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Abstract: This paper presents two shrinking extragradient algorithms that can both find the solution
sets of equilibrium problems for pseudomonotone bifunctions and find the sets of fixed points
of quasi-nonexpansive mappings in a real Hilbert space. Under some constraint qualifications
of the scalar sequences, these two new algorithms show strong convergence. Some numerical
experiments are presented to demonstrate the new algorithms. Finally, the two introduced algorithms
are compared with a standard, well-known algorithm.
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1. Introduction

The equilibrium problem started to gain interest after the publication of a paper by Blum and
Oettli [1], which discussed the problem of finding a point x∗ ∈ C such that

f (x∗, y) ≥ 0, ∀y ∈ C, (1)

where C is a nonempty closed convex subset of a real Hilbert space H, and f : C× C → (−∞,+∞)

is a bifunction. This well-known equilibrium model (1) has been used for studying a variety of
mathematical models for physics, chemistry, engineering, and economics. In addition, the equilibrium
problem (1) can be applied to many mathematical problems, such as optimization problems, variational
inequality problems, minimax problems, Nash equilibrium problems, saddle point problems, and
fixed point problems, see [1–4], and the references therein.

In order to solve the equilibrium problem (1), when f is a monotone bifunction, approximate
solutions are frequently based on the proximal point method. That is, given xk, at each step, the next
iterate xk+1 can be found by solving the following regularized equilibrium problem:
find x ∈ C such that

f (x, y) +
1
rk
〈y− x, x− xk〉 ≥ 0, ∀y ∈ C, (2)

where {rk} ⊂ (0, ∞). Note that the existence of each xk is guaranteed, on condition that the
subproblem (2) is a strongly monotone problem (see [5,6]). However, if f is a pseudomonotone
bifunction (a property which is weaker than a monotone) the strong monotone-ness of the problem (2)
cannot be guaranteed. Therefore, the sequence {xk} may not be well-defined. To overcome this
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drawback, Tran et al. [7] proposed the following extragradient method for solving the equilibrium
problem, when the considered bifunction f is pseudomonotone and Lipschitz-type continuous with
positive constants L1 and L2:

x0 ∈ C,

yk = argmin{ρ f (xk, y) + 1
2‖xk − y‖2 : y ∈ C},

xk+1 = argmin{ρ f (yk, y) + 1
2‖xk − y‖2 : y ∈ C},

(3)

where 0 < ρ < min{ 1
2L1

, 1
2L2
}. Tran et al. guaranteed that the sequence {xk} generated by (3) converges

weakly to a solution of the equilibrium problem (1).
On the other hand, for a nonempty closed convex subset C of H and a mapping T : C → C,

the fixed point problem is a problem of finding a point x ∈ C such that Tx = x. This fixed point
problem has many important applications, such as optimization problems, variational inequality
problems, minimax problems, and saddle point problems, see [8–11], and the references therein.
The set of fixed points of a mapping T will be represented by Fix(T).

An iteration method for finding fixed points of the mapping T was proposed by Mann [12]
as follows: {

x0 ∈ C,

xk+1 = (1− αk)xk + αkTxk,
(4)

where {αk} ⊂ (0, 1) and ∑∞
k=0 αk = ∞. If T is a nonexpansive mapping and has a fixed point, then the

sequence {xk} generated by (4) converges weakly to a fixed point of T. In addition, in 1994, Park and
Jeong [13] showed that if T is a quasi-nonexpansive mapping with I − T demiclosed at 0, then the
sequence which is generated by the Mann iteration method converges weakly to a fixed point of T.

Furthermore, in order to obtain a strong convergence result for the Mann iteration method,
Nakajo and Takahashi [14] proposed the following hybrid method:

x0 ∈ C,

yk = αkxk + (1− αk)Txk,

Ck = {x ∈ C : ‖yk − x‖ ≤ ‖xk − x‖},
Qk = {x ∈ C : 〈x0 − xk, x− xk〉 ≤ 0},
xk+1 = PCk∩Qk (x0),

(5)

where {αk} ⊂ [0, 1] such that αk ≤ 1− α for some α ∈ (0, 1], and PCk∩Qk is the metric projection onto
Ck ∩Qk. Nakajo and Takahashi proved that if T is a nonexpansive mapping, then the sequence {xk}
generated by (5) converges strongly to PFix(T)(x0).

In addition, in 1974, Ishikawa [15] proposed the following method for finding fixed points of a
Lipschitz pseudocontractive mapping T:

x0 ∈ C,

yk = (1− αk)xk + αkTxk,

xk+1 = (1− βk)xk + βkTyk,

(6)

where 0 ≤ βk ≤ αk ≤ 1, limk→∞ αk = 0 and ∑∞
k=0 αkβk = ∞. If C is a convex compact subset of H,

then the sequence {xk} generated by (6) converges strongly to fixed points of T. It has been previously
shown that the Mann iteration method is generally not applicable for finding fixed points of a Lipschitz
pseudocontractive mapping in a Hilbert space. For example, see [16].
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In 2008, by using Ishikawa’s iteration concept, Takahashi et al. [17] proposed the following hybrid
method, called the shrinking projection method, which is different from Nakajo and Takahashi’s
method [14]: 

u0 ∈ H, C1 = C,

x1 = PC1(u0),

yk = αkxk + (1− αk)Txk,

zk = βkxk + (1− βk)Tyk,

Ck+1 = {x ∈ Ck : ‖zk − x‖ ≤ ‖xk − x‖},
xk+1 = PCk+1(x0),

(7)

where {αk} ⊂ [α, α] with 0 < α ≤ α < 1, and {βk} ⊂ [0, 1− β] for some β ∈ (0, 1). Takahashi et
al. proved that if T is a nonexpansive mapping, then the sequence {xk} generated by (7) converges
strongly to PFix(T)(x0).

In recent years, many algorithms have been proposed for finding a common element of the
set of solutions of the equilibrium problem and the set of solutions of the fixed point problem.
See, for instance, [8,11,18–23] and the references therein. In 2016, by using both hybrid and
extragradient methods together in combination with Ishikawa’s iteration concept, Dinh and Kim [24]
proposed the following iteration method for finding a common element of fixed points of a symmetric
generalized hybrid mapping T and the set of solutions of the equilibrium problem, when a bifunction
f is pseudomonotone and Lipschitz-type continuous with positive constants L1 and L2:

x0 ∈ C,

yk = argmin{ρk f (xk, y) + 1
2‖xk − y‖2 : y ∈ C},

zk = argmin{ρk f (yk, y) + 1
2‖xk − y‖2 : y ∈ C},

tk = αkxk + (1− αk)Txk,

uk = βktk + (1− βk)Tzk,

Ck = {x ∈ H : ‖x− uk‖ ≤ ‖x− xk‖},
Qk = {x ∈ H : 〈x− xk, x0 − xk〉 ≤ 0},
xk+1 = PCk∩Qk∩C(x0),

(8)

where {ρk} ⊂ [ρ, ρ] with 0 < ρ ≤ ρ < min{ 1
2L1

, 1
2L2
}, {αk} ⊂ [0, 1] such that limk→∞ αk = 1,

and {βk} ⊂ [0, 1− β] for some β ∈ (0, 1). Dinh and Kim proved that the sequence {xk} generated by (8)
converges strongly to PEP( f ,C)∩Fix(T)(x0), where EP( f , C) is the solution set of the equilibrium problem.

Now, let us consider the problem of finding a common solution of a finite family of equilibrium
problems (CSEP). Let C be a nonempty closed convex subset of H and let fi : C× C → (−∞,+∞),
i = 1, . . . , N, be bifunctions satisfying fi(x, x) = 0 for each x ∈ C. The problem CSEP is to find x∗ ∈ C
such that

fi(x∗, y) ≥ 0, ∀y ∈ C, i = 1, . . . , N. (9)

The solution set of the problem CSEP will be denoted by ∩N
i=1EP( fi, C). It is worth pointing out

that the problem CSEP is a generalization of many mathematical models, such as common solutions
to variational inequality problems, convex feasibility problems and common fixed point problems.
See [1,25–27] for more details. In 2016, Hieu et al. [28] considered the following problem:{

find a point x∗ ∈ C such that Tjx∗ = x∗, j = 1, . . . , M,

and fi(x∗, y) ≥ 0, ∀y ∈ C, i = 1, . . . , N,
(10)
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where C is a nonempty closed convex subset of H, Tj : C → C, j = 1, . . . , M, are mappings, and
fi : C× C → (−∞,+∞), i = 1, . . . , N, are bifunctions satisfying fi(x, x) = 0 for each x ∈ C. From now
on, the solution set of problem (10) will be denoted by S. That is:

S := (∩M
j=1Fix(Tj)) ∩ (∩N

i=1EP( fi, C)).

By using both hybrid and extragradient methods together in combination with Mann’s iteration
concept and parallel splitting-up techniques (see [25,29]), they proposed the following algorithm
for finding the solution set of problem (10), when mappings are nonexpansive, and bifunctions are
pseudomonotone and Lipschitz-type continuous with positive constants L1 and L2:

x0 ∈ C,

yi
k = argmin{ρ fi(xk, y) + 1

2‖xk − y‖2 : y ∈ C}, i = 1, 2, . . . , N,

zi
k = argmin{ρ fi(yi

k, y) + 1
2‖xk − y‖2 : y ∈ C}, i = 1, 2, . . . , N,

zk = argmax{‖zi
k − xk‖ : i = 1, 2, . . . , N},

uj
k = αkxk + (1− αk)Tjzk, j = 1, 2, . . . , M,

uk = argmax{‖uj
k − xk‖ : j = 1, 2, . . . , M},

Ck = {x ∈ C : ‖x− uk‖ ≤ ‖x− xk‖},
Qk = {x ∈ C : 〈x− xk, x0 − xk〉 ≤ 0},
xk+1 = PCk∩Qk (x0),

(11)

where 0 < ρ < min{ 1
2L1

, 1
2L2
}, and {αk} ⊂ (0, 1) such that lim supk→∞ αk < 1. Hieu et al. proved that

the sequence {xk} generated by (PHMEM) converges strongly to PS(x0). The algorithm (11) is called
PHMEM method.

The current study will continue developing methods for finding the solution set of problem (10).
Roughly speaking, some new iterative algorithms will be introduced for finding the solution set
of problem (10). Some numerical examples will be considered and the introduced methods will be
discussed and compared with the PHMEM algorithm.

This paper is organized as follows: In Section 2, some relevant definitions and properties will be
reviewed for use in subsequent sections. Section 3 will present two shrinking extragradient algorithms
and prove their convergence. Finally, in Section 4, the performance of the introduced algorithms will
be compared to the performance of the PHMEM algorithm and discussed.

2. Preliminaries

This section will present some definitions and properties that will be used subsequently. First, let H
be a real Hilbert space induced by the inner product 〈· , · 〉 and norm ‖ · ‖. The symbols→ and ⇀ will
be used here to denote the strong convergence and the weak convergence in H, respectively.

Now, recalled here are definitions of nonlinear mappings related to this work.

Definition 1 ([30,31]). Let C be a nonempty closed convex subset of H. A mapping T : C → C is said to be:

(i) pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ C,

where I denotes the identity operator on H.
(ii) Lipschitzian if there exists L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C.
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In particular, if L = 1, then T is said to be nonexpansive.
(iii) quasi-nonexpansive if Fix(T) is nonempty and

‖Tx− p‖ ≤ ‖x− p‖, ∀x ∈ C, p ∈ Fix(T).

(iv) (α, β, γ, δ)-symmetric generalized hybrid if there exists α, β, γ, δ ∈ (−∞,+∞) such that

α‖Tx− Ty‖2 + β(‖x− Ty‖2 + ‖y− Tx‖2) + γ‖x− y‖2

+δ(‖x− Tx‖2 + ‖y− Ty‖2) ≤ 0, ∀x, y ∈ C.

Definition 2. (see [32]) Let C be a nonempty closed convex subset of H and T : C → H be a mapping.
The mapping T is said to be demiclosed at y ∈ H if for any sequence {xk} ⊂ C with xk ⇀ x∗ ∈ C and Txk → y
imply Tx∗ = y.

Note that the class of pseudocontractive mappings includes the class of nonexpansive mappings.
In addition, a nonexpansive mapping with at least one fixed point is a quasi-nonexpansive mapping,
but the converse is not true. For example, see [33]. Moreover, if a (α, β, γ, δ)-symmetric generalized
hybrid mapping satisfies (1) α + 2β + γ ≥ 0, (2) α + β > 0 and (3) δ ≥ 0 then T is quasi-nonexpansive
and I − T demiclosed at 0 (see [34,35]). Moreover, Fix(T) is closed and convex when T is a
quasi-nonexpansive mapping (see [36]).

Next, we recall definitions and facts for considering the equilibruim problems.

Definition 3 ([1,4,37]). Let C be a nonempty closed convex subset of H and f : C× C → (−∞,+∞) be a
bifunction. The bifunction f is said to be:

(i) strongly monotone on C if there exists a constant γ > 0 such that

f (x, y) + f (y, x) ≤ −γ‖x− y‖2, ∀x, y ∈ C;

(ii) monotone on C if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

(iii) pseudomonotone on C if

∀x, y ∈ C, f (x, y) ≥ 0⇒ f (y, x) ≤ 0.

(iv) Lipshitz-type continuous on C with constants L1 > 0 and L2 > 0 if

f (x, y) + f (y, z) ≥ f (x, z)− L1‖x− y‖2 − L2‖y− z‖2, ∀x, y, z ∈ C.

Remark 1. From Definition 3, we observe that (i)⇒ (ii)⇒ (iii). However, if f is pseudomonotone, f might
not be monotone on C. For example, see [38].

For a nonempty closed convex subset C of H and a bifunction f : C× C → (−∞,+∞) satisfying
f (x, x) = 0 for each x ∈ C. In this paper, we are concerned with the following assumptions:

(A1) f is weakly continuous on C× C in the sense that, if x, y ∈ C and {xk}, {yk} are two sequences
in C converge weakly to x and y respectively, then f (xk, yk) converges to f (x, y);

(A2) f (x, · ) is convex and subdifferentiable on C for each fixed x ∈ C;
(A3) f is psuedomonotone on C;
(A4) f is Lipshitz-type continuous on C with constants L1 > 0 and L2 > 0.

It is well-known that the solution set EP( f , C) is closed and convex, when the bifunction f satisfies
the assumptions (A1)− (A3). See, for instance, [7,39,40].

The following facts are very important in order to obtain our main results.
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Lemma 1 ([18]). Let f : C× C → (−∞,+∞) be satisfied (A2)− (A4). If EP( f , C) is nonempty set and
0 < ρ0 < min{ 1

2L1
, 1

2L2
}. Let x0 ∈ C. If y0 and z0 are defined by

{
y0 = arg min{ρ0 f (x0, w) + 1

2‖w− x0‖2 : w ∈ C},
z0 = arg min{ρ0 f (y0, w) + 1

2‖w− x0‖2 : w ∈ C},

then,

(i) ρ0 [ f (x0, w)− f (x0, y0)] ≥ 〈y0 − x0, y0 − w〉, for all w ∈ C;

(ii) ‖z0 − q‖2 ≤ ‖x0 − q‖2 − (1− 2ρ0L1)‖x0 − y0‖2 − (1− 2ρ0L2)‖y0 − z0‖2, for all q ∈ EP( f , C).

This section will be closed by recalling the projection mapping and calculus concepts in
Hilbert space.

Let C be a nonempty closed convex subset of H. For each x ∈ H, we denote the metric projection
of x onto C by PC(x), that is

‖x− PC(x)‖ ≤ ‖y− x‖, ∀y ∈ C.

The following facts will also be used in this paper.

Lemma 2. (see, for instance, [41,42]) Let C be a nonempty closed convex subset of H. Then

(i) PC(x) is singleton and well-defined for each x ∈ H;
(ii) z = PC(x) if and only if 〈x− z, y− z〉 ≤ 0, ∀y ∈ C;

(iii) ‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 − ‖PC(x)− x + y− PC(y)‖2, ∀x, y ∈ C.

For a nonempty closed convex subset C of H and a convex function g : C → R, the subdifferential
of g at z ∈ C is defined by

∂g(z) = {w ∈ C : g(y)− g(z) ≥ 〈w, y− z〉, ∀y ∈ C}.

The function g is said to be subdifferentiable at z if ∂g(z) 6= ∅.

3. Main Result

In this section, we propose two shrinking extragradient algorithms for finding a solution of
problem (10), when each mapping Tj, j = 1, 2, . . . , M, is quasi-nonexpansive with I − Tj demiclosed
at 0, and each bifunction fi, i = 1, 2, . . . , N, satisfies all the assumptions (A1)− (A4). We start by
observing that if each bifunction fi, i = 1, 2, . . . , N, is Lipshitz-type continuous on C with constants
Li

1 > 0 and Li
2 > 0, then

fi(x, y) + fi(y, z) ≥ fi(x, z)− Li
1‖x− y‖2 − Li

2‖y− z‖2

≥ fi(x, z)− L1‖x− y‖2 − L2‖y− z‖2,

where L1 = max{Li
1 : i = 1, 2, . . . , N} and L2 = max{Li

2 : i = 1, 2, . . . , N}. This means the bifunctions
fi, i = 1, 2, . . . , N, are Lipshitz-type continuous on C with constants L1 > 0 and L2 > 0. Of course, we
will use this notation in this paper. Moreover, for each N ∈ N and k ∈ N∪ {0}, we denote [k]N for a
modulo function at k with respect to N, that is

[k]N = k(mod N) + 1.

Now, we propose a following cyclic algorithm.

CSEM Algorithm (Cyclic Shrinking Extragradient Method)
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Initialization. Pick x0 ∈ C =: C0, choose parameters {ρk} with 0 < inf ρk ≤ sup ρk <

min{ 1
2L1

, 1
2L2
}, {αk} ⊂ [0, 1] such that limk→∞ αk = 1, and {βk} with 0 ≤ inf βk ≤ sup βk < 1.

Step 1. Solve the strongly convex program

yk = argmin{ρk f[k]N (xk, y) +
1
2
‖y− xk‖2 : y ∈ C}.

Step 2. Solve the strongly convex program

zk = argmin{ρk f[k]N (yk, y) +
1
2
‖y− xk‖2 : y ∈ C}.

Step 3. Compute

tk = αkxk + (1− αk)T[k]M xk,

uk = βktk + (1− βk)T[k]M zk.

Step 4. Construct closed convex subset of C:

Ck+1 = {x ∈ Ck : ‖x− uk‖ ≤ ‖x− xk‖}.

Step 5. The next approximation xk+1 is defined as the projection of x0 onto Ck+1, i.e.,

xk+1 = PCk+1(x0).

Step 6. Put k = k + 1 and go to Step 1.

Before going to prove the strong convergence of CSEM Algorithm, we need the following lemma.

Lemma 3. Suppose that the solution set S is nonempty. Then, the sequence {xk} which is generated by CSEM
Algorithm is well-defined.

Proof. To prove the Lemma, it suffices to show that Ck is a nonempty closed and convex subset of
H, for each k ∈ N ∪ {0}. Firstly, we will show the non-emptiness by showing that S ⊂ Ck, for each
k ∈ N∪ {0}. Obviously, S ⊂ C0.

Now, let q ∈ S. Then, by Lemma 1 (ii), we have

‖zk − q‖2 ≤ ‖xk − q‖2 − (1− 2ρkL1)‖xk − yk‖2 − (1− 2ρkL2)‖yk − zk‖2,

for each k ∈ N∪ {0}. This implies that

‖zk − q‖ ≤ ‖xk − q‖, (12)

for each k ∈ N∪ {0}. On the other hand, since q ∈ Fix(Tj), it follows from the quasi-nonexpansivity
of each Tj (j ∈ {1, 2, . . . , M}) and the definitions of tk, uk that

‖tk − q‖ ≤ αk‖xk − q‖+ (1− αk)‖T[k]M xk − q‖
≤ αk‖xk − q‖+ (1− αk)‖xk − q‖
= ‖xk − q‖, (13)

and

‖uk − q‖ ≤ βk‖tk − q‖+ (1− βk)‖T[k]M zk − q‖
≤ βk‖tk − q‖+ (1− βk)‖zk − q‖,
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for each k ∈ N∪ {0}. The relations (12) and (13) imply that

‖uk − q‖ ≤ βk‖xk − q‖+ (1− βk)‖xk − q‖
= ‖xk − q‖, (14)

for each k ∈ N ∪ {0}. Now, suppose that S ⊂ Ck. Thus, by using (14), we see that S ⊂ Ck+1.
So, by induction, we have S ⊂ Ck, for each k ∈ N∪ {0}. Since S is a nonempty set, we obtain that Ck is
a nonempty set, for each k ∈ N∪ {0}.

Next, we show that Ck is a closed and convex subset, for each k ∈ N∪ {0}. Note that we already
have that C0 is a closed and convex subset. Now, suppose that Ck is a closed and convex subset, we
will show that Ck+1 is likewise. To do this, let us consider a set Bk = {x ∈ H : ‖x− uk‖ ≤ ‖x− xk‖}.
We see that

Bk = {x ∈ H : 〈xk − uk, x〉 ≤ 1
2
(‖xk‖2 − ‖uk‖2)}.

This means that Bk is a halfspace and Ck+1 = Ck ∩ Bk. Thus, Ck+1 is a closed and convex subset.
Thus, by induction, we can conclude that Ck is a closed and convex subset, for each k ∈ N ∪ {0}.
Consequently, we can guarantee that {xk} is well-defined.

Theorem 1. Suppose that the solution set S is nonempty. Then, the sequence {xk} which is generated by
CSEM Algorithm converges strongly to PS(x0).

Proof. Let q ∈ S. By the definition of xk+1, we observe that xk+1 ∈ Ck+1 ⊂ Ck, for each k ∈ N ∪ {0}.
Since xk = PCk (x0) and xk+1 ∈ Ck, we have

‖xk − x0‖ ≤ ‖xk+1 − x0‖,

for each k ∈ N ∪ {0}. This means that {‖xk − x0‖} is a nondecreasing sequence. Similarly, for each
q ∈ S ⊂ Ck+1, we obtain that

‖xk+1 − x0‖ ≤ ‖q− x0‖,

for each k ∈ N∪ {0}. By the above inequalities, we get

‖xk − x0‖ ≤ ‖q− x0‖, (15)

for each k ∈ N ∪ {0}. So {‖xk − x0‖} is a bounded sequence. Consequently, we can conclude that
{‖xk − x0‖} is a convergent sequence. Moreover, we see that {xk} is bounded. Thus, in view of (13)
and (14), we get that {tk} and {uk} are also bounded. Suppose k, j ∈ N∪ {0} such that k > j. It follows
that xk ∈ Ck ⊂ Cj. Then, by Lemma 2 (iii), we have

‖PCj(xk)− PCj(x0)‖2 ≤ ‖x0 − xk‖2 − ‖PCj(xk)− xk + x0 − PCj(x0)‖2.

Consequently,
‖xk − xj‖2 ≤ ‖x0 − xk‖2 − ‖xj − x0‖2.

Thus, by using the existence of limk→∞ ‖xk − x0‖, we get

lim
k,j→∞

‖xk − xj‖ = 0.

That is {xk} is a Cauchy sequence in C. Since C is closed, there exists p ∈ C such that

lim
k→∞

xk = p. (16)
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By the definition of Ck+1 and xk+1 ∈ Ck, we see that

‖xk+1 − uk‖ ≤ ‖xk+1 − xk‖,

for each k ∈ N∪ {0}. It follows that

‖uk − xk‖ ≤ ‖uk − xk+1‖+ ‖xk+1 − xk‖
≤ ‖xk+1 − xk‖+ ‖xk+1 − xk‖
= 2‖xk+1 − xk‖, (17)

for each k ∈ N∪ {0}. Since xk → p and xk+1 → p, as k→ ∞, we obtain that

lim
k→∞
‖xk+1 − xk‖ = 0.

This together with (17) imply that

lim
k→∞
‖uk − xk‖ = 0. (18)

Since limk→∞ αk = 1 and the quasi-nonexpansivity of each Tj (j ∈ {1, 2, . . . , M}), it follows that

lim
k→∞
‖tk − xk‖ = lim

k→∞
‖αkxk + (1− αk)T[k]M xk − xk‖

= lim
k→∞

(1− αk)‖xk − T[k]M xk‖

= 0. (19)

Consider,

‖uk − q‖2 = ‖βk(tk − q) + (1− βk)(T[k]M zk − q)‖2

= βk‖tk − q‖2 + (1− βk)‖T[k]M zk − q‖2 − βk(1− βk)‖tk − T[k]M zk‖2

≤ βk‖tk − q‖2 + (1− βk)‖T[k]M zk − q‖2,

for each k ∈ N ∪ {0}. By using (13) and the quasi-nonexpansivity of each Tj (j ∈ {1, 2, . . . , M}),
we obtain

‖uk − q‖2 ≤ βk‖xk − q‖2 + (1− βk)‖zk − q‖2,

for each k ∈ N∪ {0}. Then, by Lemma 1 (ii), we have

‖uk − q‖2 ≤ βk‖xk − q‖2 + (1− βk)[‖xk − q‖2 − (1− 2ρkL1)‖xk − yk‖2 − (1− 2ρkL2)‖yk − zk‖2]

≤ ‖xk − q‖2 − (1− βk)[(1− 2ρkL1)‖xk − yk‖2 + (1− 2ρkL2)‖yk − zk‖2],

for each k ∈ N∪ {0}. It follows that

(1− βk)[(1− 2ρkL1)‖xk − yk‖2 + (1− 2ρkL2)‖yk − zk‖2] ≤ ‖xk − uk‖(‖xk − q‖+ ‖uk − q‖), (20)

for each k ∈ N∪ {0}. Thus, by using (18) and the choices of {βk}, {ρk}, we have

lim
k→∞
‖xk − yk‖ = 0, (21)

and
lim
k→∞
‖yk − zk‖ = 0. (22)

These imply that
lim
k→∞
‖xk − zk‖ = 0. (23)
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Then, by limk→∞ xk = p, we also have

lim
k→∞

yk = p, (24)

and
lim
k→∞

zk = p. (25)

Next, we claim that p ∈ S. From the definition of uk, we see that

(1− βk)‖T[k]M zk − zk‖ = ‖uk − zk − βk(tk − zk)‖
≤ ‖uk − zk‖+ βk‖tk − zk‖
≤ ‖uk − xk‖+ βk‖tk − xk‖+ (1 + βk)‖xk − zk‖,

for each k ∈ N∪ {0}. Then, by using (18), (19) and (23), we have

lim
k→∞
‖T[k]M zk − zk‖ = 0. (26)

Furthermore, for each fixed j ∈ {1, 2, . . . , M}, we observe that

[(j− 1) + kM]M = j,

for each k ∈ N∪ {0}. Thus, it follows from (26) that

0 = lim
k→∞
‖T[(j−1)+kM]M

z(j−1)+kM − z(j−1)+kM‖

= lim
k→∞
‖Tjz(j−1)+kM − z(j−1)+kM‖, (27)

for each j ∈ {1, 2, . . . , M}. Since zk → p, as k→ ∞, then for each j ∈ {1, 2, . . . , M}, we get z(j−1)+kM →
p, as k→ ∞. Combining with (27), by the demiclosedness at 0 of I − Tj, implies that

Tj p = p,

for each j = 1, 2, . . . , M.
Similarly, for each fixed i ∈ {1, 2, . . . , N}, we note that

[(i− 1) + kN]N = i,

for each k ∈ N ∪ {0}. Since xk → p and yk → p, as k → ∞, then for each i ∈ {1, 2, . . . , N}, we have
x(i−1)+kN → p and y(i−1)+kN → p, as k→ ∞. By Lemma 1 (i), for each i ∈ {1, 2, . . . , N}, we obtain

ρ(i−1)+kN [ f[(i−1)+kN]N
(x(i−1)+kN , y)− f[(i−1)+kN]N

(x(i−1)+kN , y(i−1)+kN)]

≥ 〈y(i−1)+kN − x(i−1)+kN , y(i−1)+kN − y〉, ∀y ∈ C.

It follows that, for each i ∈ {1, 2, . . . , N}, we have

f[(i−1)+kN]N
(x(i−1)+kN , y)− f[(i−1)+kN]N

(x(i−1)+kN , y(i−1)+kN)

≥ − 1
ρ(i−1)+kN

‖y(i−1)+kN − x(i−1)+kN‖‖y(i−1)+kN − y‖, ∀y ∈ C.

By using (21) and weak continuity of each fi (i ∈ {1, 2, . . . , N}), we get that

fi(p, y) ≥ 0, ∀y ∈ C,
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for each i = 1, 2, . . . , N. Then, we had shown that p ∈ S.
Finally, we will show that p = PS(x0). In fact, since PS(x0) ∈ S, it follows from (15) that

‖xk − x0‖ ≤ ‖PS(x0)− x0‖,

for each k ∈ N∪ {0}. Then, by using the continuity of norm and limk→∞ xk = p, we see that

‖p− x0‖ = lim
k→∞
‖xk − x0‖ ≤ ‖PS(x0)− x0‖.

Thus, by the definition of PS(x0) and p ∈ S, we obtain that p = PS(x0). This completes the
proof.

Next, by replacing cyclic method by parallel method, we propose the following algorithm.

PSEM Algorithm (Parallel Shrinking Extragradient Method)
Initialization. Pick x0 ∈ C =: C0, choose parameters {ρi

k} with 0 < inf ρi
k ≤ sup ρi

k <

min{ 1
2L1

, 1
2L2
}, i = 1, 2, . . . , N, {αk} ⊂ [0, 1] such that limk→∞ αk = 1, and {βk} with 0 ≤ inf βk ≤

sup βk < 1.
Step 1. Solve N strongly convex programs

yi
k = argmin{ρi

k fi(xk, y) +
1
2
‖y− xk‖2 : y ∈ C}, i = 1, 2, . . . , N.

Step 2. Solve N strongly convex programs

zi
k = argmin{ρi

k fi(yi
k, y) +

1
2
‖y− xk‖2 : y ∈ C}, i = 1, 2, . . . , N.

Step 3. Find the farthest element from xk among zi
k, i = 1, 2, . . . , N, i.e.,

zk = argmax{‖zi
k − xk‖ : i = 1, 2, . . . , N}.

Step 4. Compute

tj
k = αkxk + (1− αk)Tjxk, j = 1, 2, . . . , M,

uj
k = βktj

k + (1− βk)Tjzk, j = 1, 2, . . . , M.

Step 5. Find the farthest element from xk among uj
k, j = 1, 2, . . . , M, i.e.,

uk = argmax{‖uj
k − xk‖ : j = 1, 2, . . . , M}.

Step 6. Construct closed convex subset of C:

Ck+1 = {x ∈ Ck : ‖x− uk‖ ≤ ‖x− xk‖}.

Step 7. The next approximation xk+1 is defined as the projection of x0 onto Ck+1, i.e.,

xk+1 = PCk+1(x0).

Step 8. Put k = k + 1 and go to Step 1.

Theorem 2. Suppose that the solution set S is nonempty. Then, the sequence {xk} which is generated by PSEM
Algorithm converges strongly to PS(x0).
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Proof. Let q ∈ S. By the definition of zk, we suppose that ik ∈ {1, 2, . . . , N} such that zik
k = zk =

argmax{‖zi
k − xk‖ : i = 1, 2, . . . , N}. Then, by Lemma 1 (ii), we have

‖zk − q‖2 ≤ ‖xk − q‖2 − (1− 2ρ
ik
k L1)‖xk − yik

k ‖
2 − (1− 2ρ

ik
k L2)‖yik

k − zk‖2,

for each k ∈ N∪ {0}. This implies that

‖zk − q‖ ≤ ‖xk − q‖, (28)

for each k ∈ N∪ {0}. On the other hand, by the definition of tj
k and the quasi-nonexpansivity of each

Tj (j ∈ {1, 2, . . . , M}), we have

‖tj
k − q‖ ≤ αk‖xk − q‖+ (1− αk)‖Tjxk − q‖

≤ αk‖xk − q‖+ (1− αk)‖xk − q‖
= ‖xk − q‖, (29)

for each k ∈ N ∪ {0}. Additionally, by the definition of uk, we suppose that jk ∈ {1, 2, . . . , M} such
that ujk

k = uk = argmax{‖uj
k − xk‖ : j = 1, 2, . . . , M}. It follows from the quasi-nonexpansivity of each

Tj (j ∈ {1, 2, . . . , M}) that

‖uk − q‖ ≤ βk‖t
jk
k − q‖+ (1− βk)‖Tjk zk − q‖

≤ βk‖t
jk
k − q‖+ (1− βk)‖zk − q‖,

for each k ∈ N∪ {0}. The relations (28) and (29) imply that

‖uk − q‖ ≤ βk‖xk − q‖+ (1− βk)‖xk − q‖
= ‖xk − q‖, (30)

for each k ∈ N∪ {0}. Following the proof of Lemma 3 and Theorem 1, we can show that Ck is a closed
convex subset of H and S ⊂ Ck, for each k ∈ N∪ {0}. Moreover, we can check that the sequence {xk}
is a convergent sequence, say

lim
k→∞

xk = p, (31)

for some p ∈ C.
By the definition of Ck+1 and xk+1 ∈ Ck, we see that

‖xk+1 − uk‖ ≤ ‖xk+1 − xk‖,

for each k ∈ N∪ {0}. It follows that

‖uk − xk‖ ≤ ‖uk − xk+1‖+ ‖xk+1 − xk‖
≤ ‖xk+1 − xk‖+ ‖xk+1 − xk‖
= 2‖xk+1 − xk‖, (32)

for each k ∈ N∪ {0}. Since xk → p and xk+1 → p, as k→ ∞, we obtain that

lim
k→∞
‖xk+1 − xk‖ = 0.

This together with (32) implies that

lim
k→∞
‖uk − xk‖ = 0.
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Then, by the definition of uk, we have

lim
k→∞
‖uj

k − xk‖ = 0, (33)

for each j = 1, 2, . . . , M. Since limk→∞ αk = 1 and the quasi-nonexpansivity of each Tj (j ∈
{1, 2, . . . , M}), it follows that

lim
k→∞
‖tj

k − xk‖ = lim
k→∞
‖αkxk + (1− αk)Tjxk − xk‖

= lim
k→∞

(1− αk)‖xk − Tjxk‖

= 0, (34)

for each j = 1, 2, . . . , M. Beside, by the definition of uj
k , for each j = 1, 2, . . . , M, we see that

‖uj
k − q‖2 = ‖βk(t

j
k − q) + (1− βk)(Tjzk − q)‖2

= βk‖t
j
k − q‖2 + (1− βk)‖Tjzk − q‖2 − βk(1− βk)‖t

j
k − Tjzk‖2

≤ βk‖t
j
k − q‖2 + (1− βk)‖Tjzk − q‖2,

for each k ∈ N∪ {0}. Thus, by using (29) and the quasi-nonexpansivity of each Tj (j ∈ {1, 2, . . . , M}),
we have

‖uj
k − q‖2 ≤ βk‖xk − q‖2 + (1− βk)‖zk − q‖2,

for k ∈ N∪ {0}. So, by Lemma 1 (ii), for each j = 1, 2, . . . , M, we get that

‖uj
k − q‖2 ≤ βk‖xk − q‖2 + (1− βk)[‖xk − q‖2 − (1− 2ρ

ik
k L1)‖xk − yik

k ‖
2 − (1− 2ρ

ik
k L2)‖yik

k − zk‖2]

= ‖xk − q‖2 − (1− βk)[(1− 2ρ
ik
k L1)‖xk − yik

k ‖
2 + (1− 2ρ

ik
k L2)‖yik

k − zk‖2],

for each k ∈ N∪ {0}. It follows that, for each j = 1, 2, . . . , M, we have

(1− βk)[(1− 2ρ
ik
k L1)‖xk − yik

k ‖
2 + (1− 2ρ

ik
k L2)‖yik

k − zk‖2]

≤ ‖xk − q‖2 − ‖uj
k − q‖2

= ‖xk − uj
k‖(‖xk − q‖+ ‖uj

k − q‖), (35)

for each k ∈ N∪ {0}. Thus, by using (33) and the choices of {βk}, {ρi
k}, we see that

lim
k→∞
‖xk − yik

k ‖ = 0, (36)

and
lim
k→∞
‖yik

k − zk‖ = 0. (37)

These imply that
lim
k→∞
‖xk − zk‖ = 0. (38)

Then, by the definition of zk, we have

lim
k→∞
‖xk − zi

k‖ = 0, (39)

for each i = 1, 2, . . . , N. Moreover, by Lemma 1 (ii), for each i = 1, 2, . . . , N, we get that

‖zi
k − q‖2 ≤ ‖xk − q‖2 − (1− 2ρi

kL1)‖xk − yi
k‖

2 − (1− 2ρi
kL2)‖yi

k − zi
k‖

2,
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for each k ∈ N∪ {0}. It follows that, for each i = 1, 2, . . . , N, we have

(1− 2ρi
kL1)‖xk − yi

k‖
2 + (1− 2ρi

kL2)‖yi
k − zi

k‖
2 ≤ ‖xk − q‖2 − ‖zi

k − q‖2

= ‖xk − zi
k‖(‖xk − q‖+ ‖zi

k − q‖),

for each k ∈ N∪ {0}. Combining with (39) implies that

lim
k→∞
‖xk − yi

k‖ = 0, (40)

and
lim
k→∞
‖yi

k − zi
k‖ = 0, (41)

for each i = 1, 2, . . . , N. Thus, by using (38), (40) and limk→∞ xk = p, we have

lim
k→∞

zk = p, (42)

and
lim
k→∞

yi
k = p, (43)

for each i = 1, 2, . . . , N.
Next, we claim that p ∈ S. From the definition of uj

k, for each j = 1, 2, . . . , M, we see that

(1− βk)‖Tjzk − zk‖ = ‖uj
k − zk − βk(t

j
k − zk)‖

≤ ‖uj
k − zk‖+ βk‖t

j
k − zk‖

≤ ‖uj
k − xk‖+ βk‖t

j
k − xk‖+ (1 + βk)‖xk − zk‖,

for each k ∈ N∪ {0}. Thus, in view of (33), (34), and (38), we get that

lim
k→∞
‖Tjzk − zk‖ = 0, (44)

for each j = 1, 2, . . . , M. Combining with (42), by the demiclosedness at 0 of I − Tj, implies that

Tj p = p,

for each j = 1, 2, . . . , M.
On the other hand, by Lemma 1 (i), for each i = 1, 2, . . . , N, we see that

ρi
k[ fi(xk, y)− fi(xk, yi

k)] ≥ 〈y
i
k − xk, yi

k − y〉, ∀y ∈ C.

It follows that, for each i = 1, 2, . . . , N, we get

fi(xk, y)− fi(xk, yi
k) ≥ −

1
ρi

k
‖yi

k − xk‖‖yi
k − y‖, ∀y ∈ C.

By using (31), (40), (43) and weak continuity of each fi (i ∈ {1, 2, . . . , N}), we have

fi(p, y) ≥ 0, ∀y ∈ C,

for each i = 1, 2, . . . , N. Thus, we can conclude that p ∈ S. The rest of the proof is similar to the
arguments in the proof of Theorem 1, and it leads to the conclusion that the sequence {xk} converges
strongly to PS(x0).
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Remark 2. We note that for the PSEM algorithm we solve yi
k, zi

k, i = 1, 2, . . . , N, by using N bifunctions

and compute tj
k, uj

k, j = 1, 2, . . . , M, by using M mappings. The farthest elements from xk among all zi
k and

uj
k are chosen for the next step calculation. However, we solve only yk, zk, by using a bifunction and compute

only tk, uk, by using a mapping for the CSEM algorithm. After that, we construct closed convex subset Ck+1,
and the approximation xk+1 is the projection of x0 onto Ck+1 for both algorithms. We claim that the numbers
of iterations of the PSEM algorithm should be less than the CSEM algorithm. However, the computational
times of the CSEM algorithm should be less than the PSEM algorithm for sufficiently large N, M. On the other
hand, for the PHMEM algorithm they solved yi

k, zi
k, i = 1, 2, . . . , N, by using N bifunctions, and computed uj

k,

j = 1, 2, . . . , M, by using M mappings. The farthest elements from xk among all zi
k and uj

k are chosen similar to
the PSEM algorithm. However, they constructed two closed convex subsets Ck, Qk, and the approximation xk+1
is the projection of x0 onto Ck ∩Qk, which is difficult to compute. We will focus on these observations in the
next section.

4. A Numerical Experiment

This section will compare the two introduced algorithms, CSEM and PSEM, with the PHMEM
algorithm, which was presented in [28]. The following setting is taken from Hieu et al. [28]. Let H = R
be a Hilbert space with the standard inner product 〈x, y〉 = xy and the norm ‖x‖ = |x|, for each
x, y ∈ H. To be considered here are the nonexpansive self-mappings Tj, j = 1, 2, . . . , M, and the
bifunctions fi, i = 1, 2, . . . , N, which are given on C = [0, 1] by

Tj(x) =
xj sinj−1(x)

2j− 1
, j = 1, 2, . . . , M,

and
fi(x, y) = Bi(x)(y− x), i = 1, 2, . . . , N,

where Bi(x) = 0 if 0 ≤ x ≤ ξi, and Bi(x) = ex−ξi + sin(x − ξi) − 1 if ξi < x ≤ 1. Moreover,
0 < ξ1 < ξ2 < . . . < ξN < 1. Then, the bifunctions fi, i = 1, 2, . . . , N, satisfy conditions (A1)− (A4)
(see [28]). Indeed, the bifunctions fi, i = 1, 2, . . . , N, are Lipshitz-type continuous with constants
L1 = L2 = 2. Note that the solution set S is nonempty because 0 ∈ S.

The following numerical experiment is considered with these parameters: ρk =
1
5 , ξ[k]N = [k]N

N+1
for the CSEM algorithm; ρi

k = 1
5 , ξi =

i
N+1 , i = 1, 2, . . . , N for the PSEM algorithm, when N = 1000

and M = 2000. The following six cases of the parameters αk and βk are considered:

Case 1. αk = 1− 1
k + 2

, βk =
1

k + 2
.

Case 2. αk = 1− 1
k + 2

, βk = 0.5 +
1

k + 3
.

Case 3. αk = 1− 1
k + 2

, βk = 0.99− 1
k + 2

.

Case 4. αk = 1, βk =
1

k + 2
.

Case 5. αk = 1, βk = 0.5 +
1

k + 3
.

Case 6. αk = 1, βk = 0.99− 1
k + 2

.

The experiment was written in Matlab R2015b and performed on a PC desktop with Intel(R)
Core(TM) i3-3240 CPU @ 3.40GHz 3.40GHz and RAM 4.00 GB. The function f mincon in Matlab
Optimization Toolbox was used to solve vectors yk, zk for the CSEM algorithm; yi

k, zi
k, i = 1, 2, . . . , N,

for the PSEM algorithm. The set Ck+1 was computed by using the function solve in Matlab Symbolic
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Math Toolbox. One can see that the set Ck+1 is the interval [a, b], where a, b ∈ [0, 1], a ≤ b. Consequently,
the metric projection of a point x0 onto the set Ck+1 was computed by using this form

PCk+1(x0) = max{min{x0, b}, a},

see [41]. The CSEM and PSEM algorithms were tested along with the PHMEM algorithm by using the
stopping criteria |xk+1 − xk| < 10−4 and the results below were presented as averages calculated from
four starting points: x0 at 0.01, 0.25, 0.75 and 1.

Table 1 shows that the parameter βk =
1

k + 2
yields faster computational times and fewer

computational iterations than other cases. Compare cases 1–3 with each other and cases 4–6 with each
other. Meanwhile, the parameter αk = 1, in which the Ishikawa iteration reduces to the Mann iteration,
yields slower computational times and more computational iterations than the other case. Compare
cases 1 with 4, 2 with 5, and 3 with 6. Moreover, the computational times of the CSEM algorithm are
faster than other algorithms, while the computational iterations of the PSEM algorithm are fewer than
or equal to other algorithms. Finally, we see that both computational times and iterations of the CSEM
and PSEM algorithms are better than or equal to those of the PHMEM algorithm.

Table 1. Numerical results for six different cases of parameters αk and βk.

Average Times (sec) Average Iterations

Cases CSEM PSEM PHMEM CSEM PSEM PHMEM

1 4.905197 165.099794 173.347257 14.25 13.75 14.25
2 7.326055 287.918141 345.025914 25.25 24.25 28.25
3 20.371064 834.001035 2004.693844 91.25 74.25 177
4 5.079676 173.091716 173.347257 14.75 14.25 14.25
5 8.016109 342.870819 345.025914 28.75 28.25 28.25
6 42.035240 1986.147273 2004.693844 200 177 177

Remark 3. Let us consider the case of parameters αk = 1 and βk = 0, in which the Ishikawa iteration will be
reduced to the Picard iteration. We notice that the convergence of PHMEM algorithm cannot be guaranteed in
this setting. The computational results of the CSEM and PSEM algorithms are shown as follows.

From Table 2, we see that both computational times and iterations are better than all those cases
presented in Table 1. However, it should be warned that the Picard iteration method may not always
converge to a fixed point of a nonexpansive mapping in general. For example, see [43].

Table 2. Numerical results for parameters αk = 1 and βk = 0.

Average Times (sec) Average Iterations

CSEM PSEM CSEM PSEM

4.657696 137.200812 12.50 11.50

5. Conclusions

We introduce the methods for finding a common element of the set of fixed points of a finite
family for quasi-nonexpansive mappings and the solution set of equilibrium problems of a finite
family for pseudomonotone bifunctions in a real Hilbert space. In fact, we consider both extragradient
and shrinking projection methods together in combination with Ishikawa’s iteration concept for
introducing a sequence which is strongly convergent to a common solution of the considered problems.
Some numerical experiments are also provided and discussed. For the future research direction, the
convergence analysis of the proposed algorithms and some practical applications should be considered
and implemented.
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