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Abstract: This research article deals with the determination of magnetohydrodynamic steady flow of
three combile nanofluids (Jefferey, Maxwell, and Oldroyd-B) over a stretched surface. The surface
is considered to be linear. The Cattaneo–Christov heat flux model was considered necessary to
study the relaxation properties of the fluid flow. The influence of homogeneous-heterogeneous
reactions (active for auto catalysts and reactants) has been taken in account. The modeled problem is
solved analytically. The impressions of the magnetic field, Prandtl number, thermal relaxation time,
Schmidt number, homogeneous–heterogeneous reactions strength are considered through graphs.
The velocity field diminished with an increasing magnetic field. The temperature field diminished
with an increasing Prandtl number and thermal relaxation time. The concentration field upsurged
with the increasing Schmidt number which decreased with increasing homogeneous-heterogeneous
reactions strength. Furthermore, the impact of these parameters on skin fraction, Nusselt number,
and Sherwood number were also accessible through tables. A comparison between analytical and
numerical methods has been presented both graphically and numerically.

Keywords: Magnetohydrodynamic (MHD); Jefferey, Maxwell and Oldroyd-B fluids; Cattaneo–Christov
heat flux; homogeneous–heterogeneous reactions; analytical technique; Numerical technique

1. Introduction

A fluid composed of nanoparticles is called nanofluid. Nanoparticles of materials such as
metallic oxides, carbide ceramics, nitride metals, ceramics, semiconductors, single, double or
multi walled carbon nanotubes, alloyed, nanoparticles, etc. have been used for the preparation
of nanofluids. Nanofluids have many characteristics in heat transfer, including microelectronics,
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local refrigerator, cooler, machining, and heat exchanger. The idea of nanofluid was introduced
by Choi [1]. The Fourier’s [2] recommended law of heat conduction normally works for heat
transmission features from the time it was presented in the literature. By including the relaxation
time parameter Cattaneo [3] it has improved this law and this term overwhelms the paradox
of heat conduction. Christov [4] has named this theory Cattaneo-Christov heat flux theory,
by further modifying the Cattaneo theory by exchanging the time derivative with Oldroyd-B upper
convicted derivative. Mustafa [5] scrutinized the model [4] for heat transmission in a rotating
Maxwell nanofluid flow. Chen [6] probed the influence of heat transfer and viscous dissipation of
nanofluid flow over a stretching sheet. Sheikholeslami et al. [7–11] deliberated the three-dimensional
magnetohydrodynamics (MHD) nanofluid flow in parallel rotating plates. Sheikholeslami [11–15]
analytically and numerically deliberated the applications of nanofluids with different properties,
behavior, and influences. Dawar et al. [16] examined the flow Williamson nanofluid over a stretching
surface. Shah et al. [17] examined the micropolar nanofluid flow in rotating parallel plates with Hall
current impact. Maleki et al. [18] scrutinized the non-Newtonian nanofluids flow and heat transfer over
a porous surface. Nasiri et al. [19] deliberated the smoothed particle by a hydrodynamics approach
for numerical simulation of nanofluid flows. Rashidi et al. [20] used the nanofluids in a circular
tube heat exchanger and examined the entropy generation. Safaei et al. [21] studied numerically
and experimentally the nanofluids convective heat transfer in closed conduits. Mahian et al. [22,23]
presented the advances in the simulation and modeling of the flows of nanofluids.

Due to its relaxation properties, Jeffrey, Maxwell, and Oldroyd-B nanofluids have significant
applications in the area of fluid mechanics. Ahmad et al. [24] scrutinized the flow of Jeffrey nanofluid
with Magnetohydrodynamic impact. Ahmad and Ishak [25] deliberated the flow of Jeffrey nanofluid
with MHD and transverse magnetic field impacts in a porous medium. Hayat et al. [26] probed
the Oldroyd-B nanofluid flow with heat transfer and thermal radiation impacts. Raju et al. [27]
deliberated the flow of Jeffrey nanofluid with a homogenous-heterogeneous reaction and non-linear
thermal radiation impacts. The articles that are related to Jeffrey nanofluid can be found in [28–32].
Hayat et al. [33] inspected the MHD Maxwell nanofluid flow using suction/injection. Raju et al. [34]
presented the heat and mass transmission in three-dimensional non-Newtonian nanofluid and
Ferrofluid. Sandeep and Sulochana [35] investigated the mixed convection micropolar nanofluid
flow over a stretching sheet. Raju et al. [36] deliberated the impacts of an inclined magnetic field,
thermal radiation and cross diffusion on the two-dimensional flow. Nadeem et al. [37] presented the
heat and mass transfer in Jeffrey nanofluid. Makinde et al. [38] deliberated the unsteady fluid flow
with convective boundary conditions. Sheikholeslami [39] discussed the hydro-thermal behavior of
nanofluids flow because of its external heated plates. Shah et al. [40] presented the Darcy-Forchheimer
flow of radiative carbon nanotubes in a rotating frame. Chai et al. [41] presented a review of the
heat transfer and hydrodynamic characteristics of nano/microencapsulated phase. Shah et al. [42]
examined the electro-magneto micropoler Casson Ferrofluid over a stretching/shrinking sheet.
Dawar et al. [43] analyzed the MHD CNTs Casson nanofluid in rotating channels. Khan et al. [44]
deliberated the Williamson nanofluid flow over a linear stretching surface. Imtiaz et al. [45] examined
the unsteady MHD flow due to a curved stretchable surface with homogeneous–heterogeneous
reactions. Hayat et al. [46] deliberated the flow of nanofluids with homogeneous–heterogeneous
reaction impacts over a non-linear stretched sheet with variable thickness. The recent study about
nanofluid with application can be seen [47–50].

The present work is based on an analysis of MHD flow of three combine nanofluids
(Maxwell, Oldroyd-B, and Jeffrey) over a linear stretching surface. The present model composed
of Cattaneo–Christov heat flux. The impact of homogeneous-heterogeneous reactions were taken in
this model. A boundary layer methodology was used in the mathematical expansion. The impact of
dimensionless parameters on the fluid flow have been presented through graphs and tables.
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2. Mathematical Modeling and Formulation

The incompressible electrically conducted three combined nanofluids (Jeffrey, Maxwell,
and Oldroyd-B) were confined by a linear stretched surface. The fluid flow was taken in a
two-dimensional steady state with stable surface temperature. x-axis was considered parallel to the
surface, while y-axis was orthogonal to x-axis in the chosen coordinate system. The stretching velocity
in x-axes direction was defined as Uw(x) = ζx. The conclusion of homogeneous-heterogeneous
reactions on the fluid flows of two chemical species I and J were taken in account. In the y-axis
direction a uniform magnetic field B0 was acting. The heat transmission procedure was applied
through Cattaneo–Christov heat flux theory.

In case of cubic autocatalysis, the Homogeneous reaction is [45,46]

I + 2J → 3J, rate = kcij2, (1)

While on the catalyst surface, the heterogeneous reaction has been defined by

I → J, rate = ksi, (2)

where kc, ks, I, J, i, j are the rate constants, chemical species, and concentrations of chemical species,
respectively.

In the absence of viscous dissipation and thermal radiation, the boundary layer equations leading
to the flow of viscoelastic fluids can be written as follows [47]:

ux + vy = 0, (3)

uux + vuy = −λ1
(
u2uxx + 2uvuxy + v2uyy

)
+

υ f
1+λ2

{
uyy + λ3

(
uuxyy + uyuxy + υuyyy − uxuyy

)}
− σB2

0
ρ f

u,
(4)

ρcp
(
uTx + vTy

)
= −∇.q, (5)

uix + viy = DI iyy − kcij2, (6)

ujx + vjy = DJ jyy + kcij2. (7)

Here u, v, µ, ρ f , υ f are velocity components in their respective directions, dynamic viscosity,
density, and kinematic viscosity respectively. λ1, λ2, λ3 are the relaxation time, a proportion of the
relaxation to retardation times, respectively. T, σf , B0 indicated the temperature, electrical conductivity
and the transverse magnetic field.

The problem is studied based on the following conditions:

i Oldroyd-B nanofluid when λ1 6= 0, λ2= 0 and λ3 6= 0.
ii Maxwell nanofluid when λ1 6= 0, λ2= 0 and λ3 = 0.
iii Jeffrey nanofluid when λ1 = 0, λ2 6= 0 and λ3 6= 0.

The heat flux theory which was presented by Cattaneo–Christov:

q + λ1

{
∂q
∂t

+ V · ∇q− q · ∇V + (∇ ·V)q + qt

}
= −k∇T, (8)

where k, q represented thermal conductivity and heat flux. Classical Fourier’s law was assumed by
setting λ1 = 0 in Equation (8). By assuming the condition (∇.V = 0) and steady flow with (qt = 0),
Equation (8) became:

q + λ1(V.∇q− q.∇V) = −k∇T. (9)
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The heat transfer equation proceeded as:

uTx + vTy + λ1ΦE = α
(
Tyy
)
, (10)

where ΦE is given as:

ΦE = uuxTx + vvyTy + uvxTy + vuyTx + 2uvTxy + u2Txx + v2Tyy. (11)

The accompanying boundary conditions were:

u = Uw(x) = ζx, v = 0, T = Tw, DI iy = ksi, DJ jy = −ksi at y = 0,
u→ 0, T→ T∞, i→ i0, j→ 0 at y→ ∞,

(12)

where α = k
ρcp

indicated the thermal diffusivity, DI and DJ indicated the diffusion coefficients,
Tw denoted the temperature at the surface, T∞ for the surrounding fluid temperature and ζ for
non-negative stretching rate constant with T−1 as the dimension.

u = ζxF′(η), v = −(ζυ)
1
2 F(η), η =

(
ζ
υ

) 1
2 y,

G(η) = T−T∞
Tw−T∞

, i = i0φ(η), j = i0h(η).
(13)

Apparently the equation of continuity is satisfied and Equations (4)–(13) become:

F′′′ + κ2

(
F′′ 2 − FF′ ′′′

)
−M(1 + λ2)F′ − (1 + λ2)

{
F′2 − FF′′ + κ1

(
F2F′′′ − 2FF′F′′

)}
= 0, (14)

G′′ + Pr
{

FG′ −Ω
(

FF′G′ + F2G′′
)}

= 0, (15)

φ′′ + Sc
(

Fφ′ − Kφh2
)
= 0, (16)

δh′′ + Sc
(

Fh′ + Kφh2
)
= 0, (17)

with boundary conditions:

F = 0, F′ = 1, G = 1, φ′ = Ksφ, δh′ = −Ksφ at v = 0,
F′ → 0, G → 0, φ→ 1, h→ 0 at η → ∞,

(18)

In the above equations, M =
σn f B2

0
ρ f ζ indicated the magnetic field, κ1 = λ1ζ and κ2 = λ3ζ were the

Debora numbers with respect to relaxation and retardation time, Pr =
υ f
α represented the Prandtl

number, Ω = ζλ1 indicated the thermal relaxation time, Sc =
υ f
DI

is the Schmidt number, K =
kci20
Uw

indicating the homogeneous reaction strength, Ks =
ks

DI i0

√
ζ

υ f
represented the heterogeneous reaction

strength, and δ =
DJ
DI

indicated the diffusion coefficient, When DI = DJ then δ = 1 and as a result:

φ(η) + h(η) = 1. (19)

Now Equations (16) and (17) yield:

φ′′ + Sc
{

Fφ′ − Kφ(1− φ)2
}
= 0. (20)

The subjected boundary conditions are:

φ′(0) = Ksφ(0), φ(∞)→ 1. (21)
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Skin friction coefficient through the dimensionless scale is:

Re
1
2
x C fx =

(
1 + κ1

1 + κ2

)
F′′ (0). (22)

where Rex is called the local Reynolds number.
The dimensionless form of Nux and Shx were found as:

Nux = −G′(0), Shx = −φ′(0). (23)

3. Solution by Homtopy Analysis Method (HAM)

To evaluate the Equations (14), (15) and (20) with boundary conditions (18) and (21) using HAM
with the following procedure.

The initial assumptions were picked as below:

F0(η) = 1− e−η , G0(η) = e−η , φ0(η) = e−η . (24)

The linear operators were taken as LF, LG and Lφ:

LF(F) = F′′′ − F′, LG
(
G
)
= G′′ − G, Lφ(φ) = φ′′ − φ, (25)

With the following properties:

LF(r1 + r2e−η + r3eη) = 0, LG(r4e−η + r5eη) = 0, Lφ(r6e−η + r7eη) = 0, (26)

where ri(i = 1− 7) were the constants:
The resulting non-linear operators NF, NG and Nφ were specified as:

NF
[
F(η; τ)

]
= ∂3F(η;τ)

∂η3 + κ2

{(
∂2F(η;τ)

∂η2

)2
− ∂F(η;τ)

∂η
∂4F(η;τ)

∂4η

}
−M(1 + λ2)


(

∂F(η;τ)
∂η

)2
− F(η; τ)

∂2F(η;τ)
∂η2 +

κ1

(
F2
(η; τ)

∂3F(η;τ)
∂η3 − 2F(η; τ)

∂F(η;τ)
∂η

∂2F(η;τ)
∂η2

)
,

(27)

NG
.

[
F(η; τ), G(η; τ)

]
= ∂2G(η;τ)

∂η2 +

Pr
{

F(η; τ) ∂G(η;τ)
∂η −Ω

(
F(η; τ) ∂F(η;τ)

∂η
∂G(η;τ)

∂η + F2
(η; τ) ∂2G(η;τ)

∂η2

)}
,

(28)

Nφ

[
F(η; τ), φ(η; τ)

]
=

∂2φ(η; τ)

∂η2 + Sc
{

F(η; τ)
∂φ(η; τ)

∂η
−K

(
φ

3
(η; τ)− 2φ

2
(η; τ) + φ(η; τ)

)}
, (29)

The zeroth-order problem for Equations (14), (15) and (20) were:

(1− τ)LF
[
F(η; τ)− F0(η)

]
= τ}F NF

[
F(η; τ)

]
, (30)

(1− τ)LG
[
G(η; τ)− G0(η)

]
= τ}G NG

[
F(η; τ), G(η; τ)

]
, (31)

(1− τ)Lφ

[
φ(η; τ)− φ0(η)

]
= τ}φNφ

[
F(η; τ), φ(η; τ)

]
. (32)

The related boundary conditions where:

F(η; τ)
∣∣
η=0 = 0, ∂F(η;τ)

∂η

∣∣∣
η=0

= 1, ∂F(η;τ)
∂η

∣∣∣
η→∞

= 0,

G(η; τ)
∣∣
η=0 = 1, G(η; τ)

∣∣
η→∞ = 0,

∂φ(η;τ)
∂η

∣∣∣
η=0

= Ksφ(η; τ)
∣∣
η=0, φ(η; τ)

∣∣
η→∞ = 1,

(33)
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where τ ∈ [0, 1] is the embedding parameter, }F, }G,}φ that were used to control the solution
convergence. When τ = 0 and τ = 1 we have:

F(η; 1) = F(η), G (η; 1) = G(η) and φ(η; 1) = φ(η), (34)

Expanding F(η; τ), G (η; τ) and φ(η; τ) by Taylor’s series:

F(η; τ) = F0(η) +
∞
∑

q=1
Fq(η)τq,

G(η; τ) = G0(η) +
∞
∑

q=1
Gq(η)τq,

φ(η; τ) = φ0(η) +
∞
∑

q=1
φq(η)τ

q.

(35)

where:

Fq(η) =
1
q!

∂F(η; τ)

∂η

∣∣∣∣
τ=0

, G q(η) =
1
q!

∂G(η; τ)

∂η

∣∣∣∣
τ=0

and φq(η) =
1
q!

∂φ(η; τ)

∂η

∣∣∣∣
τ=0

. (36)

The }F,}G and }φ are taken in such a way that the series (35) converges at τ = 1, we have:

F(η) = F0(η) +
∞
∑

q=1
Fq(η),

G(η) = G0(η) +
∞
∑

q=1
Gq(η),

φ(η) = φ0(η) +
∞
∑

q=1
φq(η).

(37)

The following are satisfied by the qth-order problem.

LF
[
Fq(η)− χqFq−1(η)

]
= }FUF

q (η),
LG
[
Gq(η)− χqGq−1(η)

]
= }GUG

q (η),

Lφ

[
φq(η)− χqφq−1(η)

]
= }φUφ

q (η).
(38)

Which have the following boundary conditions:

Fq(0) = F′q(0) = F′q(∞) = 0,
Gq(0) = Gq(∞) = 0,

φ
′
q(0)−Ksφq(0) = φq(∞) = 0.

(39)

Here

UF
q (η) = F′′′q−1 + κ2

(
q−1
∑

k=0
Fq−1−kF′′k −

q−1
∑

k=0
Fq−1−kFiv

k

)
−M(1 + λ2)F′q−1−

(1 + λ2)

{
q−1
∑

k=0
F′q−1−kF′ −

q−1
∑

k=0
Fq−1−kF′′k + κ1

(
q−1
∑

k=0
Fq−1−k

k
∑

j=0
Fk−jF

′′′
j − 2

q−1
∑

k=0
Fq−1−k

k
∑

j=0
F′k−jF

′′
j

)}
,

(40)

UG
q (η) = G′′q−1 + Pr

{
q−1

∑
k=0

Fq−1−kG′k −Ω

(
q−1

∑
k=0

Fq−1−k

k

∑
j=0

F′k−jG
′
j +

q−1

∑
k=0

Fq−1−k

k

∑
j=0

Fk−jG
′′
j

)}
, (41)

Uφ
q (η) = φ

′′
q−1 −KSc

(
q−1

∑
k=0

φq−1−k

k

∑
j=0

φk−jφj − 2
q−1

∑
k=0

φq−1−kφk + φq−1

)
, (42)
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where:

χq =

{
0, if τ ≤ 1
1, if τ > 1

(43)

4. HAM Solution Convergences

In this segment we graphically discussed the superior effect of the concerned parameters.
The convergence of Equation (36) was subjected entirely through the auxiliary constraints }F,}G,}φ.
This is a collection in a way that it controls and converges the series solutions. The optional division of
}, was plotted through }-curves F′′ (0), G′(0), φ′(0) for the 2nd ordered approximated solution of HAM.
The operational region of } is −2.2 < }F < 0.2,−2.1 < }G < −0.1,−2.4 < }φ < 0.1. The convergence
of HAM through the }-curve on velocity profile F′′ (0), temperature profile G′(0) and concentration
profile φ′(0) is presented in Figure 1.
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5. Results and Discussion

In this segment the impact of emerging parameters on velocity function F′(η), temperature
function G(η) and concentration function φ(η) within the defined domain have been discussed.
The impact of M on F′(η) is deliberated in Figure 2. The Lorentz force theory deliberated that the
magnetic field grows at a reversed force to the fluids flow. This force reduced the momentum boundary
layer while it improved the thickness of the boundary layer. Therefore, with the escalating magnetic
field M the velocity profile F′(η) declined. From here we concluded that Jeffrey nanofluid was greatly
subjected by the magnetic field compared to the other two. In Figures 3 and 4 the impact of Pr and
Ω on G(η) were presented respectively. In Figure 3 we perceived that G(η) diminished with the
rise in Pr. Physically the thickness of the boundary layer increased with the reduction in thermal
diffusion. In addition, it can also be seen from the figure that Pr is more effective on Jeffrey and
Maxwell nanofluids compared to the Oldroyd-B nanofluid. In Figure 4 the effect of thermal relaxation
parameter Ω on G(η) has been described. From here we saw that G(η) reduced with the escalation
in Ω. This was attributable to the fact that as we escalate Ω, the material particles need more time
for heat transmission to its nearest particles. In addition, it can be stated that this material shows a
non-conducting behavior with higher values of Ω which results in a reduction in G(η). The impact of
Sc, K and Ks on φ(η) are schemed in Figures 5–7 respectively. In Figure 5 the effect of Sc on φ(η) has
been described. Schmidt number is the ratio of momentum diffusivity to mass diffusivity. Physically,
the Schmidt number is related to hydrodynamic layer’s thickness and boundary layer. The escalating
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Sc intensifies the momentum of the boundary layer flow which results in an increase in concentration
profile. It is clear from the figure that φ(η) upsurges with the rise in Sc. In Figure 6 the impact of K on
φ(η) has been described. From here we concluded that larger K results in a reduction in φ(η). This may
have been caused by the fact that the reaction rates controlled the diffusion coefficients. To a certain
extent similar results are displayed in Figure 7. In Figure 7 the impact of Ks on φ(η) has been described.
From this figure we have concluded that the growing values of Ks showed a drop in behavior in φ(η).
This results from an agreement with the general physical behavior of the homogeneous reaction K and
the heterogeneous reaction Ks. In Figures 8 and 9 the impact of M on C fx and Nux for Jeffrey, Maxwell
and Oldroyd-B nanofluids have been described. It is clear from the figures that the growing values of
M were decreasing for both C fx and Nux. The magnetic field was applied perpendicular to the flow
of fluids and had an inverse variation with the skin friction of the fluid flow. This is the reason why
the increasing magnetic field reduced the skin friction of the fluids flow. Similarly, the behavior of
the heat transfer rate was due to the growing magnetic force on the fluids flow phenomena, with the
fluid particles requiring more time to transfer the heat to the nearest particle. This was because the
heat transfer rate reduced with the escalating magnetic field. The impact of Pr and Ω on Nux for
the nanofluids flow has been described in Figures 10 and 11. From here we have concluded that the
escalation in Pr increased the heat transfer rate while the increased Ω reduced the heat transfer rate for
the nanofluids flow. Figure 12 shows the Total Residual error for the three types of nanofluid flow.
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Tables Discussion

In this section we have demonstrated the effect of emerging dimensionless parameters on the
presented model of nanofluids. Table 1 displayed the conclusions associated with emerging parameters
of skin fraction coefficients. This shows the impression of magenatic field parameter M on skin fraction
coefficients. The magenatic field parameter shows a reduction in the skin fraction coefficient. Table 2
demonstrated the conclusion of incipient parameters on local Nusselt numbers. The heat transfer
rate decreases with the rise in thermal relaxation parameter Ω while escalates with the increase in
Prandtl number Pr. Table 2 shows that the thermal relaxation parameter has more effect on Jefferey
nanofluids in comparison to Maxwell and Oldroyd-B nanofluids. Table 3 demonstrated the conclusion
of an emerging parameter on the Sherwood number. The Sherwood number reduces with its rise,
which upsurges with the escalation of the strength of homogeneous reaction K and the strength of
heterogeneous reaction Ks.

Table 1. Distinction in −C fx for different M.

M Ref. [47]
Present Results

for Jeffrey
Nanofluid

Ref. [47]
Present Results

for Maxwell
Nanofluid

Ref. [47]
Present Results
for Oldroyd-B

Nanofluid

1.0 1.210458 0.210462 1.504151 1.504153 1.071019 1.071022

2.0 1.431584 1.431587 1.804788 1.804791 1.248081 1.248084

Table 2. Distinction in Nux for different Ω and Pr.

Ω Pr Ref. [47] Jeffrey
Nanofluid Ref. [47] Maxwell

Nanofluid Ref. [47] Oldroyd-B
Nanofluid

1.0 ———- 0.610394 ———- 0.595298 ———- 0.610846

1.2 ———- 0.607503 ———- 0.593311 ———- 0.607993

6.0 0.418081 0.513786 0.421167 0.511247 0.426476 0.5154367

7.0 0.439695 0.626865 0.441919 0.548966 0.447670 0.5477974

Table 3. Distinction in Shx for different Sc, K and Ks.

Sc K Ks Jeffrey Maxwell Oldroyd-B

1.2 −0.096477 −0.095593 −0.096771

1.5 −0.096782 −0.095890 −0.097081

1.5 −0.058030 −0.047238 −0.049135

1.7 −0.056699 −0.037230 −0.039262

0.5 −0.018933 −0.037233 0.012399

0.8 −0.160028 0.046603 −0.125205

6. Comparison of Analytical Solutions and Numerical Solutions

An analytical solution means an exact solution. To study the behavior of systems, an analytical
solution can be used with varying properties. Regrettably there are many practical systems that lead to
an analytical solution, and analytical solutions are often of limited use. This is why we use a numerical
approach to generate answers that are closer to practical results. These solutions which cannot be used
as complete mathematical expressions are numerical solutions. In the natural worldthere are almost no
problems that are exactly solvable, which makes the problem more difficult than all the exactly solvable
problems. There are three or four of them in nature that have already been solved, unfortunately
even numerical methods cannot always give an exact solution. Numerical techniques can handle
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any completed physical geometries which are often impossible to solve analytically. In this article
both analytical and numerical approaches are tested to solve the modeled problem. A comparison
of HAM and ND-Solve technique for F′(η), G(η) and φ(η) are deliberated in Figures 13–15 and
Tables 4–6, respectively.
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Table 4. Symmetry of HAM versus numerical solutions for F′(η), when Sc = Pr = K2 = 1.0,
κ = κ1 = κ2 = λ2 = M = K = 0.1.

η
HAM
F
′
(η)

Numerical
F
′
(η)

Absolute Error
AE

0.0 3.33067 × 10−16 0.000000 3.33067 × 10−16

0.1 0.0950433 0.093334 0.002876

0.2 0.180827 0.173972 0.009647

0.3 0.258260 0.242791 0.016488

0.4 0.328165 0.300578 0.020276

0.5 0.391281 0.348033 0.019089

0.6 0.448277 0.385777 0.011828

0.7 0.499753 0.414357 0.085396

0.8 0.546251 0.434262 0.111989

0.9 0.588258 0.445923 0.142335

1.0 0.626213 0.449730 0.176483

Table 5. Symmetry of HAM versus numerical solutions for G(η), when Sc = Pr = Ks = 1.0, κ = κ1 =

κ2 = λ3 = M = K = 0.1.

η
HAM
G(η)

Numerical
G(η)

Absolute Error
AE

0.0 1.000000 1.00000 0.000000

0.1 0.915165 0.887477 0.002876

0.2 0.835725 0.775917 0.009647

0.3 0.761845 0.666195 0.016488

0.4 0.693506 0.559077 0.020276

0.5 0.630563 0.45522 0.019089

0.6 0.572791 0.355165 0.011828

0.7 0.519912 0.259342 0.250570

0.8 0.471618 0.168073 0.303545

0.9 0.427594 0.0815811 0.346013

1.0 0.387518 5.60459 × 10−9 0.387517

Table 6. Symmetry of HAM versus numerical solutions for φ(η), when Sc = Pr = Ks = 1.0, κ = κ1 =

κ2 = λ2 = M = K = 0.1.

η
HAM
φ(η)

Numerical
φ(η)

Absolute Error
AE

0.0 0.396762 0.404080 0.007318

0.1 0.429884 0.436425 0.006841

0.2 0.464667 0.468606 0.003939

0.3 0.499830 0.500349 0.000519

0.4 0.534490 0.531418 0.003072

0.5 0.568056 0.561618 0.006438

0.6 0.600146 0.590789 0.009357

0.7 0.630533 0.618810 0.011723

0.8 0.659102 0.645589 0.013513

0.9 0.685811 0.671065 0.014746

1.0 0.710675 0.695202 0.015473

7. Conclusions

In this article the MHD flow of three combined nanofluids (Jefferey, Maxwell, and Oldroyd-B)
over a linear stretched surface have been scrutinized. The problem was solved analytically by HAM.
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The convergence of HAM has been presented through graphical presentations. The concluding remarks
are as follows:

â The upsurges in magnetic field diminishes the velocity field.
â The upsurges in Prandtl number and thermal relaxation parameters diminish the

temperature field.
â The upsurges in Schmidt number upsurges the concentration field.
â The larger homogeneous reaction and heterogeneous reaction strengths falloff from the

concentration field.

Author Contributions: A.S. and Z.S. modeled the problem and wrote the manuscript. S.I., A.D. and P.K.
thoroughly checked the mathematical modeling and English corrections. W.K. and A.S. solved the problem
using Mathematica software. Z.S., S.I. and P.K. contributed to the results and discussions. All authors finalized
the manuscript after its internal evaluation.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

B0 Magnetic field strength (NmA−1)
C fx Skin friction coefficient
DI , DJ Diffusion coefficients
F Velocity profile
G Temperature profile
I, J Chemical species
i, j Concentration
K Strength of homogenous reaction
Ks Strength of heterogeneous reaction
k Thermal conductivity (Wm−1K−1)
M Magnetic parameter
Nux Nusselt number
Pr Prandtl number
q Heat flux (Wm−2)
Rex Local Reynolds number
Sc Schmidt number
Shx Sherwood number
T Fluid temperature (K)
Tw Surface temperature (K)
T∞ Temperature at infinity (K)
u, v Velocity components (ms−1)
x, y Coordinates
α Thermal diffusivity (m2s−1)
η Similarity variable
µ Dynamic viscosity (mPa)
υ f Kinematic viscosity (mPa)
ρ f Density (Kgm−3)
λ1 Relaxation time
λ2 Relaxation to retardation time
λ3 Retardation time
ζ Stretching rate
κ Deborah number
Ω Thermal relaxation parameter
σ Electrical conductivity (Sm−1)
φ Dimensional concentration profile
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