange quarks condensates are plotted (left panel), as well as
the respective quark masses (right panel), and the Polyakov loop as functions of the temperature.
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In the left panel, we also plot the derivatives of the light quarks (black) and of the Polyakov loop
(blue) in order to the temperature (thin lines). The respective peaks also indicate the pseudocritical
temperatures for the partial restoration of chiral symmetry and the deconfinement. For temperatures
near Tχ

c , the light quark masses drop in a continuous way to the respective current quark mass value.
This indicates the smooth crossover from the chirally broken to a partially chirally symmetric phase,
once the value of the quarks masses are still far from the value of the corresponding current masses
(partial restoration of chiral symmetry). The strange quark mass shows a similar behavior to that
of the nonstrange quarks, with a substantial decrease above Tχ

c ; however, its mass is still far away
from the strange current quark mass. As in the NJL model, regarding the strange sector [47] and since
mu = md < ms, the (sub)group SU(2)⊗SU(2) is a better symmetry of the Lagrangian (Equation (1)).
This will have consequences in the behavior of the meson masses.
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Figure 1. Quark condensates and respective derivatives (left panel) and quark masses (right panel) in
the PNJL model as functions of the temperature; the Polyakov loop field, Φ, is also shown, together
with its derivative given by the thin blue line in the left panel.

In Table 2, we report the characteristic temperatures in the PNJL model: the pseudocritical
temperatures for the chiral transition (Tχ

c ) and deconfinement (TΦ
c ); the effective chiral symmetry

restoration temperature (Tχ
e f f ); and the Mott temperatures for pion (TMott

π ), for eta (TMott
η ), for kaon

(TMott
kaon ) and for the sigma (TMott

σ ) mesons. We remind that the Mott transition is related with the
composite nature of the mesons: at the Mott temperature it becomes energetically favorable for a
meson to decay into a qq pair .

Table 2. Characteristic and Mott temperatures in the PNJL model at µB with T0 = 195 MeV.

Tχ
c [MeV] TΦ

c [MeV] Tχ
e f f [MeV] T Mott

π [MeV] T Mott
η [MeV] T Mott

K [MeV] T Mott
σ [MeV]

231 170 280 239 211 243 197

The difference between TΦ
c and Tχ

c is due to the choice of T0 and the regularization procedure,
as it was pointed out in Reference [27]. In these work a three-dimensional momentum cutoff to both
the zero and the finite temperature/densities contributions is applied. Different type of regularizations
can lower Tχ

c [126]. In Reference [93] the meson properties were calculated without rescaling the
parameter T0 to a smaller value. By adopting a higher value of T0, a smaller difference between the
psudocritical temperatures of the two transitions was obtained. However, since our goal is the general
properties of mesons, the absolute value of the pseudocritical temperatures is not the most significant
point: in fact, these properties are independent of the precise value of Tχ

c and different values of T0 do
not change the conclusions.
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3.2. Finite Temperature and Chemical Potential

Now, let’s extend the analysis to the scenario with µB 6= 0, i.e., the phase diagram. The PNJL
model can mimic a region in the interior of a neutron star (where the PNJL model is reduced to
the NJL model) or a dense fireball created in a HIC. Bearing in mind that in a relativistic HIC, the
fireball evolves rapidly (it takes about 10−22 s for hadronization), only processes mediated by the
strong interaction will attain thermal equilibration rather than the full electroweak equilibrium. In this
work, we impose the condition µu = µd = µs = µq (equal quark chemical potentials) with µB = 3µq.
This corresponds to zero charge (or isospin), µQ = 0, and zero strangeness chemical potential, µS = 0.
This choice also allows for isospin symmetry, Mu = Md. The net strange quark density, ρS, will be
different from zero but only at very high values of T and/or µB.

From both panels of Figure 2 one can see that, instead of what happens at finite temperature,
at T = 0 and finite baryonic chemical potential a first-order phase transition takes place with the
critical chemical potential being µcrit

B = 1083 MeV (or µcrit
q = 361 MeV). As the temperature increases

this first-order transition (blue full line) persists up to the chiral CEP (black dot). Along this line,
the thermodynamic potential has two degenerate minima which are separated by a finite potential
barrier. The two minima correspond to the phases of broken and restored chiral symmetry, respectively.
As the temperature increases the height of the barrier decreases and disappears at the CEP, which is
located at TCEP = 126.3 MeV and µCEP

B = 915.4 MeV (ρCEP
B = 1.75ρ0). At the CEP the chiral transition

becomes a second-order phase transition.
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Figure 2. (Left panel) Deconfinement transition (red dots) and chiral transition with first-order (full
blue line), CEP (black dot) and crossover regions (dashed black line) and spinodal lines (dashed blue
line). (Right panel) Deconfinment and chiral transitions alongside isentropic lines (full green lines).

The blue dashed lines in Figure 2 are the borders of the coexistence area (light blue region).
The domain between these lines has metastable states, characterized by large fluctuations. Although
they are also solutions of the gap equations, their thermodynamic potential is higher than for the stable
solutions. The left dashed curve is the beginning of the metastable solutions of restored symmetry in
the phase of broken symmetry, while the right dashed curve depicts the end of the metastable solutions
of broken symmetry in the restored symmetric phase. Above the CEP the thermodynamic potential
has only one minimum, meaning that the transition is washed out and only a smooth crossover occurs
(gray dashed line).

The crossover is a fast decrease of the chiral order-like parameter (the quark condensate) and its
range is defined by the interval between the two peaks around the zero of ∂2 〈qiqi〉/∂T2. In Figure 2
this region is presented in gray. It can be seen that, as µB increases, the area where the crossover takes
place is getting narrower and narrower until it reaches the CEP.



Symmetry 2019, 11, 507 13 of 31

3.3. Nernst Principle and Isentropic Trajectories

It is accepted that the expansion of the QGP in HIC is a hydrodynamic expansion of an ideal fluid
and it will nearly follow trajectories of constant entropy. Due to the baryon number conservation,
the isentropic trajectories are lines of constant entropy per baryon, i.e., s/ρB, in the (T, µB)-plane and
contain relevant information on the adiabatic evolution of the system. The values of s/ρB for AGS,
SPS, and RHIC, are 30, 45, and 300, respectively [135].

The numerical results for the isentropic trajectories in the (T, µB)-plane are given in the right
panel Figure 2. A complete study of the behavior of isentropics trajectories in the PNJL model under
the influence of a repulsive vector interaction and by the presence of an external magnetic field was
performed in [136]. It is important to start the discussion by analyzing the behavior of the isentropic
trajectories when T → 0. In this limit, s → 0 according to the third law of thermodynamics and,
once also ρB → 0, it is insured the condition s/ρB = const.. In fact, all isentropic trajectories end at
the same point (T = 0 and µq = µB/3 = 367.7 MeV) of the horizontal axes. Since µq = Mvac

q > µcrit
q ,

the combination (T = 0 , µq = 367.7 MeV) corresponds to the vacuum. With the chosen set of
parameters, the point where the first-order transition occurs satisfies the condition µcrit

q < Mvac
q for

T = 0 [21]. It also allows the existence of a strong first-order phase transition from the vacuum solution,
Mq = Mvac

q , into the partially chiral restored phase with Mq smaller the Mvac
q . At the transition point,

the total baryonic density jumps from zero to 2.5ρ0, equally carried by u and d-quarks (the density of
strange quarks, ρs, is still zero, and the system only has ρs 6= 0 when µq > Ms).

Close to the first-order region, for T 6= 0, the isentropic trajectories (s/ρB = 1, ..., 5) show the
following behavior: they come from the region of partially restored chiral symmetry reaching the
unstable region (spinodal region), delimited by the spinodal lines, going then along with it as T
decreases until they reach T = 0. By looking to the trajectory s/ρB = 0.5, it can be seen that the
isentropic trajectory crosses the spinodal line at (T ≈ 36 MeV, µB ≈ 1122 MeV) and intersects the
first-order line twice, at (T ≈ 35 MeV, µB ≈ 1075 MeV) and (T ≈ 25 MeV, µq ≈ 1080 MeV), as the
temperature decreases in a “zigzag”-shaped trajectory delimited by the spinodal lines. By analyzing
the isentropic trajectory with s/ρB = 5, it is interesting to notice that it starts by having an identical
behavior to the isentropic trajectory s/ρB = 0.5, but it then leaves the spinodal region. Nonetheless,
as the temperature diminishes, the isentropic trajectory reaches once again the spinodal region, now
from lower values of µB. After that, it also goes to the horizontal axes (T = 0). The isentrpoic trajectory
s/ρB = 5.6 nearly goes through the CEP and we will calculate the meson masses along this path.

Concerning the behavior of the isentropic trajectories in the chiral crossover region, (s/ρB > 5.6) it
is qualitatively similar to the one obtained in lattice calculations [137,138] or in some models [139–141]:
they directly go through the the crossover region, displaying a smooth behavior. However, they suffer
a pronounced bend when they cross the deconfinement transition (red dashed curve) reaching the
spinodal region from lower values of µB. In conclusion, all the trajectories directly arrive in the same
point of the horizontal axes at T = 0.

A final remark; while the critical behavior at the CEP is universal, characteristic shape of the
isentropic trajectories near the CEP can change from model to model, even if they belong to the same
universality class [142].

4. Scalar and Pseudoscalar Mesons in the PNJL Model

In this section, we will study the behavior of scalar and pseudoscalar mesons in the PNJL model
for different physical scenarios. We will look for signs of the effective restoration of chiral symmetry
and how the chiral transition and the deconfinement affect their behavior. The criterion to identify an
effective restoration of the chiral symmetry will be to seek for the degeneracy of the respective chiral
partners. Indeed, we will compare the properties (e.g., the masses) of the pseudoscalar meson nonet
(π, K, η, and η′) with those which can be considered as chiral partners, i.e., the scalar mesons (σ, κ, a0,
and f0).
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4.1. Mesons Properties at Finite Temperature

4.1.1. Mesonic Masses and Mixing Angles

We start with the analysis of the mesons and mixing angles general behavior. The plot of the meson
masses, mixing angles and coupling constants will be done as functions of the reduced temperature
T/Tχ

c . This will allow a better understanding of their behavior around the chiral pseudocritical
temperature. The masses of the pseudoscalar mesons π, K, η, and η′ (solid lines) and of the respective
scalar chiral partners σ, κ, a0, and f0 (dashed lines) as functions of the reduced temperature are given
in the left panel of Figure 3.
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Figure 3. (Left panel) Masses of the pseudoscalar (full lines) and scalar mesons (dashed lines) as
function of the reduced temperature. (Right panel) Pseudoscalar and scalar mixing angles as a
function of the reduced temperature.

Concerning the pseudoscalar mesons, they are bound states at low temperature (except the η′

meson that is always above the continuum ωu = 2Mu), but they become unbound at the respective
Mott temperatures (see Table 2). The Mott temperature is the temperature where the transition from
a bound state to a resonance takes place and, as already pointed out, it comes from the fact that
mesons are not elementary objects but composed states of qq excitations. Above the Mott temperature,
the imaginary parts of the integrals Iij

2 (see Equation (A3)) must be taken into account and the finite
width approximation is used [45]. The lower limits of the continua belonging to each meson are also
shown (black doted lines). Indeed, the continuum starts when the π, and the η masses cross the quark
threshold ωu = 2Mu and the K crosses ωus = Mu + Ms. For the π and K mesons this entry into
the continuum occurs at approximately the same temperature (TMott

π = 239 MeV, TMott
K = 242 MeV).

The η′ meson is always an unbound state and its mass already begins to be larger than ωu = 2Mu.
Concerning the scalar mesons, the σ-meson is the only scalar meson that can be considered as a

true (slightly) bound state for relatively small temperatures. At the corresponding Mott temperature,
TMott

σ = 197 MeV, it turns into a resonance. The other scalar mesons are always resonant states.
For the π, η and σ there is a second entry into the continuum when the mass of these mesons intersect
ωs = 2Ms.

As shown in Ref. [127], at Tχ
e f f the behavior of some observables signalize the so-called effective

restoration of chiral: the masses of the meson chiral partners become degenerated as it can be see in
Figure 3 (left panel). In this case, for temperatures above 280 MeV the π starts to be degenerate with
the σ meson. It also can be seen that the partners [π, σ] (blue curves) and [η, a0] (green curves) become
degenerate at almost the same temperature. In both cases, this behavior is a clear indication of the
effective restoration of chiral symmetry in the nonstrange sector. Differently, the masses of η′ and f0

mesons do not show a tendency to converge in the range of temperatures considered. This pattern
can be interpreted as a sign that chiral symmetry does not show a trend to get restored in the strange
sector, a consequence of the slow decrease of Ms in Figure 1 (right panel).
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Finally, our attention will be focused in the K and κ mesons (red curves in the left panel of
Figure 3). The κ is always unbounded and it exhibits a tendency to get degenerate in mass with the K
meson for increasing temperatures.

Summarizing the above, the SU(2) chiral partners [π, σ] and [η, a0] become degenerate for
temperatures higher than T > 280 MeV (the masses of the σ and η mesons become less strange,
and converge, respectively, with the non strange ones, π and a0); the [η′, f0] do not indicate a tendency
to converge in the rage of temperatures studied; the convergence of the partners K and κ that have a
us structure, occurs at higher values of the temperature, and is presumably slowed down by the small
decrease of the strange quark mass, Ms. The degree of restoration of chiral symmetry in the different
sectors essentially drives the mesonic behavior.

It is important to refer that, as pointed out in [51], the behavior of the mesonic masses in the PNJL
model is qualitatively similar to the corresponding one in the NJL model [47,116,143].

Concerning the pseudoscalar mixing angle, θP, a first evidence emerges from the right panel
of Figure 3: as the temperature increases, it goes to its ideal value θP = −54.736◦ asymptotically.
As a result, a remarkable change in the quark content of the mesons η and η′ occurs, although a
small percentage of mixing always remains: the η eventually becomes almost nonstrange, while the
η′ becomes almost a purely strange meson [47,143]. The scalar mixing angle θS shows an identical
tendency: the ideal mixing angle goes asymptotically to θS = 35.264◦. Therefore, there is a decrease of
the strange component of the σ-meson, that never disappears, and f0 becomes almost purely strange.

The mixing angles are very sensitive to temperature (and also the medium) effects, particularly
due to its influence on the mass of strange quark. This might be an explanation to the fact that some
aspects of θS and θP behavior are not the same in different models [144,145]. It should be noticed that
the mixing angles depend on the mesons masses, namely, θS on the mass of the σ-meson and θP on the
mass of the η-meson.

The evolution of the strangeness content of both mesons, η and η′ determines which meson will
become nonstrange, and consequently will behave as the chiral axial partner of the π. The behavior
of θP at finite temperature leads to the identification of the η as the chiral axial partner of the π,
but the opposite is found in References [144,146] where a crossing of the mixing angles can be seen.
A certain degree of crossing of the pseudoscalar mixing angle and exchange of identities of η, η′

was also seen in Reference [147], and an alike effect for the scalar angle was presented in Ref. [144].
Indeed, because of the mixing angles behavior, f0 and η′ become essentially strange for increasing
temperatures. Besides, as it was shown in Reference [126], even when the spontaneously broken chiral
symmetry gets restored in all sectors (and unlike what is found for the nonstrange chiral partners) a
considerable difference between the masses of these mesons is still present, a fact due to the high value
of the current strange quark mass used in this work (ms = 140.7 MeV). Indeed, at high temperatures
the relation m2

f0
' m2

η′ + 4m2
s is approximately valid, thus explaining the observed behavior.

4.1.2. Pion and Kaon Coupling Constants

The left(right) panel of Figure 4 shows the values of the π and K coupling(decay) constants. At the
Mott temperature, a striking behavior for each meson can be seen: the coupling strengths approach
zero for T → TMott

π(K) [45]. This behavior occurs because the polarization displays a kink singularity,
which can also be seen in the meson masses.

It is interesting to note that the Mott temperature for each meson is above Tχ
c , indicating a slightly

survival of these mesons as bound states in the restored phase. This is a feature of the PNJL model,
which is a quantitative step toward confinement regarding the NJL model. This is due to the Φ factor
that suppresses the 1- and 2- quarks Boltzmann factor at low temperatures. Indeed, the fast restoration
of the Z3 symmetry (Φ goes to one with increasing temperatures) produces a quark thermal bath with
all (1-, 2- and 3-) quark contributions in a short range of temperatures, which might help to explain the
fastening of the transition [51].
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Figure 4. Coupling constants (left panel) and decay constants (right panel) as a function of the
reduced temperature.

4.2. Mesons at Zero Temperature

Next, we will study the meson behavior at finite values of µB. We emphasize that, as previously
stated, the employed PNJL model at T = 0 is identical to the usual NJL model.

We consider symmetric quark matter as in Section 3.2. The first aspect that arises is that, similarly
to the previous finite temperature scenario, chiral symmetry is effectively restored only in the light
sector. This is due to some specific details of the behavior of the strange quark mass with the density.
Figure 5 shows the quark masses as function of µB around the first-order transition, left panel, and as a
function of ρB/ρ0, right panel (the light-blue area corresponds to the region of the phase transition).
As it can be seen, in the present case there are no strange quarks in the medium at low densities.
The mass of the strange quark smoothly decreases, due to the effect of the ’t Hooft interaction, and it
becomes smaller than the chemical potential for strange quarks (at ρB ' 5.45ρ0 and µB ' 1388 MeV)
and strange quarks appear in the system. Then, a pronounced decrease of the strange quark mass
is observed.

With respect to the meson spectra and the mixing angles, we will discuss new aspects that arise,
mainly in the high baryonic chemical potential/density region.
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Figure 5. Quark masses at T = 0 as a function of the baryonic chemical potential (left panel) and
reduced baryonic density (right panel). The dashed lines represent the quark masses in the first-order
region. µcrit

B is the baryonic critical chemical potential of the first-order phase transition, and ρcrit
B /ρ0

the respective critical reduced density (ρ0 = 0.16 fm−3).

In Figure 6, the meson masses are plotted as functions of the baryonic chemical potential (panel (a))
and of the density (panel (b)). The chiral partners [π, σ] (blue curves) are always bound states.
Before continuing the discussion, some words about the continuum ω′ at zero temperature are
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needed. From the dispersion relations for the pion and kaons, at T = 0, two kinds of discrete bound
states are allowed (looking to the limits of the regions of poles in the integrals Iij

2 , Equation (A3)):
particle-antiparticle modes of the Dirac sea, that are already present in the vacuum and are related
with the spontaneous breaking of chiral symmetry; and, when the breaking of the flavor symmetry is
considered, particle-hole excitations of the Fermi sea, that only manifest themselves in the medium
(for a detailed description, see [42]). On the other hand, the Fermi and Dirac sea continua are defined
by the unperturbed solution. In the isospin limit, the Dirac continuum starts at ω′ = ω′u(d) = 2µu(d)

and at ω′s = 2µs (at finite temperature, we have ωu(d) = 2Mu(d), and ωs = 2Ms).
Returning to meson masses, for all range of densities (chemical potentials), the pion is a light

quark system contrary to the σ meson which has a strange component at ρB = 0 but never becomes a
purely non-strange state because θS never reaches the ideal mixing angle 35.264◦ (Figure 6, panels (c)
and (d)). As ρB (µB) increases these mesons become degenerate (ρe f f

B & 2.9ρ0, µ
e f f
B & 1126 MeV,

effective restoration of chiral symmetry in the light sector, see blue curves of panels (a) and (b)).
At the approximate same density, and µB, the chiral partners [η, a0] (green curves in panels (a)

and (b) of Figure 6) also become degenerate. On one hand, the η-meson is permanently a bound state;
on the other hand, a0 starts to be a resonance, because its mass is above the qq continuum, and converts
into a bound state for ρB & 0.6ρ0, and µB & 1121 MeV.

However, as the baryonic chemical potential (panel (a)) or the density (panel (b)) increases, the a0

mass splits from the η mass and goes to degenerate with the η′ mass. To clarify this behavior we look
to the behavior of the mixing angle θP in panels (d) and (e) of Figure 6: it is noticed that the angle θP,
which starts at −5.8◦, changes sign at µB ' 1167 MeV (ρB ' 3.2ρ0) becoming positive and increasing
rapidly, which can be interpreted as a signal of a change of identity between both η and η′ mesons.
As it was seen in Figure 5, the strange quark mass decreases more rapidly when strange quarks appear
in the system (µq > Ms). A consequence of this behavior is the changing in the percentage of strange,
(qq)s = ss, and non-strange, (qq)ns =

1
2 (uu+ dd), quark content in η and η′ mesons: the η′ has a bigger

strangeness component than the η at low density, and the opposite takes place at high density [143].
Then, the η′ mass will degenerate with the mass of the a0-meson that is permanently a non-strange
state. As a final point, the f0-resonance is a strange state for all densities that denotes a tendency to be
degenerated with other mesons only at very high values of µB (ρB).

A very interesting scenario happens for kaons and their chiral partners: K± and κ± (Figure 5,
panels (e) and (f)). A first finding concerns to the separation between charge multiplets of kaons and
the respective κ-mesons. Also the the mass degeneracy of [K+, κ+] and [K−, κ−] occur at different
values of density (chemical potential) which are higher then for [π, σ]. Indeed, taking the difference
(MK± −Mκ± ), now at 5% of its vacuum value, for [K+, κ+] the degeneracy of their masses takes place
at µB = 1187 MeV (ρB = 3.38ρ0) while for [K−, κ−] the degeneracy takes place at µB = 1419 MeV
(ρB = 5.86ρ0).

Another particularity is the fact that the K+ is always a bound state, never reaching the continuum,
while the K− is bounded only until it gets in the continuum of su excitations of the Dirac sea at
µB = 1083 MeV (ρB = 2.5ρ0) and becomes thereafter a su resonance: MK− > ω

(1)
us (with ω

(1)
us =

(M2
s + λ2

u)
1/2 + µu, being the chemical potential µu = (M2

u + λ2
s )

1/2, and the Fermi momentum of the
i-quark λi = (π2ρi)

1/3). However, when µB > 1419 MeV (ρB > 5.85ρ0) the K− becomes once again a
bound state (this behavior was already found in [116,148]). Still as far as the K− is concerned, it was
shown in [41,42,47,148] that there are low bound states with quantum numbers of K− that appear
below the inferior limit of the Fermi sea continuum of particle-hole excitations being the Fermi see
bounded by ωlow = (M2

s + λ2
u)

1/2 − µu and ωup = (M2
s + λ2

s )
1/2 − (M2

u + λ2
s )

1/2. However, we will
not go further in this discussion.

Finally, with respect to the scalar mesons, κ±, it is verified that both mesons start to be unbounded,
with the continuum now defined as ω

(2)
us = µs + (M2

u + λ2
s )

1/2 (at T = ρB = 0 ω
(1)
us = ω

(2)
us ) but, as µB

(ρB) increases, they will turn into bound states and become degenerated with the respective partners.
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Figure 6. Masses of the neutral pseudoscalar and scalar mesons as a function of µB (panel (a)) and as
a function of ρB/ρ0 (panel (b)); the pseudoscalar and scalar mixing angles as a function of µB (panel
(c)) and as a function of ρB/ρ0 (panel (d)); masses of the charged pseudoscalar and scalar mesons as
a function of µB (panel (e)) and as a function of ρB/ρ0 (panel (f)). All results are at T = 0 (see text
for details).

4.3. Mesons Properties in Different Regions of the Phase Diagram

4.3.1. Meson Masses in the Crossover Region

We continue the analysis of the behavior of mesons masses in symmetric matter, by following a
path in the (T− µB)-plane passing through the crossover region. As indicated in Figure 2, we choose
the path T = 0.5µB. Chiral symmetry is, again, effectively restored only in the light quark sector.
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In Figure 7 the meson masses are plotted as functions of temperature and baryonic chemical potential,
in the left panels and right panels, respectively.
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Figure 7. Masses of the pseudoscalar and scalar mesons as function of the temperature (panels (a,c))
and as function of µB (panels (b,d)) along the path T = 0.5µB, the crossover region. Tcross = 213 MeV
and µcross

B = 426 MeV are, respectively, the temperature and the baryonic chemical potential for
the crossover.

The chiral partners [π,σ] and the η meson are bound states up to the respective Mott dissociation
for a certain temperature and chemical potential(density) as can be seen in panels (a) and (b) Figure 7.
The pion still survives as a bound state after the crossover transition in a small range of temperatures
and chemical potentials.

Differently from the zero temperature case, and like the case at finite temperature and zero
density, the a0 meson is always a resonance since its mass always lies above the ωu = 2Mu continuum
(see Figure 7 panel (a) and (b)). As in the zero temperature case, the degeneracy between each set of
chiral partners, [π,σ] and [η,a0], happens at almost the same temperature and chemical potential.

The η′ meson is always a resonate state and it will reach the ωs = 2Ms continuum, a temperature
and a chemical potential where it can decay also in a ss pair. Immediately, it degenerates with the η

and a0 mesons. Its chiral partner, f0, is always above the ωs = 2Ms continuum.
Concerning the kaons and their chiral partners (Figure 7, panels (c) and (d)), the previously

observed charge splitting at T = 0 MeV is also present (contrasting with the case µB = 0 MeV where
no splitting occurs). However, its effect is much less visible then in the zero temperature case and it
happens, for the K±, before the crossover while for κ± it happens after the critical temperature and
chemical potential. Both K+ and K− are bound states until they reach the ωus = Mu + Ms continuum
while their chiral partners, are always resonances. The continuum is reached slightly above the critical
temperature and baryonic chemical potential of the crossover transition.

The degeneracy mechanism for these mesons in this path is different from previously studied
zero temperature case. Since the charge splitting in this scenario is much less severe, we first
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observe degeneracy between each charge multiplet K± and κ±, happening at approximately the
same temperature and chemical potentials. Following this behavior the chiral partners [K,κ] become
degenerate at higher values of temperature and baryonic chemical potential.

At high enough temperatures and chemical potentials (outside the range of applicability of the
model) it is expected that all mesons become degenerate.

4.3.2. Mesons through the CEP

In this subsection we explore the meson behavior along a path that goes through the CEP. This path
can be parameterized by T = 0.14 µB, as seen in Figure 2. The meson masses are plotted as functions
of temperature and chemical potential, in the left panels and right panels of Figure 8 respectively.
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Figure 8. Masses of the pseudoscalar and scalar mesons as function of the temperature (panels (a,c))
and as function of µB (panels (b,d)) along the path that crosses the CEP.

We first discuss the behavior of the [π,σ], [η,a0] and [η′, f0] meson masses presented in panels (a)
and (b) of Figure 8. The main and most important observation from Figure 8 is the drastic continuous
decrease that almost meson masses (except the pion and K+) displays in the temperature and chemical
potential of the CEP. In fact, this feature may be used as a signal for the CEP. For example, processes
such as σ → ππ and σ → γγ productions are important tools for the search of the CEP [149,150].
If the σ-meson has an abnormally small mass around the CEP, this means that peculiar experimental
signatures are expected to be observed through its spectral changes: the dipion decay can be suppressed
near the CEP due to the fast reduction of the σ-meson mass. Also the maximum in the K+/π+ ratio
(“the horn” effect) [151], that was discussed as a possible signal of the onset of deconfinement, that also
appears near CEP (being considered as a critical region signal for the CEP [152]), can be related with
the increase of the K+ mass seen in Figure 8 (panels (c) and (d)) relative to the decreasing K− mass.

The σ and η mesons are bound states up to the CEP, where both mesons reach the ωu continuum.
The pion survives as a bound state after the CEP for a very limited range of temperatures and chemical
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potentials, reaching the continuum after the CEP. After becoming resonances, the chiral partners [π,σ]
degenerate. The η′-meson mass is bigger then the ωu continuum, meaning it is always unbound.
The [η,a0] also become degenerate up to the ωs continuum where the η (green curve) and η′ (magenta
curve) switch roles (this is particularly seen in panel (a) of Figure 8 with the mesons as functions of the
temperature), as we will discuss in the following. The f0 meson is a resonance and its mass is always
above the ωs continuum.

The η′ mass reaches the ωs continuum at ∼ 1.4TCEP and ∼ 1.4µCEP
B . Then, the η and η′ switch

nature since the η′ immediately become degenerate with the a0 meson while the η meson separates
from the a0 mass and asymptotically degenerates with the f0 meson mass.

As in the crossover scenario, there is charge splitting before and after the CEP for the K± and κ±,
respectively (see panels (c) and (d) of Figure 8). The splitting for kaons become even more pronounced
just at the CEP. The K+ is a bound state up to the CEP where it reaches the ωus continuum while the
K− is a bound state that survives the CEP, for a limited range of temperature and chemical potential.
After becoming resonances, the both kaons will degenerate with the respective chiral partners of the
same charge, κ±, being these scalar mesons always resonances. The charge splitting between mesons
disappears as temperature and chemical potential increases (faster for the temperature).

4.3.3. Mesons through the First-Order Transition

We now analyze a path that goes through the first-order phase transition, parameterized by
T = 0.05 µB (see Figure 2). In the right and left panels of Figure 9, are displayed the mesons masses as
functions of the temperature and chemical potential for this scenario.

The general behavior of the mesons in this case is very similar to the one encountered in the
zero temperature case since, in both cases, there is a first-order phase transition. However, there are
some specifications.

The π, σ and η mesons are bound states up to the phase transition. Immediately after this
point they, discontinuously, become resonances. In fact, the discontinuity in the meson masses is a
consequence of the nature of the first-order phase transition where the thermodynamical potential
has two degenerate minima and there is a discontinuous jump from one stable minimum to the other.
The a0 meson is always a resonance.

The η′ meson mass is always above ωu up to the point where it reaches the ωs continuum at
higher values of temperature and chemical potential. The f0 meson is also always unbound with its
mass above ωs.

After the first-order phase transition the pairs π and σ and η and η′ degenerate almost immediately.
When the a0 mass (dashed green curve) reaches the mass of the degenerate η and η′ pair, the η-meson
(solid green curve) decouples from the η′. After this point, the η′ and a0 degenerate and evolve to
degenerate with the f0 meson at high energies while, the η-meson, remains separate from the [η′,a0]
pair. When the η mass reaches the ωs continuum its mass increases to asymptotically degenerate with
the other mesons.

Regarding the kaons and their chiral partners, right before the first-order phase transition the
charge multiplets of the K start to split (see Figure 9 panels (c) and (d)). Before the phase transition
only the K mesons are bound while the chiral partners, κ, are resonances. At the first-order phase
transition, as expected, there is a discontinuous split of each charge multiplet of both K and κ and every
meson is now a resonance, since they all lie above the ωus continuum. As temperature and chemical
potential increases, the K+ and κ+ mesons start to degenerate, followed by the respective negative
pair. For larger energies the charge multiplets of the chiral pair also show tendency to degenerate.
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Figure 9. Masses of the pseudoscalar and scalar mesons as function of the temperature (panels (a,c))
and as function of µB (panels (b,d)) along the the path T = 0.05µB, crossing the first-order region.

4.3.4. Mesons along the Isentropic Trajectory That Passes over the CEP

Previously, the isentropic trajectories relevance was presented, namely the fact that the expansion
of the QGP in HIC is accepted to be a hydrodynamic expansion of an ideal fluid and it approximately
follows trajectories of constant entropy. This argument motivates the presentation of the behavior
of mesons masses as functions of the temperature along the nearest isentropic trajectory of the CEP,
s/ρB ≈ 5.6, in Figure 10. There is a substantial difference for the scenario studied in Section 4.3.2
(the path T = 0.14µB): the abrupt decrease of the meson masses is not seen. Indeed, in this case, along
the isentropic trajectory both, the temperature and the baryonic chemical potential, are varying in such
a way that s/ρB is held constant. So, the approximation to the CEP is not direct, being the behavior of
the mesons masses more smooth in the neighborhood of the CEP. This may be an indication of different
critical behavior near the CEP, depending on the direction the CEP is approached in the (T, µB) plane.
Indeed in [92], the critical exponents in the PNJL model were studied and it was found that their values
slightly changed depending on the direction. Nevertheless, from the right panel of Figure 10, we see
that the separation between K+ and K− is the same (∼ 70 MeV) like in Section 4.3.2, as it should.
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Figure 10. Masses of the pseudoscalar and scalar mesons as function of the temperature (left panel)
and as function of µB (right panel) along the the path T = 0.05µB, crossing the first-order region.

4.4. Effective Restoration of Chiral Symmetry and Mott Dissociation of π and σ along the Phase Diagram

Since the pion and the sigma mesons dissociate in a qq pair, in Figure 11 we represent the
respective “Mott lines”. In the region µB < µCEP

B , the Mott line for σ-meson occurs below chiral
crossover, while the correspondent Mott line for π occurs slightly above. It is interesting to note that
above µB ∼ µCEP

B both Mott lines occurs inside the first-order region.
When we use the degeneracy of the π and σ-meson masses as criterion to define the point of

the effective restoration of chiral symmetry, we guarantee that all quantities that violate the chiral
symmetry are already sufficiently small. We then can draw a line for the effective restoration of chiral
symmetry (brown line in Figure 11). For example, when finally Mπ = Mσ, the constituent masses of
the u and d quarks are already sufficiently close to the respective currents masses values (also the light
quark condensates already have a very low values).

5. Conclusions

In this work, we have explored the phase diagram of strongly interacting matter and discussed
the scalar-pseudoscalar meson spectrum, with related properties, in connection with the restoration
of chiral symmetry and deconfinement for different regions of the phase diagram. We have used
the (2 + 1) PNJL model with explicit breaking of the UA(1) anomaly, which includes flavor mixing,
and the coupling of quarks to the Polyakov loop. The PNJL model has proven to be very useful in
understanding the underlying concepts of the phase diagram of strongly interacting matter, namely the
chiral symmetry breaking and restoration mechanisms. It is also an important tool to study the
dynamics of pseudoscalar and scalar mesons with regard to the effective restoration of chiral symmetry.

Some of the presented results have shown a great relevance:

(i) the survivability of some meson modes, especially the pion, as a bound state after the transition to
the QGP (this tendency to a slightly longer survival as bound state is also shown by the behavior
of meson-quark coupling constants for π, σ and η mesons);

(ii) the change of identity between η and η′ at finite density for scenarios at lower temperatures;
(iii) the meson masses change abruptly when choosing a path that passes through the CEP (this can

be very important for the signatures of the CEP);
(iv) in relation to kaons, with the exception of the limiting cases for T = 0 and µB = 0, a kaon

charge splitting before critical temperature/baryonic chemical potential occurs. At CEP and
first-order cases, kaons first degenerate with the respective chiral partners and only then with
charge multiplet, contrary to the crossover scenario where charge multiplets degenerate first.
At the CEP, there is a accentuated splitting for kaons, with K+ sharply increasing, a splitting that
is still pronounced just after the CEP;
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(v) above certain critical values of temperature and chemical potentials (Tχ
e f f , µB

χ
e f f ) the masses of

the chiral partners [π,σ] will degenerate, meaning that chiral symmetry is effectively restored.
All quantities that violate chiral symmetry are guaranteed to be already sufficiently small .

New extensions of the model (e.g., with explicit chiral symmetry breaking interactions that lead to
a very good reproduction of the overall characteristics of the LQCD data [153], or with spin-0 and spin-1
U(3)×U(3) symmetric four-quark interactions to deal with vector–scalar and axial-vector–pseudoscalar
transitions [154]) or going beyond the mean-field approximation, by modifying the gap equations due
to mesonic fluctuations in the scalar and pseudoscalar channels, can lead the (P)NJL type models to
new insights of low energy QCD.
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Figure 11. Line of effective restoration of chiral symmetry (brown curve) and the Mott dissociation line
for π (magenta) and σ (green) along the (T − µB)-plane.
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Appendix A

The polarization operator for the meson channel M given in Equation (26) in the static limit,
q = 0 can be calculated to yield:

Πij(q0) = 4
(
(Ii

1 + I j
1)− [q2

0 − (Mi −Mj)
2] Iij

2 (q0)
)

. (A1)

where Mi is the effective mass of the quark i. At finite temperature and with two chemical potentials,
µi and µj, the integral Ii

1 can be written as:

Ii
1(T, µi) = −

Nc

4π2

∫ p2dp
Ei

(νi − νi) . (A2)

The integral Iij
2 is given by:

Iij
2 (q0, T, µi , µj) =− Nc

∫ d3 p
(2π)3

[
1

2Ei

νi

(Ei + q0 − (µi − µj))2 − E2
j
− 1

2Ei

νi

(Ei − q0 + (µi − µj))2 − E2
j

+
1

2Ej

νj

(Ej − q0 + (µi − µj))2 − E2
i
− 1

2Ej

νj

(Ej + q0 − (µi − µj))2 − E2
i

]
. (A3)
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Here, Ei is the quasiparticle energy, Ei =
√

p2 + M2
i , µi is the chemical potential for the quark i.

The distribution functions are given by Equations (23) and (24).

Appendix B

In the T → 0 limit, the grand canoncial potential of the SU f (3) PNJL and the SU f (3) NJL model
are identical. We can see this by defining the zero temperature limit of Equation (16) as Ω0 and writing:

Ω0 = limT→0 Ω(T)

= limT→0 U
(
Φ, Φ; T

)
+ gS ∑i=u,d,s 〈qiqi〉2 + 4gD 〈ququ〉 〈qdqd〉 〈qsqs〉 − 2Nc ∑i=u,d,s

∫ d3 p
(2π)3 Ei

−2 ∑i=u,d,s
∫ d3 p

(2π)3 [limT→0 F (p, T, µi) + limT→0 F ∗ (p, T, µi)] .

(A4)

The Polyakov loop potential, U
(
Φ, Φ; T

)
, as defined in Equation (10), vanishes in this limit.

The limits of the thermal functions (17) and (18) are given by:

lim
T→0
F (T, µi) = 3 (µi − Ei) θ (Ei − µi) , (A5)

lim
T→0
F ∗ (T, µi) = 0. (A6)

where θ(Ei − µi) is the Heaviside step function. One can define the Fermi momentum of the quark of
flavor i as:

λFi =
√

µ2
i −M2

i . (A7)

The grand canonical potential can then be written as:

Ω0 = gS ∑
i=u,d,s

〈qiqi〉2 + 4gD 〈ququ〉 〈qdqd〉 〈qsqs〉 −
Nc

π2 ∑
i=u,d,s

∫ Λ

λFi

dpp2Ei − ∑
i=u,d,s

µi
λ3

Fi

π2 . (A8)

The i−quark density is:

ρi =
λ3

Fi

π2 . (A9)

Applying the stationary conditions yields the respective i−quark condensate,

〈qiqi〉 = −
Nc

π2

∫ Λ

λFi

dpp2 Mi
Ei

. (A10)

These set of equations, which define the SU f (3) PNJL in this limit, are identical to those defining
the SU f (3) NJL at zero temperature.
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