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Abstract: In this study, pressure-driven flow in the slip regime is investigated in rectangular
microducts. In this regime, the Knudsen number lies between 0.001 and 0.1. The duct aspect
ratio is taken as 0 ≤ ε ≤ 1. Rarefaction effects are introduced through the boundary conditions.
The dimensionless governing equations are solved numerically using MAPLE and MATLAB is used
for artificial neural network modeling. Using a MAPLE numerical solution, the shear stress and
heat transfer rate are obtained. The numerical solution can be validated for the special cases when
there is no slip (continuum flow), ε = 0 (parallel plates) and ε = 1 (square microducts). An artificial
neural network is used to develop separate models for the shear stress and heat transfer rate. Both
physical quantities are optimized using a particle swarm optimization algorithm. Using these results,
the optimum values of both physical quantities are obtained in the slip regime. It is shown that the
optimal values ensue for the square microducts at the beginning of the slip regime.

Keywords: forced convection; microducts; Knudsen number; Nusselt number; artificial neural
networks; particle swarm optimization

1. Introduction

1.1. Rarefied Gas Flows

Flows in microducts are found in microelectromechanical systems, nanotechnology applications,
therapeutic and superhydrophobic microchannels, low-pressure environments, biochemical applications
and cryogenics. The rarefaction effect can be found in microchannels and can be expressed in terms
of the Knudsen number. In this case, the deviations from continuum behavior are smaller. Therefore,
the Navier–Stokes equations can be employed with slip boundary conditions. The difference between a
fully developed flow in a rectangular duct and in a microchannel is that a rectangular microduct needs
2D analysis, whereas a microchannel entail a one-dimensional analysis.

Generally, the Navier–Stokes equations can be solved with slip boundary conditions at the microduct
walls [1,2]. Previous studies [1,2] found that the solutions were validated by the experimental data in
several microchannel flows. Otherwise, significant departures were observed between the numerical
and experimental results without applying the slip conditions. Ameel et al. [3] confirmed the statement
of Reference [1,2]. Zade et al. [4] considered variable physical properties and investigated thermal
features of developing flows in rectangular microchannels. They employed a collocated finite volume
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method and studied several channel dimensions for different values of slip parameters. They found that
variable properties show substantial changes in flow behavior. Ghodoossi and Eğrican [5] determined
the heat transfer rate using an integral method. They predicted thermal features for isothermal boundary
conditions. They noticed that, for any aspect ratio, the rarefaction had obvious effects on the heat transfer.

The effects of rarefaction on the Nusselt numbers were investigated by Hettiarachchi et al. [6] for
thermally developing flows. They noticed that these Nusselt numbers increased with the slip velocity,
and decline with the thermal jump boundary condition. The slip flow forced convection in rectangular
microchannels was also considered by Yu and Ameel [7]. It was found that the velocity slip and aspect
ratio enhance heat transfer. For rarefied gas flows, Renksizbulut et al. [8] observed exceptionally large
reductions in the friction and heat transfer coefficients. They found that these coefficients are insensible
to rarefaction effects in corner-dominated flows. Tamayol and Hooman [9] analyzed microchannels of
polygonal, rectangular, and rhombic cross-sections and showed that the Poiseuille numbers decrease
with increasing aspect ratios and Knudsen numbers for rectangular channels. Hooman [10] investigated
forced convection in microducts using a superposition approach for both thermal boundary conditions
and demonstrated that their results were valid for several cross-sections. Sadeghi and Saidi [11]
considered the rarefaction effects in two different microgeometries and demonstrated that for both
geometries, the Brinkman number reduced the heat transfer rate. In fact, the Brinkman number
measures the viscous heating effects with reference to the heat conduction. They also developed a
correlation for the Nusselt number.

Yovanovich and Khan [12] developed several slip flow models for microchannels of different
cross-sections. The slip flow in circular and other cross-sections was investigated by a number of
authors, including References [13–16]. They developed different models for envisaging the friction
factor under both developing and fully developed conditions. Duan and Muzychka [13,14] proposed
a simple model to predict the Poiseuille numbers in these microchannels. Duan and Muzychka [15]
considered slip flow in the entrance of circular and parallel plate microchannels and noticed that
the Poisseuille number depends on the Knudsen number. Yovanovich and Khan [16] modeled
the Poiseuille flow in long channels of different cross-sections. Ebert and Sparrow [17] analyzed
abstemiously rarefied gas flows in different ducts and noticed that the velocity flattened and the
friction lessened due to the slip parameter.

Baghani et al. [18] treated rarefaction effects in microducts of different cross-sections and obtained
Nusselt numbers under isothermal boundary condition. They tabulated Nusselt numbers for the
entire slip flow range of the Knudsen number. Wang [19] considered the slip flow under an isothermal
boundary condition in different ducts. It was found that both hydrodynamic and thermal boundary
conditions have substantial effects on both the Poiseuille and Nusselt numbers. Also, both parameters
showed an opposite trend with an increasing velocity slip. Beskok and Karniadakis [20] considered
internal rarefied gas flows and presented mathematical models for different regimes. To account for
heat transfer from the surface, they suggested a new boundary condition and demonstrated that it is
applicable in all flow regimes. Yovanovich and Khan [21] proposed compact models for isothermal,
incompressible slip flows in different microchannels. They used the principle of superposition in the
analysis and introduced new flow parameters. They compared their results with previous numerical
results for different cross-sections and found them in a very good agreement. Klášterka et al. [22]
obtained analytical and numerical solutions for the flow variables and demonstrated the effect of slip
parameters on the friction and heat transfer coefficients.

The above literature survey reveals that there are only a few studies related to rectangular
microducts. However, there has been no study where the numerical models are developed using
an artificial neural network (ANN) and are optimized for the duct geometry. This fact inspires us
to model our numerical results using ANN and to acquire optimized values of friction factors and
Nusselt numbers using a particle swarm optimization algorithm.
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1.2. Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical models, which are inspired by biological
nervous systems [23,24]. The multilayer perceptron neural network (MLPNN) is one of the widely
known feedforward neural networks. MLPNNs have three types of layers, which are the input layer,
the hidden layers, and the output layer. Figure 1 shows the structure of MLPNN [25,26].

Symmetry 2018, 10, x FOR PEER REVIEW  3 of 14 

 

1.2. Artificial Neural Networks  

Artificial neural networks (ANNs) are mathematical models, which are inspired by biological 
nervous systems [23,24]. The multilayer perceptron neural network (MLPNN) is one of the widely 
known feedforward neural networks. MLPNNs have three types of layers, which are the input layer, 
the hidden layers, and the output layer. Figure 1 shows the structure of MLPNN [25,26].  

 
Figure 1. Structure of a multilayer perceptron neural network (MLPNN). 

The activation function is defined as an output of a node or a neuron and can be written as: 𝑌 =  11 + 𝑒  (1) 

where x is an input value from the input layer. Supervised learning of ANNs is useful for improving 
the performance of ANN models. Several algorithms are used for the training to find the best 
parameters of the neural networks [27,28]. The optimization algorithms are used to find the best 
values for inputs and output weights that are parameters of MLPNNs. In this study, the particle 
swarm optimization (PSO) algorithm is used to train the neural networks, because it is one of the 
most effective meta-heuristic algorithms used for optimization problems. Equation (2) is the sum of 
squared error (SSE) function, which was used as a fitness function for testing the performance of the 
ANNs [25].   

SEE= ∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡)   (2) 

where the 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 values are determined by Equation (3), while the 𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 values 
are determined by the neural network (NN) output values.  

𝑂𝑢𝑡𝑝𝑢𝑡(𝑦 ) =  𝑤 𝑤 11 + 𝑒  (3) 

where n, m, k, 𝑤 , and 𝑤′  represent the number of neurons in the hidden layer, number of input 
data, number of neurons in input layer, number of neurons in output layer, input weight—which is 
between the input neurons and hidden neurons—and output weight, which is between the hidden 
neurons and output neurons, respectively.  

1.3. Particle Swarm Optimization Algorithm 

The principle of the particle swarm optimization (PSO) algorithm came from the ideas of the 
social behavior of bird flocks, as well as from the shoaling behavior of fish [27‒29]. All solution 

Figure 1. Structure of a multilayer perceptron neural network (MLPNN).

The activation function is defined as an output of a node or a neuron and can be written as:

Y =
1

1 + e−x (1)

where x is an input value from the input layer. Supervised learning of ANNs is useful for improving the
performance of ANN models. Several algorithms are used for the training to find the best parameters of
the neural networks [27,28]. The optimization algorithms are used to find the best values for inputs and
output weights that are parameters of MLPNNs. In this study, the particle swarm optimization (PSO)
algorithm is used to train the neural networks, because it is one of the most effective meta-heuristic
algorithms used for optimization problems. Equation (2) is the sum of squared error (SSE) function,
which was used as a fitness function for testing the performance of the ANNs [25].

SEE = ∑(Actual output− target output)2 (2)

where the target output values are determined by Equation (3), while the Actual output values are
determined by the neural network (NN) output values.

Output(yk) =
m

∑
j=1

n

∑
i=1

wjk

s

∑
k=1

w′ki
1

1 + e−xj
(3)

where n, m, k, wjk, and w′ki represent the number of neurons in the hidden layer, number of input data,
number of neurons in input layer, number of neurons in output layer, input weight—which is between
the input neurons and hidden neurons—and output weight, which is between the hidden neurons and
output neurons, respectively.
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1.3. Particle Swarm Optimization Algorithm

The principle of the particle swarm optimization (PSO) algorithm came from the ideas of the social
behavior of bird flocks, as well as from the shoaling behavior of fish [27–29]. All solution members of
the algorithm are called particles. The particle flies by updating its velocity vectors v and position x,
by using Equations (4) and (5), respectively [30].

vik(t + 1) = vik(t) + c1 ∗ r1k(t) ∗ (yik(t)− xik(t)) + c2

∗r2k(t) ∗ (ŷk(t)− xik(t))
(4)

xi(t + 1) = xi(t) + vi(t + 1) (5)

where xi(t), vi(t), yi(t), and ŷk(t) represent the position at time t, the velocity at time t, the best
personal position (pbest) at time t, and the global best position (gbest) of population at time t respectively,
whereas c1 and c2 are the learning factors of (pbest) in interval between 0 and 2 and r1 and r2 are the
random numbers in the interval 0 to 1.

It is important to note that the other particles follow the performance of the best particle [31–34].
In addition, each particle keeps the best position that it has achieved so far. The flowchart of Figure 2
shows the steps of the present PSO algorithm [27,32,35].
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Thus, the particles should move towards the best directions, and utilize useful information from
other particles along with the best particles [30,35].

In this study, the algorithm was used to find the optimal values of the Nusselt number (Nu) and
Poiseuille number (Po) corresponding to the aspect ratio and the Knudsen number in the slip flow
regime. The number of the iterations was set as 50, with initial populations 60, and c1 = c2 = 0.05 [30].

To the best of our knowledge, most of the existing analytical solutions for slip flows are limited
to fluid flow in rectangular ducts. There is a lack of literature related to heat transfer in microducts.
Furthermore, there is no study related to ANN modeling and optimization of pressure drop and heat
transfer in microducts. The aim of this paper was to cover these aspects.

2. Mathematical Model

2.1. Hydrodynamic Analysis

Let us consider a fully developed flow in a rectangular duct, as shown in Figure 3. The semi-major
and -minor axes are taken as a and b along the x- and y-axes, respectively. The aspect ratio is ε = b/a.
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The gas is assumed to flow along the z-axis. The momentum equation for the flow in a microduct can
be written as:

∂2u
∂x2 +

∂2u
∂y2 = − 1

µ

dP
dz

(6)

which is a 2D equation for the axial velocity u, uniform gas viscosity µ and constant pressure gradient
dP/dz. Due to double symmetry, only the OABCO is selected for the simulation. The velocity slip and
symmetry boundary conditions for this problem can be written as:

u = −λ
2− σv

σv

∂u
∂y

∣∣∣∣
y=b

u = −λ
2− σv

σv

∂u
∂x

∣∣∣∣
x=a

(7)

and:
∂u
∂y

∣∣∣∣
y=0

= 0;
∂u
∂x

∣∣∣∣
x=0

= 0 (8)

where σv is the tangential–momentum accommodation coefficient, which lies between 0.9 and 1, and λ

is the mean free path. If A is the area of cross-section and P is the perimeter of the duct, then the
hydraulic diameter, Dh can be written as:

Dh = 4A/P = 4b/(1 + ε) (9)
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At this stage, it is convenient to define the Knudsen number (the measure of rarefaction effects)
as follows:

Kn = λ/Dh ⇒ λ = 4bKn/1 + ε (10)

Following Ebert and Sparrow [17], Equations (6)–(8) can be non-dimensionalized as follows.
Let:

ξ = x/a, η = y/b (11)

The dimensionless momentum equation can be written as:

ε2 ∂2u
∂ξ2 +

∂2u
∂η2 = −1 (12)

where the axial velocity u is normalized with uo =
(

b2

µ

)∣∣∣ dP
dz

∣∣∣. Using Equation (11), dimensionless
boundary conditions can be written as:

u = − 4Kn
1+ε

2−σv
σv

∂u
∂η

∣∣∣
η=1

; 0 ≤ ξ < 1

u = − 4εKn
1+ε

2−σv
σv

∂u
∂ξ

∣∣∣
ξ=1

; 0 ≤ η < 1

∂u
∂η

∣∣∣
η=0

= 0; 0 ≤ ξ < 1; ∂u
∂x

∣∣∣
ξ=0

= 0; 0 ≤ η < 1

(13)
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The mean velocity in the duct is defined as:

u = u0

∫ 1

0

∫ 1

0
u(ξ, η) · dξ · dη (14)

The Poiseuille number Po is defined as:

Po = c f · ReDh (15)

where c f = τw/0.5ρu2 is the coefficient of friction and ReDh = uDh/ν is the Reynolds number, based
on mean velocity. For a fully developed flow, the force balance on a control volume of width dz gives:

−A · dp = τwPdz ⇒ τw = (dp/dz)(Dh/4) (16)

Thus, the dimensionless shear stress can be expressed in terms of the Poiseuille number Po:

Po = − 32

(1 + ε)2 ·
1

(u/u0)
(17)

where u/u0 is the dimensionless average axial velocity in the microduct and can be determined from
Equation (14).

2.2. Thermal Analysis

For fully thermally developed and steady flow in the rectangular microducts, the energy equation
is given by:

k f

ρcp

(
∂2T
∂x2 +

∂2T
∂y2

)
= u

∂T
∂z

(18)

with temperature jump and symmetry boundary conditions:

T − Tw = − λ
Pr

2−σt
σt

2γ
1+γ

∂T
∂y

∣∣∣
y=b

T − Tw = − λ
Pr

2−σt
σt

2γ
1+γ

∂T
∂x

∣∣∣
x=a

(19)

and:
∂T
∂y

∣∣∣∣
y=0

= 0
∂T
∂x

∣∣∣∣
x=0

= 0 (20)

where Pr is the Prandtl number for the selected gas, σt is the energy accommodation coefficient, and γ

is the ratio of specific heats of gas.
Using Equation (11), the energy balance in the flow direction can be written as:

k f

ρcp

(
ε2 ∂2T

∂ξ2 +
∂2T
∂η2

)
= u

b2Q
4abρcpu

(21)

or:

ε2 ∂2T
∂ξ2 +

∂2T
∂η2 =

u
u

ε

4
Q
k f

(22)

where Q is the total energy per unit length of the duct and is assumed to be constant. Using θ =

(T − Tw)/(Q/k f ), Equation (22) can be written as:

ε2 ∂2θ

∂ξ2 +
∂2θ

∂η2 =
u
u

ε

4
(23)
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with transformed boundary conditions [17]:

θ = − 4
1+ε

Kn
Pr

2−σt
σt

2γ
1+γ

∂θ
∂η

∣∣∣
η=1

; 0 ≤ ξ < 1

θ = − 4ε
1+ε

Kn
Pr

2−σt
σt

2γ
1+γ

∂θ
∂ξ

∣∣∣
ξ=1

; 0 ≤ η < 1

∂θ
∂η

∣∣∣
η=0

= 0; 0 ≤ ξ < 1; ∂θ
∂ξ

∣∣∣
ξ=0

= 0; 0 ≤ η < 1

 (24)

For a constant temperature jump condition, the Nusselt number can be defined as:

NuT =
∂T/∂y|wall
T − Twall

(25)

2.3. Solution Procedure

The solution procedure comprises three steps. In the first step, the numerical values of the Nu and
Po numbers are determined, corresponding to different values of ε and Kn by solving the governing
Equations (12) and (23) by a finite difference method using MAPLE, and numerical data was obtained.
In the second step, the back-error-propagation algorithm is employed to train a multi-layer perceptron
neural network (MLPNN) using the neural network toolbox in MATLAB. There are two inputs, namely,
the aspect ratio ε and the Knudsen number Kn. The corresponding outputs are the predicted values of
the Nu and Po numbers, where each output is represented by a separate model. In each model, different
input, hidden and output neurons are used. Finally, the results are optimized using PSO algorithm in
order to find the optimal values of Nu and Po without gaining to the numerical values. Accordingly,
the dimensionless partial differential equations will not use again in any stage of our work. As a result,
the PSO algorithm uses neural network models to obtain the optimum values of Nu and Po.

3. Results and Discussion

The numerical values of Poiseuille numbers for forced convection in microducts were compared
with the available data for different values of Kn in Tables 1–3. The comparison showed excellent
agreement with the available data. The predicted values of the Nusselt numbers are also provided
in Table 4 for different values of ε and Kn. To build the NN models, 70% of data was used as
the training data, 15% as the testing data, and 15% as the validation data. In NN MATLAB tools,
the back-error-propagation algorithm (an optimization algorithm) was used to determine the best
models that have the optimal errors. These models were based on the mean squared error function of
MSE = 0.00020768 and MSE = 0.00022112 for the two models, respectively, as shown in Figures 4 and 5.
The figures show that the best validation performance, in terms of the mean squared error function,
were found after 187 and 452 iterations, respectively.

Table 1. Comparison of the Poiseuille numbers for forced convection when Kn = 0.1.

ε Morini et al. [36] Sadeghi et al. [37] Present Results

0.2 9.46 9.464 9.519
0.4 8.65 8.654 8.721
0.6 8.25 8.248 8.331
0.8 8.08 8.076 8.178
1 8.04 8.033 8.159
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Table 2. Comparison of numerical and exact values of Po when Kn = 0.001.

ε Numerical Exact [38] % Difference

0.001 24.031 23.7 1.3774
0.01 23.743 23.41 1.4025
0.02 23.432 22.24 5.0871
0.1 21.259 20.95 1.4535
0.2 19.182 18.89 1.5223
0.3 17.641 17.36 1.5929
0.4 16.514 16.24 1.6592
0.5 15.712 15.43 1.7948
0.6 15.164 14.87 1.9388
0.7 14.811 14.5 2.0998
0.8 14.608 14.28 2.2453
0.9 14.519 14.17 2.4037
1 14.514 14.14 2.5768

Table 3. Comparison of numerical and exact values of Po when Kn = 0.1.

ε Numerical Exact [38] % Difference

0.001 10.944 10.9 0.402
0.01 10.862 10.82 0.3867
0.02 10.773 10.47 2.8126
0.1 10.139 10.09 0.4833
0.2 9.519 9.46 0.6198
0.3 9.056 9 0.6184
0.4 8.721 8.66 0.6995
0.5 8.487 8.41 0.9073
0.6 8.331 8.25 0.9723
0.7 8.233 8.14 1.1296
0.8 8.178 8.08 1.1983
0.9 8.157 8.04 1.4344
1 8.159 8.04 1.4585

Table 4. Numerical values of Nu for different values of Kn.

ε Kn = 0.001 Kn = 0.05 Kn = 0.1

0.001 6.1658 1.4213 0.7164
0.25 5.1047 1.7625 1.0819
0.35 4.6786 1.8996 1.2287
0.5 4.0394 2.1051 1.4488

0.65 3.8048 2.1830 1.5590
0.75 3.6485 2.2348 1.6325
0.85 3.6156 2.2745 1.6816

1 3.5662 2.3341 1.7552
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Figure 4. Best Validation Performance is 0.00020768 at iteration 187 of using MATLAB to generate the
NN model of Nu.
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Figure 5. Best Validation Performance is 0.00022112 at iteration 452 using MATLAB to generate the
neural network (NN) model of Po.

The correlation coefficients of the models are shown in Figures 6 and 7. As expected, the correlation
coefficient of the models was greater than 0.95. In addition, Figures 6 and 7 show a significant convergence
between the real values and the corresponding values that resulted from models. Accordingly, there was
enough support to believe that the models were suitable to find the estimated values of the Nu and Po
numbers. In addition, the coefficient of determination of the models was more than 0.99, which meant
that both models could represent whole target data.

For optimization, the PSO algorithm was used to find the optimal values of Po and Nu, based on
NN models. The optimal values of Po and Nu were achieved when ε = 1, and Kn = 0.001. The behavior
of Po and Nu values in the PSO algorithm is shown in Figures 8 and 9. The optimal values of the curves
were determined when the curves became stable. Accordingly, the optimal values for Nu and Po were
found in iteration number 4 and 10, respectively. Note that, the data set values were converted into
z-score values for use in the neural network toolbox in MATLAB.
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4. Conclusions

In this study, the slip flow and heat transfer were investigated in rectangular microducts.
The dimensionless governing partial differential equations with slip boundary conditions were solved
numerically using MATLAB. The numerical data were used successfully for building ANN models.
The outputs of the models were the corresponding Poiseuille Po and Nusselt Nu numbers to the input
values ε and Kn. The main outcomes of the study were:
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1. The small tolerance values for the mean squared error function values and a very close correlation
coefficient of 1 in the NN models proved that the NN models were suitable to use for predicting
the Poiseuille Po and Nusselt Nu numbers.

2. Without going back to the numerical data, the proposed models were used with the PSO algorithm
to find the optimal values of Po and Nu.

3. The optimal values of Po and Nu are found when ε = 1 and Kn = 0.001.
4. The correlation coefficient of the models was greater than 0.95.
5. The optimal values of the curves were determined when the curves became stable.
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