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Abstract: Social networks describe social interactions between people, which are often modeled
by intersection graphs. In this paper, we propose an intersection graph model that is induced by
adding a sparse random bipartite graph to a given bipartite graph. Under some mild conditions,
we show that the vertex–isoperimetric number and the edge–isoperimetric number of the randomly
perturbed intersection graph on n vertices are Ω(1/ ln n) asymptomatically almost surely. Numerical
simulations for small graphs extracted from two real-world social networks, namely, the board
interlocking network and the scientific collaboration network, were performed. It was revealed that
the effect of increasing isoperimetric numbers (i.e., expansion properties) on randomly perturbed
intersection graphs is presumably independent of the order of the network.
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1. Introduction

Complex large-scale network structures arise in a variety of natural and technological
settings [1,2], and they pose numerous challenges to computer scientists and applied mathematicians.
Many interesting ideas in this area come from the analysis of social networks [3], where each vertex
(actor) is associated with a set of properties (attributes), and pairs of sets with nonempty intersections
correspond to edges in the network. Complex and social networks represented by such intersection
graphs are copious in the real world. Well-known examples include the film actor network [4], where
actors are linked by an edge if they performed in the same movie, the academic co-authorship
network [5], where two researchers are linked by an edge if they have a joint publication, the circle of
friends in online social networks (e.g., Google+), where two users are declared adjacent if they share
a common interest, and the Eschenauer–Gligor key predistribution scheme [6] in secure wireless sensor
networks, where two sensors establish secure communication over a link if they have at least one
common key. Remarkably, it was shown in Reference [7] that all graphs are indeed intersection graphs.

To understand statistical properties of intersection graphs, a probability model was introduced in
References [8,9] as a generalization of the classical model G(n, p) of Erdős and Rényi [10]. Formally,
let n, m be positive integers and let p ∈ [0, 1]. We start with a random bipartite graph B(n, m, p)
with independent vertex sets V = {v1, · · · , vn} and W = {w1, · · · , wm} and edges between V and W
existing independently with probability p. In terms of social networks, V is interpreted as a set of
actors and W a set of attributes. We then define the random intersection graph G(n, m, p) with vertex set
V and vertices vi, vj ∈ V adjacent if and only if there exists some w ∈W such that both vi and vj are
adjacent to w in B(n, m, p). Several variant models of random intersection graphs have been proposed,
and many graph-theoretic properties of G(n, m, p), such as degree distribution, connected components,
fixed subgraphs, independence number, clique number, diameter, Hamiltonicity and clustering, have
been extensively studied [8,9,11–14]. We refer the reader to References [15,16] for an updated review
of recent results in this prolific field.
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In light of the above list of properties studied, it is, perhaps, surprising that there has been
little work regarding isoperimetric numbers of random intersection graphs. The isoperimetric numbers,
which measure the expansion properties of a graph (see Section 2 below for precise definitions),
have a long history in random graph theory [17–19] and are strongly related to the graph spectrum
and expanders [20]. They have found a wide range of applications in theoretical computer science,
including algorithm design, data compression, rapid mixing, error correcting codes, and robust
computer networks [21]. Social networks such as co-authorship networks are commonly believed to
have poor expansion properties (i.e., small isoperimetric numbers), which indicate the existence
of bottlenecks (e.g., cuts with small size) inside the networks, because of their modular and
community organization [22,23]. In this paper, we hope to show that it is possible to increase the
isoperimetric numbers by a gentle perturbation of the original bipartite graph structure underlying the
intersection graphs.

In recent times, there has been an effort to study the effect of random perturbation on graphs.
The most mathematically famous example is perhaps the Newman–Watts small-world network [1,24],
which is a random instance obtained by adding random edges to a cycle, exhibiting short average
distance and high clustering coefficient, namely, the so-called small-world phenomenon. A random
graph model G ∪ R [25] with general connected base graph G on n vertices and R being a sparse
Erdős-Rényi random graph G(n, ε/n) where ε > 0 is some small constant has been introduced in [26],
and its further properties, such as connectivity, fixed subgraphs, Hamiltonicity, diameter, mixing time,
vertex and edge expansion, have been intensively examined; see, e.g., [27–34] and references therein.
For instance, in Reference [29], a necessary condition for the base graph is given under which the
perturbed graph G ∪ R is an expander a.a.s. (asymptomatically almost surely); for a connected base
graph G, it is shown in Reference [30] that, a.a.s. the perturbed graph has an edge–isoperimetric
number Ω(1/ ln n), diameter O(ln n), and vertex–isoperimetric number Ω(1/ ln n), where for the last
property G is assumed to have bounded maximum degree. Here, we say that G ∪ R possesses a graph
property P asymptotically almost surely, or a.a.s. for brevity, if the probability that G ∪ R possesses P
tends to 1 as n goes to infinity. In this paper, to go a step further in this line of research, we investigate
the bipartite graph type perturbation, where random edges are only added to the base (bipartite) graph
between the two independent sets. We provide lower bounds for the isoperimetric numbers of random
intersection graphs induced by such perturbations.

The rest of the paper is organized as follows. In Section 2, we state and discuss the main
results, with proofs relegated to Section 4. In Section 3, we give numerical examples based upon real
network data, complementing our theoretical results in small network sizes. Section 5 contains some
concluding remarks.

2. Results

Let G = (V, E) be a graph with vertex set V and edge set E. If S ⊆ V is a set of vertices, then ∂GS
denotes the set of edges of G having one end in S and the other end in V\S. Given S ⊆ V, write G[S]
for the subgraph of G induced by S. We use NG(S) to denote the collection of vertices of V\S which
are adjacent to some vertex of S. For a vertex v ∈ V, NG(v) is the neighborhood of v, and we denote
by N2

G(v) = NG(NG(v)) the second neighborhood of v. The above subscript G will be omitted when
no ambiguity may arise. For a graph G, its edge–isoperimetric number, c(G) (also called its Cheeger
constant), is given by:

c(G) = min
S⊆V

0<|S|≤|V|/2

|∂GS|
|S| .

The vertex–isoperimetric number of G, ι(G), can be defined similarly as:

ι(G) = min
S⊆V

0<|S|≤|V|/2

|NG(S)|
|S| .
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It is well-known that c(G)/∆(G) ≤ ι(G) ≤ c(G) [35], where ∆(G) is the maximum degree of G.
We will consider the following model of randomly perturbed intersection graphs. Given a fixed

bipartite graph B = B(V, W, E) with two independent vertex sets V (|V| = n) and W (|W| = m),
the intersection graph derived from B is denoted by G(B). That is, G(B) is a graph on the vertex set V
with two vertices adjacent if they have a common neighbor in B. For each pair of vertices v ∈ V and
w ∈W, we add the edge {v, w} to B independently with probability p. The resulting bipartite graph,
denoted B ∪ R, can be viewed as the union of B and a bipartite graph R ∼ B(n, m, p), meaning that
R is a random graph distributed according to B(n, m, p). We write G(B ∪ R), the intersection graph
derived from B ∪ R. Clearly, if the base graph B(V, W, E) is taken to be the empty bipartite graph,
our model G(B ∪ R) reduces to the random intersection graph G(n, m, p).

Throughout the paper, the standard Landau asymptotic notations will be utilized (see, e.g., [10]).
Let b·c be the round-down operator. As customary in the theory of random intersection graphs,
we take m = bnαc for a fixed real α ∈ (0, ∞), which allows for a natural progression from sparse to
dense graphs. Recall that we say that G(B ∪ R) possesses a graph property P a.a.s. if the probability
that G(B ∪ R) possesses P tends to 1 as n goes to infinity.

We are now ready to formulate the main results of this paper.

Theorem 1. Let B = B(V, W, E) be a bipartite graph with |V| = n and |W| = m = bnαc such that any two
vertices in V are connected by a path and ∆ := maxv∈V N2

B(v) is a constant (i.e., independent of n). For any
ε > 0, let R ∼ B(n, m, p) with p = ε/n if α ≤ 1 and p = ε/

√
nm if α > 1. Then there exists some constant

δ > 0 satisfying ι(G(B ∪ R)) ≥ δ/ ln n a.a.s.

A couple of remarks are in order.

Remark 1. The local ef fects of the perturbation are quite mild, as a small ε is of interest. Nonetheless, the global
influence on the vertex–isoperimetric number can be prominent. To see this, note that any connected (intersection)
graph G has ι(G) = Ω(1/n). In particular, if G is a tree, we have ι(G) = Θ(1/n) (see e.g., [36]).

Remark 2. It is easy to check that the maximum degree of G(B) is ∆. In fact, v ∈ V and v1 ∈ V are
adjacent in G(B) if and only if they have a common neighbor w ∈ W, namely, w ∈ NB(v) and v1 ∈ NB(w).
Hence, the degree of v is NB(NB(v)). The assumption that ∆ is a constant cannot be removed in general. Indeed,
when α ≥ 1, consider the bipartite graph B(V, W, E) with V = {v1, · · · , vn}, W = {w1, · · · , wm}, and the
edge set E = {{v1, wi}, {vj, wj−1}|i = 1, · · · , n− 1, j = 2, · · · , n}. It is clear that G(B) is a star with center
v1 over the vertex set V. There are no more than n2 p edges over V\{v1} in the graph G(B ∪ R), which covers
at most 2n2 p vertices. In G(B ∪ R), there will be an independent set S (meaning that G(B ∪ R)[S] is empty) of
order at least:

n− 2n2 p = n
(

1− 2ε

√
n
m

)
and NG(B∪R)(S) = 1. Therefore, ι(G(B ∪ R)) ≤ 1/

(
n(1 − 2ε

√
n/m)

)
= O(1/n). When α < 1,

consider the bipartite graph B(V, W, E) with the edge set E = {{v1, wi}, {vj, wj−1}, {vl , wm}| i = 1, · · · , m,
j = 2, · · · , m + 1, l = m + 2, · · · , n}. Then G(B) can be thought of as the joining of a star K1,m having center
v1 and a complete graph Kn−m+1 by identifying v1 with any vertex of Kn−m+1. After adding nmε/n = mε

edges to B, in G(B ∪ R), there will be an independent set S of order at least m− 1− 2mε and NG(B∪R)(S) = 1.
Therefore, ι(G(B ∪ R)) ≤ 1/(m− 1− 2mε) = O(1/m).

Recall that the inequality c(G) ≥ ι(G) holds for any graph G. Therefore, a direct corollary of
Theorem 1 reads c(G(B ∪ R)) ≥ δ/ ln n a.a.s. for some δ > 0. The following theorem shows that this
lower bound for edge–isoperimetric number actually holds without any assumption on ∆.



Symmetry 2019, 11, 452 4 of 9

Theorem 2. Let B = B(V, W, E) be a bipartite graph with |V| = n and |W| = m = bnαc such that any two
vertices in V are connected by a path. For any ε > 0, let R ∼ B(n, m, p) with p = ε/

√
nm. Then there exists

some constant δ > 0 satisfying c(G(B ∪ R)) ≥ δ/(1 + ln n) a.a.s.

Theorems 1 and 2 hold in the sense of large n limit. In the next section, we shall demonstrate that
the isoperimetric numbers can be improved as well for small randomly perturbed intersection graphs
based upon real network data.

3. Illustration on Small Networks

To find the exact isoperimetric numbers, one needs to calculate the minimum fraction of
neighboring vertices or edges over the nodes inside the subset for all possible subsets of vertices
with order at most |V|/2. Since this is an NP-hard problem, it is intractable to compute the exact values
for general graphs [21,35]. It is well known that Cheeger’s inequality, also known as the Alon–Milman
inequality, provides bounds for the isoperimetric numbers using graph Laplacian eigenvalues. On the
other hand, standard algorithms in linear algebra can be used to efficiently compute the spectrum of
a given large graph. Here, instead of evaluating “approximate” values involving other parameters
such as eigenvalues, we are interested in obtaining exact values of ι(G(B ∪ R)) and c(G(B ∪ R)) for
small networks.

Two intersection-based social networks are considered here: (i) The Norwegian interlocking
directorate network Nor-Boards [37], where two directors are adjacent if they are sitting on the board
of the same company based on the Norwegian Business Register on 5 August 2009. The underlying
bipartite graph B̄(V̄, W̄, Ē) contains |V̄| = 1495 directors, |W̄| = 367 companies, and |Ē| = 1834
edges indicating the affiliation relations; (ii) the co-authorship network ca-CondMat [5] based on
preprints posted to the Condensed Matter Section of arXiv E-Print Archive between 1995 and 1999.
The underlying bipartite graph B̄(V̄, W̄, Ē) contains |V̄| =16,726 authors, |W̄| = 22,016 papers,
and |Ē| = 58,596 edges indicating authorship.

Figures 1 and 2 report the vertex–isoperimetric numbers and edge–isoperimetric numbers
for subsets of Nor-Boards and ca-CondMat, respectively. For a given n ∈ [20, 30], we first take
a subgraph B = B(V, W, E) from B̄(V̄, W̄, Ē) with |V| = n so that G(B) is connected and calculate its
vertex–isoperimetric and edge–isoperimetric numbers. Each data point (blue square) in Figures 1 and 2
is obtained by means of an ensemble averaging of 30 independently taken graphs. For each chosen
bipartite graph B, we then perturb it following the rules specified in Theorems 1 and 2 with ε = 1
to get the perturbed intersection graph G(B ∪ R). Each data point (red circle) in Figures 1 and 2 is
obtained by means of a mixed ensemble averaging of 50 independently-implemented perturbations
for 30 graphs. From a statistics viewpoint, it is clear that our random perturbation scheme increases
both the vertex–isoperimetric and the edge–isoperimetric number for both cases. This, together with
the theoretical results, suggests that the quantitative effect of random perturbations is independent of
the order of the network.

Remark 3. It is worth stressing that the theoretical results (Theorems 1 and 2) are in the large limit of the
network size n. In other words, the form 1

ln n only makes sense as n→ ∞. The simulation results presented in
Figures 1 and 2 are for very small networks. Therefore, these results have no bearing on the 1

ln n dependence
(although a slight decline tendency for ι(G(B ∪ R)) can be seen in Figure 1a). The main phenomenon we
observe from Figures 1 and 2 is that the random perturbation increases both vertex– and edge–isoperimetric
numbers for all the cases considered. The numerical results (for small finite graphs) are a nice complement to the
theoretical results (for infinite graphs). However, our numerical observations neither prove the 1

ln n dependence
would hold for small graphs nor show that such an increase of isoperimetric numbers would be universal in
any sense. (A practical issue stems from graph sampling. To establish a proper model fit to the data, Akaike
information criteria and Bayesian information criteria need to be applied.) The establishment of correlation
between isoperimetric numbers and graph size n for finite intersection graphs is an interesting future work.
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Figure 1. Vertex–isoperimetric number (panel (a)) and edge–isoperimetric number (panel (b)) versus
n = |G(B)| for subgraphs G(B) (and its randomly perturbed version G(B ∪ R)) taken from Nor-Boards.

20 22 24 26 28 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

v
e
rt

e
x
−

is
o
p
e
ri
m

e
tr

ic
 n

u
m

b
e
r

 

 

ι(G(B))

ι(G(B∪ R))

(a)

20 22 24 26 28 30
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

n

e
d
g
e
−

is
o
p
e
ri
m

e
tr

ic
 n

u
m

b
e
r

 

 

c(G(B))

c(G(B∪ R))

(b)

Figure 2. Vertex–isoperimetric number (panel (a)) and edge–isoperimetric number (panel (b)) versus
n = |G(B)| for subgraphs G(B) (and its randomly perturbed version G(B∪ R)) taken from ca-CondMat.

4. Proofs

In this section, we prove Theorems 1 and 2. Our idea behind this is somewhat simple: If the
network can be carefully decomposed into some subnetworks so that the resulting super-network
(with these subnetworks being super-vertices) is sparse and highly connected, then its isoperimetric
numbers are expected to be high. Similar approaches have been applied in, e.g., References [29–31].

Proof of Theorem 1. Set s = C∆(ln n)/ε for some constant C = C(ε) > 0 to be determined.
By assumption, G(B) is connected. Following Reference [38] (Proposition 4.5), we can divide the
vertex set V into disjoint sets V1, V2, · · · , Vθ satisfying s ≤ |Vi| ≤ ∆s and G(B)[Vi] connected for each
i. Clearly, n/(∆s) ≤ θ ≤ n/s. Let [θ] = {1, 2, · · · , θ}. For a graph G = (V, E), we say two sets
S1, S2 ⊆ V have common neighbors in G if there exist v1 ∈ S1, v2 ∈ S2, and v ∈ V such that {v1, v} ∈ E
and {v2, v} ∈ E hold.

We will first show the following property for the random bipartite graph R holds a.a.s.: For every
Θ ⊆ [θ] with 0 < |Θ| ≤ θ/2, there exist at least |Θ|/2 many of Vi (i ∈ [θ]\Θ) which have common
neighbors with ∪i∈ΘVi in R.

Indeed, the probability that two sets Vi and Vj have no common neighbors in R can be computed

as
{

1− [1− (1− p)|Vi |][1− (1− p)|Vj |]
}m

. Hence, the probability that there exists a set Θ ⊆ [θ] with
0 < |Θ| ≤ θ/2 such that no more than |Θ|/2 many of Vi (i ∈ [θ]\Θ) have common neighbors with
∪i∈ΘVi in R is upper bounded by:
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∑
1≤j≤θ/2

(
θ

j

)(
θ − j

b j
2c

){
1− [1− (1− p)js][1− (1− p)(θ−b3j/2c)s]

}m
,

≤ ∑
1≤j≤θ/2

(
eθ

j

)j (2e(θ − j)
j

)j/2 (
1− s2 j(θ − 3j/2)p2

4

)m

,

where (θ
j)(

θ−j
b j

2 c
) counts the choice of Θ (with |Θ| = j) and the corresponding sets {Vi} described

above, the estimate |Vi| ≥ s for all i ∈ [θ] is utilized in the multiplicative probabilities
(i.e., there are at least (θ − b3j/2c) sets in the union ∪i∈ΘVi), and the upper bound comes
from a direct application of inequalities ([10], p. 386). The above probability is further upper
bounded by (C(ln n)/n)m ∑1≤j≤θ/2(2θ/j)3j/2 = o(1) when α ≤ 1, and is upper bounded by

∑1≤j≤θ/2 θ3j/2+2 exp(−Cε∆j ln n) = o(1) when α > 1 for a sufficiently large C. Therefore, the above
property for the random bipartite graph R holds a.a.s. In the following, we will condition on such
an R.

Fix a set S ⊆ V with |S| ≤ n/2. Define three sets of indices: Θ0 = {i ∈ [θ]|Vi ⊆ S},
Θ1 = {i ∈ [θ]|0 < |Vi ∩ S| < |Vi|}, and Θ2 = {i ∈ [θ]\Θ0|NG(B∪R)(Vi)∩ S 6= ∅}. Note that Θ0 and Θ1

are deterministic, but Θ2 is a random set. If |Θ0| ≤ θ/2, |Θ2| ≥ |Θ0|/2 a.a.s. by the above assumed
property of R. Similarly, if |Θ0| > θ/2, we have |Θ2| ≥ |Θ|/2 = (θ − |Θ0| − |Θ2|)/2 a.a.s., where
Θ = [θ]\(Θ0 ∪Θ2). Hence, |Θ2| ≥ min{|Θ0|/2, (θ − |Θ0|)/3} a.a.s. Recall that |S| ≤ n/2. We derive
that n/2 ≤ |V\S| ≤ | ∪i 6∈Θ0 Vi| ≤ (θ − |Θ0|)∆s ≤ (θ − |Θ0|)∆n/θ, and thus, θ − |Θ0| ≥ θ/(2∆).
Therefore, we have a.a.s.:

|Θ2| ≥ min
{
|Θ0|

2
,

θ

6∆

}
≥ |Θ0|

6∆
.

By definition, we have S ⊆ ∪i∈Θ0∪Θ1 Vi. Thus, |S| ≤ (|Θ0| + |Θ1|)∆s. Since G(B)[Vi] for
i ∈ Θ1 is connected, |NG(B∪R)(S)| ≥ |Θ1 ∪ Θ2|. Now we consider two cases. If |Θ1| ≥ |Θ0|,
then |NG(B∪R)(S)| ≥ |Θ1| ≥ |S|/(2∆s). If |Θ1| ≤ |Θ0|, then |NG(B∪R)(S)| ≥ |Θ2| ≥ |Θ0|/(6∆) ≥
|S|/(12∆2s) a.a.s. Therefore:

|NG(B∪R)(S)|
|S| ≥ min

{
1

2∆s
,

1
12∆2s

}
a.a.s.

Recall the definition of s at the beginning of the proof, and we complete the proof by taking
δ = ε/(12∆3C).

We have made no attempt to optimize the constants in the proof. It is easy to check that the
condition that G(B) is connected in Theorem 1 can be weakened. For example, the above proof holds
if each connected component of G(B) is of order at least C∆(ln n)/ε.

Let G = (V, E) be a graph of order n. For integers a, b, and c, define S(a, b, c) as a collection of
all sets S ⊆ V such that |S| = a and there exists a partition S = S1 ∪ · · · ∪ Sb, where each G[Si] is
connected, there are no edges in E connecting different Si, and |NG(S1)|+ · · ·+ |NG(Sb)| = c. The next
lemma gives an upper bound of the size of S(a, b, c).

Lemma 1. ([30])

|S(a, b, c)| ≤
( en

b

)b ( ea
b

)b ( ec
b

)b
(

e(a + c)
c

)c
.

Proof of Theorem 2. Consider the family S(a, b, c) of sets defined in graph G(B). Since G(B) is
connected, we have for each S ∈ S(a, b, c), |∂G(B)S| ≥ c ≥ b. Note that |∂G(B∪R)S| ≥ |∂G(R)S|
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holds. It suffices to show that the following property for the random bipartite graph R holds a.a.s.:
There are constants K, δ > 0 such that for any K ln n ≤ a ≤ n/2, we have:

|∂G(R)S| ≥
δa

1 + ln n
,

for each S ∈ S(a, b, c) with b ≤ c ≤ δa/(1 + ln n). Indeed, when |S| = a ≤ K ln n, we can choose
a small δ such that 2Kδ ≤ 1. Thus, |∂G(B∪R)S| ≥ |∂G(B)(S)| ≥ 1 ≥ δa/(1 + ln n).

It follows from Lemma 1 and b ≤ c ≤ δa/(1 + ln n) ≤ a that:

|S(a, b, c)| ≤
(

2e4na2

c3

)c

≤
(

2e4n(1 + ln n)3

δ3a

)δa/(1+ln n)

≤ eCδa ln(1/δ),

for some constant C > 0, where the first inequality holds since f (x) = (eρ/x)x is increasing on (0, ρ]

and the second inequality holds since g(x) = (ρ/x3)x is increasing on (0, ρ1/3].
Note that mp2 → 0 and 1− (1− p2)m ∼ mp2. For a fixed S with |S| = a ≤ n/2, we obtain:

P(|∂G(R)S| < δa) . P(Bin(a(n− a), mp2) < δa) ≤ P
(

Bin
(na

2
, mp2

)
< δa

)
≤ exp

(
− aε2

16

)
,

provided δ < ε2/4, where the first inequality relies on Reference [9] (Theorem 2.2) and the last line
uses a standard Chernoff’s bound (e.g., [10]). Hence:

P
(
|∂G(R)S| <

δa
1 + ln n

, ∃S ∈ S(a, b, c), b ≤ c ≤ δa
1 + ln n

, K ln n ≤ a ≤ n
2

)
≤ P

(
|∂G(R)S| < δa, ∃S ∈ S(a, b, c), b ≤ c ≤ n, K ln n ≤ a ≤ n

)
≤ n3 exp

(
Cδa ln

(
1
δ

)
− aε2

16

)
.

By taking Cδ ln(1/δ) ≤ ε2/32 and K ≥ 100/ε2, the last line above is upper bounded by
n3 exp(−ε2a/32) ≤ n3 exp(−ε2K(ln n)/32) ≤ n3 exp(−25(ln n)/8) = o(1) as n → ∞. The proof
is complete.

5. Concluding Remarks

In this paper, we presented a model of randomly perturbed intersection graphs. The intersection
graph is induced by a given bipartite graph (base graph) plus a binomial random bipartite graph.
We proved that a.a.s., the vertex–isoperimetric number and the edge–isoperimetric number of the
randomly perturbed intersection graphs are of order Ω(1/ ln n) under some mild conditions. It would
be interesting to investigate path length, diameter, and clustering coefficient of this model, which are
important characteristics of real-life complex and social networks.

Another intriguing direction is to examine more general intersection graph models, such as
active and passive intersection graphs [39]. In particular, if two vertices in one independent set V
are declared adjacent when they have at least k ≥ 1 common neighbors in the other independent set
W, what role will k play in estimating the isoperimetric numbers, clustering, and path length of the
resulting perturbed intersection graphs? Other perturbation mechanisms are also of research interest.
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10. Frieze, A.; Karoński, M. Introduction to Random Graphs; Cambridge University Press: New York, NY,

USA, 2016.
11. Shang, Y. Degree distributions in general random intersection graphs. Electron. J. Combin. 2010, 17, R23.
12. Kendall, M.; Martin, K.M. Graph-theoretic design and analysis of key predistribution schemes.

Des. Codes Cryptogr. 2016, 81, 11–34. [CrossRef]
13. Zhao, J.; Yagan, O.; Gligor, V. On connectivity and robustness in random intersection graphs. IEEE Trans.

Autom. Contr. 2017, 62, 2121–2136. [CrossRef]
14. Rybarczyk, K. The chromatic number of random intersection graphs. Discuss. Math. Graph Theory 2017,

37, 465–476. [CrossRef]
15. Bloznelis, M.; Godehardt, E.; Jaworski, J.; Kurauskas, V.; Rybarczyk, K. Recent progress in complex network

analysis: Models of random intersection graphs. In European Conference on Data Analysis; Lausen, B.,
Krolak-Schwerdt, S., Boehmer, M., Eds.; Springer: Berlin, Germany, 2015; pp. 69–78.

16. Bloznelis, M.; Godehardt, E.; Jaworski, J.; Kurauskas, V.; Rybarczyk, K. Recent progress in complex network
analysis: Properties of random intersection graphs. In European Conference on Data Analysis; Lausen, B.,
Krolak-Schwerdt, S., Boehmer, M., Eds.; Springer: Berlin, Germany, 2015; pp. 79–88.

17. Bollobás, B. The isoperimetric number of random regular graphs. Eur. J. Comb. 1988, 9, 241–244. [CrossRef]
18. Alon, N. On the edge-expansion of graphs. Comb. Probab. Comput. 1997, 6, 145–152. [CrossRef]
19. Benjamini, I.; Haber, S.; Krivelevich, M.; Lubetzky, E. The isoperimetric constant of the random graph process.

Random Struct. Algorithms 2008, 32, 101–114. [CrossRef]
20. Puder, D. Expansion of random graphs: New proofs, new results. Invent. Math. 2015, 201, 845–908. [CrossRef]
21. Hoory, S.; Linial, N.; Wigderson, A. Expander graphs and their applications. Bull. Am. Math. Soc. 2006,

43, 439–561. [CrossRef]
22. Estrada, E. Spectral scaling and good expansion properties in complex networks. Europhys. Lett. 2006,

73, 649–655. [CrossRef]
23. Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006,

103, 8577–8582. [CrossRef] [PubMed]
24. Newman, M.E.J.; Watts, D.J. Renormalization group analysis of the small-world network model. Phys. Lett. A

1999, 263, 341–346. [CrossRef]
25. Shang, Y. A sharp threshold for rainbow connection in small-world networks. Miskolc Math. Notes 2012,

13, 493–497. [CrossRef]
26. Bohman, T.; Frieze, A.; Martin, R. How many random edges make a dense graph Hamiltonian? Random Struct.

Algorithms 2003, 22, 33–42. [CrossRef]
27. Bohman, T.; Frieze, A.; Krivelevich, M.; Martin, R.; Adding random edges to dense graphs. Random Struct.

Algorithms 2004, 24, 105–117. [CrossRef]

http://dx.doi.org/10.1016/j.ipl.2004.03.007
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1073/pnas.98.2.404
http://www.ncbi.nlm.nih.gov/pubmed/11149952
http://dx.doi.org/10.4064/fm-33-1-303-307
http://dx.doi.org/10.1017/S0963548398003459
http://dx.doi.org/10.1007/s10623-015-0124-0
http://dx.doi.org/10.1109/TAC.2016.2601564
http://dx.doi.org/10.7151/dmgt.1955
http://dx.doi.org/10.1016/S0195-6698(88)80014-3
http://dx.doi.org/10.1017/S096354839700299X
http://dx.doi.org/10.1002/rsa.20171
http://dx.doi.org/10.1007/s00222-014-0560-x
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1209/epl/i2005-10441-3
http://dx.doi.org/10.1073/pnas.0601602103
http://www.ncbi.nlm.nih.gov/pubmed/16723398
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://dx.doi.org/10.18514/MMN.2012.347
http://dx.doi.org/10.1002/rsa.10070
http://dx.doi.org/10.1002/rsa.10112


Symmetry 2019, 11, 452 9 of 9

28. Krivelevich, M.; Sudakov, B.; Tetali, P. On smoothed analysis in dense graphs and formulas. Random Struct.
Algorithms 2006, 29, 180–193. [CrossRef]

29. Flaxman, A.D. Expansion and lack thereof in randomly perturbed graphs. Internet Math. 2007, 4, 131–147.
[CrossRef]

30. Krivelevich, M.; Reichman, D.; Samotij, W. Smoothed analysis on connected graphs. SIAM J. Discrete Math.
2015, 29, 1654–1669. [CrossRef]

31. Addario-Berry, L.; Lei, T. The mixing time of the Newman-Watts small-world model. Adv. Appl. Probab. 2015,
47, 37–56. [CrossRef]

32. Balogh, J.; Treglown, A.; Wagner, A.Z. Tilings in randomly perturbed dense graphs. Combin. Probab. Comput.
2019, 28, 159–176. [CrossRef]

33. Krivelevich, M.; Kwan, M.; Sudakov, B. Bounded-degree spanning trees in randomly perturbed graphs.
SIAM J. Discrete Math. 2017, 31, 155–171. [CrossRef]

34. Böttcher, J.; Montgomery, R.; Parczyk, O.; Person, Y. Embedding spanning bounded degree subgraphs in
randomly perturbed graphs. Electron. Notes Discrete Math. 2017, 61, 155–161. [CrossRef]

35. Mohar, B. Isoperimetric numbers of graphs. J. Comb. Theory Ser. B 1989, 47, 274–291. [CrossRef]
36. Grohe, M.; Marx, D. On tree width, bramble size, and expansion. J. Comb. Theory Ser. B 2009, 99, 218–228.

[CrossRef]
37. Seierstad, C.; Opsahl, T. For the few not the many? The effects of affirmative action on presence, prominence,

and social capital of women directors in Norway. Scand. J. Manag. 2011, 27, 44–54. [CrossRef]
38. Krivelevich, M.; Nachmias, A. Coloring complete bipartite graphs from random lists. Random Struct.

Algorithms 2006, 29, 436–449. [CrossRef]
39. Shang, Y. Joint probability generating function for degrees of active/passive random intersection graphs.

Front. Math. China 2012, 7, 117–124. [CrossRef]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/rsa.20097
http://dx.doi.org/10.1080/15427951.2007.10129290
http://dx.doi.org/10.1137/151002496
http://dx.doi.org/10.1239/aap/1427814580
http://dx.doi.org/10.1017/S0963548318000366
http://dx.doi.org/10.1137/15M1032910
http://dx.doi.org/10.1016/j.endm.2017.06.033
http://dx.doi.org/10.1016/0095-8956(89)90029-4
http://dx.doi.org/10.1016/j.jctb.2008.06.004
http://dx.doi.org/10.1016/j.scaman.2010.10.002
http://dx.doi.org/10.1002/rsa.20114
http://dx.doi.org/10.1007/s11464-011-0165-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Illustration on Small Networks 
	Proofs 
	Concluding Remarks 
	References

