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Abstract: We considered the propagation of nonlinear shallow water waves in a narrow channel
presenting a fork. We aimed at computing the coupling conditions for a 1D effective model, using 2D
simulations and an analysis based on the conservation laws. For small amplitudes, this analysis
justifies the well-known Stoker interface conditions, so that the coupling does not depend on the angle
of the fork. We also find this in the numerical solution. Large amplitude solutions in a symmetric
fork also tend to follow Stoker’s relations, due to the symmetry constraint. For non symmetric forks,
2D effects dominate so that it is necessary to understand the flow inside the fork. However, even then,
conservation laws give some insight in the dynamics.

Keywords: networks; nonlinear shallow water equations; nonlinear wave equations

1. Introduction

The propagation of nonlinear waves in a network is an important topic. As an example, consider
a hydrological network which is prone to floods. Understanding the global dynamics of the network
can help identify its most vulnerable sections and take the appropriate measures. Real networks are
formed by long 2D or 3D channels of a small cross-section. To study the propagation of waves in such
systems, a first step is to consider a simple fork as a model of elementary junctions. The final goal is to
reduce the model to 1D channels connected by appropriate interface conditions. The study of such 1D
systems is now well advanced, in particular for systems of conservation laws, see the review [1].

The type of PDE model describing the quantity propagating on the network is very important
to derive the coupling conditions. Recently for the sine-Gordon nonlinear wave equation, we [2]
introduced a homothetic reduction [3] where we averaged the operator over the fork region and
consistently took the limit when the width tended to zero. Assuming continuity of the field, we
obtained Kirchhoff’s law for the gradients. Comparing the 2D solution with the one for the reduced
1D equations gives excellent agreement. In this situation, the angle of the fork does not play a role.
When considering networks of rivers, many authors, for example Stoker [4] and Jacovkis [5] assumed
continuity of the water height and continuity of the flux so that again, the angle of the fork did not
come in. In the close context of gas dynamics, Holden and Risebro [6] studied shocks in a pipe with an
elbow. They showed that the Riemann problem had a unique solution when the angle was smaller
than π. The angle is also important for classical hydrodynamics; in a fork, it sets the forces experienced
by the pipes [7]. In fact, for large amplitude shallow water waves our numerical calculations show
that the energy entering a branch can vary from 20% to 50% depending on the symmetry of the fork.
These studies point out the importance of the angle.

A few authors addressed the problem of the angle of a junction. Schmidt [8] studied the 2D
connection between 1D channels; he made no assumption on the size of the connecting domain.
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The flow in the junction was assumed linear so that the author used a variational method that gave the
solution as a superposition of fields. The final result was a system of ordinary differential equations for
the values at the ends of the branches coupled to the shallow water PDEs. Despite its formal beauty,
it remains difficult to handle and does not give a simple picture. Shi et al. [9] studied experimentally and
numerically the propagation of long waves in wide and narrow channels. They used the Boussinesq
dispersive shallow water equations for narrow channels. They observed no angle dependence and a
strong transmission. For the same equations, Nachbin and Simoes [10] obtained interface conditions
containing implicitly the angles of the fork. These gave an excellent matching between the average of
the 2D solution and the solution of the 1D effective model for angles smaller than π/3.

In this article, we consider the nonlinear shallow water equations. The system is very general
because it only involves conservation laws. Also it is simple enough. We revisit the problem of shallow
water propagation in 2D forks using our homothetic reduction procedure to obtain approximate
conservation laws and compare them with the numerical solutions. We compute approximate
conservation for the mass, momenta and energy laws for a general fork geometry. In the small
amplitude limit we recover Stoker’s conditions, i.e., continuity of surface elevation and mass
conservation (Kirchoff law). To our knowledge, this is a first formal justification of Stoker’s interface
conditions. This angle independent reduction holds also for a general class of scalar nonlinear wave
equations, for example the 2D sine-Gordon equation or the 2D reaction-diffusion equation; it confirms
the results of [2]. We computed the 2D numerical solution for a simple T-fork geometry for small and
large amplitudes. The wave was also launched in two different branches to see the effect of symmetry.
We show that Stoker’s conditions hold for the symmetric case for small and large amplitudes. For the
non-symmetric case, they hold for small amplitudes. When the amplitude is large, 2D effects dominate
the fork region. Nevertheless the approximate conservation laws give an insight into the flow.

The article is organized as follows. Section 2 presents the fork geometry and shows the
straightforward reduction for a general class of nonlinear wave equations. In Section 3 we recall the
shallow water equations and their conserved quantities. Section 4 gives the integrals of these equations
on the fork showing that the mass and energy laws do not involve the angles while the momenta laws
do. Section 5 shows the 2D numerical solutions for symmetric and non symmetric configurations for
small and large waves. There, we compare the numerical results with the conservation laws established
in Section 4. We discuss these results and conclude in Section 6.

2. General Scalar Nonlinear Wave Equations

Before considering the nonlinear shallow water equations, we analyze the simpler case of a class
of scalar 2D nonlinear wave equations. This large class includes hyperbolic wave equations like the
sine-Gordon equation as well as reaction diffusion equations like the Fisher equation, to name a few.
We consider equations of the form

αutt + βut − ∆u = N(u), (1)

where u(x, y, t) is a scalar, ∆ is the usual 2D Laplacian and where N(u) is a nonlinearity not containing
derivatives. The boundary condition on the lateral domain is of Neumann type

∂nu = ∇u · n = 0. (2)

Consider the fork domain shown in Figure 1. Far from the fork region, the solution can be
assumed to be 1D so that we do not loose much information by approximating the 2D dynamics with
a 1D equation. Inside the fork domain, a strong coupling occurs between the branches. To see this,
we proceed as in [2] and integrate the operators on the fork region. Then we examine the behavior
of the different terms as w, the width of the branches, goes to zero. We assume that domains that we
consider behave in a regular way as we shrink w homothetically to zero, [3].
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Figure 1. A fork geometry with arbitrary angles (left) and with right angles (right).

Consider the asymmetric Y-branch shown in the left panel of Figure 1. A first assumption is the
continuity of u which is obvious for the 2D operator. The other condition comes from the integration
of the operator (1) on the fork domain F = IABCDEFGHI. We get∫

[αutt + βut − N(u)] dxdy−
∫

∂F
(∇u) · n ds = 0. (3)

The first integral is of order O(w2). On the exterior boundaries, (∇u) · n = 0 so the line integral
reduces to ∫

IA
· · ·+

∫
CD
· · ·+

∫
FG

. . . ,

which are O(w). We then obtain for w→ 0

− ∂su1 + ∂su2 + ∂su3 = 0, (4)

where ui, i = 1, 2, 3 are respectively the values of the field at the end of branch 1 (IA) and at the
beginning of branches 2 (FG) and 3 (CD). Relation (4) is Kirchhoff’s law [2]. When the widths of the
branches are not equal, this Kirchoff relation becomes

− w1∂su1 + w2∂su2 + w3∂su3 = 0. (5)

Remark that in the result (4) the angle of the fork plays no role. The reduction leading from the
flux equation to (5) is an asymptotic result that holds for w → 0. It is then natural to approximate
the 2D Equation (1) by a 1D equation in each branch together with the conditions of continuity and
Kirchoff (4) at the junctions.

The result we obtain can be connected to a property of the Laplace operator with Neumann
boundary conditions on a so-called “fat” graph [11]. Consider a graph where each edge has a transverse
size w, assume Neumann boundary conditions on the transverse edge. Then the spectrum of the
Laplacian converges to the one of the 1D Laplacian as w→ 0. This is true for compact and non compact
graphs. See the article by Exner and Post [11] and the book by Post [12] for the details of the proof.

The validity of the reduction was confirmed numerically for the 2D sine-Gordon equation, (1) with
α = 1, β = 0 and N(u) = − sin(u) in [2]. There we compared the 2D solutions to the ones of the 1D
sine-Gordon equation in each branch, coupled by the interface conditions. For completeness, we recall
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the case of a sine-Gordon kink propagating in forks with angles 45 and 90 degrees. The kink is an exact
solution in 1D, it is

u(x, t) = 4 arctan
[

exp(
x− vt√
1− v2

)

]
, (6)

where the velocity 0 ≤ v < 1 is a free parameter. To compare the 2D and 1D solutions, we plot the
energies in each branch

Ei
2 =

∫
Ωi

[
1
2

u2
t +

1
2
|∇u|2 + (1− cos u)

]
dxdy, (7)

and

Ei
1 = ∑

i=1,2,3

∫
Ωi

[
1
2

u2
t +

1
2
|ux|2 + (1− cos u)

]
dx, (8)

where Ωi is branch i, abusively named the same in 1D and 2D. The kink is started in branch 1 with
an initial velocity v = 0.75, this gives a typical wavelength λ ≈ 4/

√
1− v2 = 2.7. The width of the

branches is w = 0.7 << λ. Figure 2 shows the time evolution of the energies Ei
2 for forks with angles

45 and 90 degrees and Ei
1, where i = 1, 2 corresponds to the branches. Initially the kink is in branch

1 so that E2
2 = E3

2 = 0. As the kink crosses into branches 2 and 3, E1
2 becomes very small. Note the

excellent agreement between the two expressions Ei
2 and the expression Ei

1. This confirms that the
angle of the fork plays no role for such a system.
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Figure 2. Time evolution of the energies Ei
2 for the kink motion in branches i = 1, 2 for the T-junction

(90 degrees) in full line (red online), for the Y-junction (45 degrees) in dashed line. The energy Ei
1 for

the 1D effective model is plotted with points.

The dynamics of kinks for the sine-Gordon equation is controlled by the energy: if the initial
energy is enough, a kink in branch 1 gives rise to two kinks in branches 2 and 3. This gives a very
simple picture. Other solutions like the breather have much more complicated dynamics, we refer the
reader to [2] for more details.
The dynamics of such waves can then be studied for general networks as we have done in [13].

3. The Nonlinear Shallow Water Equations

The shallow water equations in a 2D domain written in terms of the fluid velocity u(x, t)

u = (u, v)T
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and the water height h(x, t) read [4]

ht +∇ · (hu) = 0, (9)

(hu)t +∇ ·
(

hu2 + gh2

2
huv

)
= 0, (10)

(hv)t +∇ ·
(

huv

hv2 + gh2

2

)
= 0, (11)

where g is the gravitational acceleration. The wall boundary condition is

u · n = 0. (12)

We assume an even bottom of the channels h = h0.

3.1. Conserved Quantities

We first recall the conserved quantities. Integrating Equations (9)–(11) over a 2D closed domain Ω
and using the boundary condition (12) we get

∂t

∫
Ω

h dxdy = 0, (13)

∂t

∫
Ω

hu dxdy +
∮

∂Ω

gh2

2
nx ds = 0, (14)

∂t

∫
Ω

hv dxdy +
∮

∂Ω

gh2

2
ny ds = 0. (15)

A localized wave will have as first conserved quantity the integral of the water elevation

M =
∫

Ω
h dxdy.

The total x and y momenta

Px =
∫

Ω
hu dxdy, Py =

∫
Ω

hv dxdy

will not be conserved in the fork geometries.
A flux relation that can be deduced from the conservation laws (9)–(11) is the total energy flux

et +∇ ·
[

u(e +
gh2

2
)

]
= 0. (16)

where the total energy density is

e =
1
2

[
gh2 + (u2 + v2)h

]
. (17)

Integrating the energy flux relation over a volume Ω we obtain that a localized wave in Ω will
have constant energy

dE
dt

=
d
dt

∫
Ω

e dxdy = 0.
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3.2. Small Amplitude Limit

It is well known that in the linear limit, Equations (9)–(11) reduce to the linear wave equation
for the water height h. To see this, consider the steady state h = h0, u = v = 0, then the linearized
system is

ht + h0∇u = 0, (18)

h0ut + g∇h = 0, (19)

Taking the time derivative of the first equation and plugging in the second equation, we get the
wave equation

htt − gh0(hxx + hyy) = 0. (20)

The boundary conditions reduce to∇h ·n = 0 as can be seen by projecting (19) on n. This equation
is in the class (1).

4. Reduction of the Shallow Water Equations

The shallow water equations cannot be reduced so simply as the nonlinear scalar wave equation.
In fact, it is not clear what are the right interface conditions that should be implemented for a 1D
effective model. Stoker, in his well-known book [4] introduces the following interface conditions for
the water elevations h1, h2, h3 and branch-oriented velocities u‖1 , u‖2 , u‖3

h1 = h2 = h3, (21)

−h1u‖1 + h2u‖2 + h3u‖3 = 0, (22)

and uses them to analyze the junction of the Mississippi and the Missouri rivers. These conditions
were not justified by a formal argument. Note also that they do not depend on the angle of the junction.

Below, we will see that these conditions arise naturally in the limit of small amplitude for the
shallow water equations. For general amplitudes, it is not clear that these apply. To analyze the
problem, we proceed as in [2], integrate the governing equations on the bifurcation region and consider
the limit of vanishing transverse width w.

4.1. Mass Flux

Integrating the Equation (9) over the closed region F ≡ ABCDEFGHIA yields∫
F

ht dxdy +
∮

∂F
h u · n ds = 0.

Because of the boundary condition u · n = 0 on ABC, DEF and GHI the expression above
reduces to ∫

F
ht dxdy +

∫
AI

h u · n ds +
∫

CD
h u · n ds +

∫
FG

h u · n ds = 0.

The first integral is O(w2) while the three other integrals are O(w). Dividing the equation by w
and taking the limit w→ 0 we get from these three terms

− h1u‖1 + h2u‖2 + h3u‖3 = 0, (23)

where we have introduced the local branch-oriented velocities u‖, u⊥ such that(
u‖

u⊥

)
=

(
cos θ sin θ

− sin θ cos θ

)(
u
v

)
(24)
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and where the indices 1,2 and 3 refer to the branches. Of course, when the transverse widths w1, w2, w3

are different, with the condition that the ratios w2/w1, w3/w1 remain finite, the relation (23) becomes

−w1h1u‖1 + w2h2u‖2 + w3h3u‖3 = 0.

4.2. Energy Flux

The energy flux (16) can be consistently reduced to a 1D relation. As for the mass relation,
we integrate Equation (17) over the domain F = ABCDEFGHIA to obtain

∫
F

et dxdy +
∮

∂F
(e +

gh2

2
) u · n ds = 0.

Because of the boundary condition u · n = 0 on ABE, the expression above reduces to

∫
F

et dxdy +
∫

AI
(e +

gh2

2
) u · n ds +

∫
CD

(e +
gh2

2
) u · n ds +

∫
FG

(e +
gh2

2
) u · n ds = 0.

The first integral is O(w2) while the three other integrals are O(w). Dividing the equation by w
and taking the limit w→ 0 we get from these three terms

− (e1 +
gh2

1
2

)u‖1 + (e2 +
gh2

2
2

)u‖2 + (e3 +
gh2

3
2

)u‖3 = 0. (25)

To conclude, Equation (9) gives in the 1D limit, the balance of mass (23). The same happens for
the energy flux (16) which yields (25). The natural matching conditions for 1D shallow water equations
on a network are then

− h1u‖1 + h2u‖2 + h3u‖3 = 0, (26)

− u‖1(gh2
1 + h1

u‖1
2

2
) + u‖2(gh2

2 + h2
u‖2

2

2
) + u‖3(gh2

3 + h3
u‖3

2

2
) = 0. (27)

For the mass and the energy balance laws, we have a similar situation to the one of the nonlinear
scalar wave equation, the angles of the fork do not play any role. In the small amplitude limit,
the speeds u1, u2, u3 are small and the squares can be neglected in the energy relation. Then, we recover
the Stoker interface conditions (21).

4.3. Momentum Flux for a General Fork

Contrary to the mass and the energy, the momentum Equations (10) and (11) cannot be consistently
reduced to a 1D condition involving h, u‖ at each end of F .

To see this, integrate the horizontal momentum Equation (10) over the domain F and get

∫
F
(hu)t dxdy +

∮
∂F

(
hu2 + gh2

2
huv

)
· n ds = 0,

where the first integral is a surface integral and the second one a line integral. In the integrand of the
latter, we have (

hu2

huv

)
· n = hu

(
u
v

)
· n = 0

on the exterior boundaries of ∂F because of the boundary condition (2). Then, only the potential term
gh2

2 will contribute to these terms.
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The O(w) terms (line integrals) reduce to

− g
2 (|AB|h2

AB − |HI|h2
HI)− sin θ2

g
2 (|BC|h2

BC − |DE|h2
DE)− sin θ3

g
2 (|EF|h2

EF − |HG|h2
HG)

−wh1u1v1 + w
[
(h2u2

2 + g h2
2

2 ) cos θ2 + h2u2v2 sin θ2

]
+ w

[
(h3u2

3 + g h2
3

2 ) cos θ3 + h3u3v3 sin θ3

]
= 0.

(28)

Using the branch oriented velocities (24) we get the approximate law

− g
2 (|AB|h2

AB − |HI|h2
HI)− sin θ2

g
2 (|BC|h2

BC − |DE|h2
DE)− sin θ3

g
2 (|EF|h2

EF − |GH|h2
GH)

−wh1u1v1 + w cos θ2

[
h2u‖2

2
+ g h2

2

2

]
+ w cos θ3

[
h3u‖3

2
+ g h3

2

2

]
= 0,

(29)

where we neglected the velocity components u⊥.
Similarly for the vertical momentum equation we obtain

g
2

cos θ2(|BC| h2
BC − |DE| h2

DE) +
g
2

cos θ3(|EF| h2
EF − |GH| h2

GH)− w

[
h1v2

1 + g
h1

2

2

]

+ w

[
(h2u2

2 + g
h2

2
2
) sin θ2 + h2u2v2 cos θ2

]
+ w

[
(h3u2

3 + g
h2

3
2
) sin θ3 + h3u3v3 cos θ3

]
= 0. (30)

Using the branch velocities and neglecting the transverse components we get

g
2

cos θ2(|BC| h2
BC − |DE| h2

DE) +
g
2

cos θ3(|EF| h2
EF − |GH| h2

GH)

− w

[
h1v2

1 + g
h1

2

2

]
+ w sin θ2

[
h2u‖2

2
+ g

h2
2

2

]
+ w sin θ3

[
h3u‖3

2
+ g

h2
3

2

]
= 0. (31)

4.4. Momentum Flux for the T-Fork

Consider now the T-geometry shown in the right panel of Figure 1. The calculations are simpler
so that we used this geometry to validate the approach numerically. The general fork domain F can
be reduced to the square ADFIA by taking θ2 = π, θ3 = 0 and B → C → A, G → H → I. Then the
Equations (28) and (30) reduce to

−h1u1v1 − (h2u2
2 + g

h2
2

2
) + h3u2

3 + g
h2

3
2

= 0, (32)

−(h1v2
1 + g

h2
1

2
)− h2u2v2 + g

h2
23
2

+ h3u3v3 = 0, (33)

where the term h23 is

h2
23 ≡

1
w

∫
DF

h2 ds. (34)

We will see that it can be obtained by interpolation of h2 and h3.

4.5. Effective 1D Model for the T-Fork

The pseudo-conservation laws (26), (27), (29) and (31) established in the previous section in the
limit w→ 0 provide a formal connection between h, u‖ in branches 1,2 and 3. In principle, they enable
to approximate the 2D problem (9)–(11) by three 1D shallow water equations

Hi
t + (HiUi)x = 0, (35)

(HiUi)t + (HiUi2 +
gH2

i
2

)x = 0, (36)



Symmetry 2019, 11, 434 9 of 20

where i = 1, 2, 3 correspond to the different branches. These 1D shallow water equations can be solved
using a standard finite difference scheme, see for example [14]. The discretization is shown in Figure 3
where the first nodes in each branch have values H = hi, U = ui. The coupling equations between
these three nodes given by (26), (27) and (29) would be solved using a Newton iteration.

 

x=0 x=0

x=0

2

2

u

h 3

u1h1

 

h

u
3

Figure 3. Space discretization for the 1D approximation.

5. Numerical Solutions of the 2D Shallow Water Equations

The approximation described in the previous section holds if the error remains small. We now
evaluate this error by solving numerically the 2D problem (9)–(11), compute h, u‖ and see how these
values agree with the pseudo-conservation laws (26), (27), (29) and (31). We chose the T geometry
shown in the right panel of Figure 1 for simplicity and considered symmetric and non symmetric
initial conditions. We also increased the wave amplitude to estimate the effect of the non linearity.

The Equations (9)–(11) were discretized using as space unit the depth d. The time unit was
√

d
g .

The variables and fields was rescaled as

x′ =
x
d

, t′ = t
√

g
d

, h′ =
x
d

, u′ =
u√
gd

. (37)

This amounts to taking d = 1, g = 1 in (9)–(11).
We solved the nonlinear shallow water equations using a first order finite volume scheme on an

unstructured triangular mesh produced with the Gmsh meshing software (see details in [15]). We used
the width w = 0.125 and the typical size of the triangles is 0.02. The time advance used a variable order
Adams–Bashforth–Moulton multistep solver (implemented in Matlab under ode113 subroutine [16]).
The relative and absolute tolerances were set to 10−5.

The initial condition is taken as a travelling solitary wave of velocity c. This is an exact solution
for the mass conservation law. We used a solitary wave inspired by the Serre theory [17], (see [18] for
the modern variational derivation)

h(x, y, t = 0) = d + η(y), (38)

v(x, y, t = 0) = c
η(y)

d + η(y)
, (39)

η(y) = a sech2(
1
2

k(y− y0)), (40)

where the speed is

c =
√

g(d + a).
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The other parameters were

g = 1, k = 1, d = 1, a = 1, x0 = y0 = 2.5.

The wave was chosen so that its extension 2/k = 2 is much larger than the width w = 0.125.
Below we discuss the effect of the width.

The four pseudo-conservation laws for the mass, momenta and energy (26), (27) and (29) on the
fork domain ADFIA are

δm ≡ −h1v1 − h2u2 + h3u3 = 0, (41)

δpx ≡ −h1u1v1 − (h2u2
2 + g

h2
2

2
) + h3u2

3 + g
h2

3
2

= 0. (42)

δpy ≡ −(h1v2
1 + g

h2
1

2
)− h2u2v2 + g

h2
23
2

+ h3u3v3 = 0, (43)

δe ≡ −v1(gh2
1 + h1

v2
1

2
)− u2(gh2

2 + h2
u2

2
2
) + u3(gh2

3 + h3
u2

3
2
) = 0, (44)

where we introduced the residuals δm, δpx, δpy and δe.
We considered a symmetric situation where the wave is incident from branch 1 and a non

symmetric situation where the wave was send into the fork from branch 3. In both cases, the number
of unknowns was the same; see Table 1.

Table 1. The two different dynamic problems for the T-branch.

Type Known Unknown

wave in branch 1 h1, v1 h2, u2, h3, u3
wave in branch 3 h3, u3 h1, v1, h2, u2

The wave mass and wave energy in each branch have been calculated. They are defined as

Mw =
∫

Ω
(h− d) dxdy,

Ew =
∫

Ω

1
2

[
g(h− d)2 + (u2 + v2)h

]
dxdy.

Energy will propagate very differently in problems 1 and 2. In the next sections we examine in
detail the two types of problems and use the conservation laws to establish jump conditions for the 1D
effective model.

To verify the approximation given by the relations (41)–(44), we also computed the time evolution
of the quantities h1, h2, h3, v1, u2, u3 from the 2D direct numerical simulations. We used a scattered
linear interpolation to estimate these physical variables along the four different segments of the fork
region from the unstructured triangular mesh data.

5.1. Wave Incident into Branch 1

5.1.1. Small Amplitude Waves a/d = 0.1

The time evolution of the wave mass and energy is presented in Figure 4. Consider the wave mass,
at t = 0: M0

1 = 57 10−3, M0
2 = M0

3 = 0. After the wave has passed, at t = 6.5, M1 = 0, M2 = M3 = 26.
We have 2× 26 = 52 which shows the conservation of mass. Notice the depression in the mass in
branch 1 after the wave passes. Almost all energy is transferred to branches 2 and 3.

Here our balance laws hold well for both the mass and the energy, see Figure 5.
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Figure 4. Time evolution of the wave mass Mw (left) and the wave energy Ew (right) for a wave
incident in branch 1 for a/d = 0.1.
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Figure 5. Time evolution of the mass and energy quantities δm (black online) and δe (red online) for
a/d = 0.1.

We can use them to obtain u2, h2. Assume symmetry h2 = h3, u2 = −u3. The balance laws
reduce to

−h1v1 − 2h2u2 = 0, (45)

−v1(gh2
1 + h1v2

1/2)− 2u2(gh2
2 + h2u2

2/2) = 0. (46)

Since v2
1, u2

2 � gh2 we can neglect the terms v2
1, u2

2 of the second equation. The resulting relations
are satisfied by

h2 = h1, u2 = −v1/2, (47)

which are the Stoker conditions. These are in good agreement with the simulations as shown
by Figure 6.
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Figure 6. Time evolution of h1, h2 (top) and v1/2, u2 (bottom) for a/d = 0.1.

5.1.2. Very Large Amplitude Waves a/d = 2

In this case, 2D effects start to appear. Figure 7 shows a snapshot of the surface elevation h for a
wave such that a/d = 2. Notice the lump h ≈ 2 on the edge of the domain.
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-0.5

-0.4

-0.3

-0.2

-0.1

0
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Figure 7. Snapshot of the surface elevation h at time t = 0.9 for a wave incident in branch 1 for a/d = 2.

Figure 8 shows the time evolution of the wave mass and energy. Despite the evidence of 2D
effects, the overall transfer of wave mass and wave energy from branch 1 to branches 2 and 3 does not
vary significantly as a/d changes from 0.1 to 2.
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Figure 8. Time evolution of the wave mass Mw (left) and the wave energy Ew (right) for a wave
incident in branch 1 for a/d = 2.

Figure 9 shows the time evolution of δm and δe. Notice that the mass relation is better satisfied
than the energy relation.
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Figure 9. Time evolution of the mass and energy quantities δm, δe for a/d = 2.

Again the Stoker relations (47) give a good approximation as shown by Figure 10 which show
that h2 ≈ h1 and u2 ≈ v1/2. The price to pay to approximate the 2D situation by a 1D effective model
is an energy loss at the junction.
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Figure 10. Time evolution of h1, h2 (top) and v1/2, u2 (bottom) for a/d = 2.
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Also remark that for the approximation to hold it is crucial that the wave be wider than w and not
too fast. If these conditions are not met, h2 and u2 will be delayed from h1, v1 and will need to describe
what happens in the fork. We observed this for a larger channel w = 1 and the same parameters.

5.2. Wave Incident into Branch 3

For this configuration, we observe a significant difference in behavior as the wave amplitude
increases. Figure 11 shows the time evolution of the wave mass and wave energy for a/d = 0.1
(top panels) and a/d = 2 (bottom panels). Small amplitude waves get transmitted to branch 1 as much
as to branch 2. On the other hand, large amplitude waves are predominantly transmitted to branch 2.
The mass entering branch 2 is three times larger than the one entering branch 1; for energies, the factor
is six.
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Figure 11. Time evolution of the wave mass Mw (left) and the wave energy Ew (right) for a wave
incident in branch 3 for a/d = 0.1 (top panels) and a/d = 2 (bottom panels). Notice the different scales.

5.2.1. Small Amplitude Waves a/d = 0.1

First observe that u1 is non zero and close to v1. Nevertheless, the mass and energy residuals δm
and δe are small as seen in Figure 12. The wave elevation h does not vary much from one branch to
the other as seen in the top panel of Figure 13. The velocities u2 and v1 verify u2 ≈ u3/2, v1 ≈ u3/2.
These two results show that the Stoker conditions hold for this small amplitude.
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Figure 12. Time evolution of the mass and energy quantities δm (black online) and δe (red online) for
a/d = 0.1.
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Figure 13. Time evolution of h1, h2 and h3 (top) and u3, u2, u1, v1 (bottom) for a/d = 0.1.

5.2.2. Large Amplitude Waves a/d = 1

Figure 14 shows h(t = 0.8) for a wave incident in branch 3 for a/d = 2. Notice the complex
structure of the flow at the junction. There is some recirculation so that the flow is essentially 2D and
not amenable to a 1D reduction.
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Figure 14. Snapshot of the surface elevation h at time t = 0.8 for a wave incident in branch 3 for
a/d = 2.
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Nevertheless, for a smaller amplitude a/d = 1, the balance laws (41)–(44) give some insight
into the flow. Figure 15 shows the mass δm and energy δe. The mass is much better conserved than
the energy.
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 0

 0  1  2  3  4
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δm
, δ

e
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Figure 15. Time evolution of the mass and energy quantities δm (black online) and δe (purple online)
for a/d = 2.

The momenta (42) and (43) are plotted in Figure 16.
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Figure 16. Time evolution of the x and y momenta quantities δpx (black online) and δpy (purple online)
for a/d = 1.

When the wave is coming from branch 3, an obvious solution is

v1 = 0, u2 = u3, h2 = h3, h1 = h2. (48)

This is simplistic, in reality v1 6= 0 but remains small. The horizontal component u1 is non zero
and close to u2 as shown in Figure 17.
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Figure 17. Time evolution of h1, h2, h3 (top) and u3, u2, u1, v1 (bottom) for a/d = 1.

The mass equation and y momentum equations allow to extract relations between
v1, h1, h2, u2, v1, h3, u3. Assuming v1, u2, u3 smaller than h2

1, h2
2, h2

3, we have

v1 =
h3u3 − h2u2

h1
, (49)

h1 = h23. (50)

The quantity (34) in the y component of the momentum is computed from the numerical solution.
It is plotted as a function of time together with the estimate

hi
23 =

√
1
2
(h2

2 + h2
3), (51)

in the left panel of Figure 18. As can be seen, the agreement is very good.

 1

 1.2

 1.4

 1.6

 0  1  2  3  4

*h
2

3

t’

 1

 1.2

 1.4

 1.6

 0  1  2  3  4

1

23

h
1
, 

h
2

3

t’

Figure 18. (Left) panel, time evolution of the quantity h23 (purple online) from (34) obtained from
the 2D numerics together with the approximation (51) (black online) indicated by the ∗ symbol.
(Right) panel, time evolution of h23 and h1.

The velocity v1m given by the mass conservation relation agrees semi-quantitatively with the
value v1 estimated from the 2D numerical solution. Both quantities are plotted as a function of time
in Figure 19. Note the delay due to the time the wave needs to propagate from one interface to the
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other. The y momentum conservation law is not satisfied so that there is no additional equation to
estimate u2.
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Figure 19. Time evolution of the quantity v1m obtained from the mass conservation law (49)
(purple online) and v1 from the 2D numerical solution (black online).

6. Discussion and Conclusions

The results of the previous section show that for large amplitudes and an asymmetric fork Stoker’s
interface conditions do not hold and the angle of the fork plays a role. This seems to contradict the
findings of Shi et al. [9]. Two reasons show that there is no contradiction. First, the amplitude of our
waves (a/d ≈ 1) are much larger than the ones presented in [9] (a/d ≈ 0.3) so that nonlinear effects are
much stronger in our study. The other point is that the sech2 initial condition is an exact solution of the
Boussinesq equations, but not of the nonlinear shallow water equations. For the Boussinesq equations,
we also expect an angle dependence, even for narrow channels, when the amplitude becomes large.
To see this, we examine the reduction of the equations for a fork.

The Boussinesq equations read

ht +∇ · [(1 + h)∇ϕ] = 0, (52)

ϕt +
1
2
(∇ϕ)2 + h− 1

3
(∆ϕ)t = 0, (53)

where h(x, y, t) is the water elevation. The velocity potential ϕ(x, y, t) is such that (u, v)T = ∇ϕ.
The boundary conditions are non slip ∇ϕ · n = 0. Integrating the equations on the fork domain F
(left panel of Figure 1) we get

∂t

∫
F

hdxdy−
∫

IA∪CD∪FG
(1 + h)∇ϕ · nds, (54)

∂t

∫
F
(ϕ− 1

3
∆ϕ)dxdy +

∫
F
(

1
2
(∇ϕ)2 + h)dxdy = 0. (55)

Neglecting the time evolution in the fork region, we get the following interface conditions

(1 + h1)u
‖
1 + (1 + h2)u

‖
2 + (1 + h3)u

‖
3 = 0, (56)∫

F

1
2

[
(∇ϕ)2 + h

]
dxdy = 0. (57)
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Note how the first equation reduces to Kirchhoff’s law for small h. The second equation contains
is an integral over the whole domain and depends on the angle of the fork. For small angles, we can
assume that ∇ϕ = u‖ so that the conditions reduce to

(1 + h1)u
‖
1 + (1 + h2)u

‖
2 + (1 + h3)u

‖
3 = 0, (58)

1
2
(u‖1)

2 + h1 +
1
2
(u‖2)

2 + h2 +
1
2
(u‖3)

2 + h3 = 0. (59)

Not surprisingly, these conditions are very close to the ones obtained by Nachbin and Simoes [10],
except for the Jacobian of the conformal transformation.

To conclude, we studied the propagation of shallow water waves in a fork between three narrow
channels. We considered both the 2D numerical solution and a homothetic reduction procedure that
gives coupling conditions at the interface. For such narrow widths, the delay experienced by the wave
is negligible so that one can envision describing the junction by an effective 1D PDE model.

Our reduction enabled us to derive balance laws for the mass, momenta and energy of the flow
across a general junction. For small amplitude waves, these laws reduce to the commonly used Stoker
jump conditions, giving these a formal justification. We verified these Stoker conditions on the 2D
numerical solutions of the shallow water equations for symmetric and non symmetric conditions.
Then, the angle of the junction does not play any role. This happens also for a general nonlinear wave
equation; we had seen this a previous study for the particular case of the sine-Gordon equation [2].

For large amplitude shallow water waves, the situation depends on the symmetry of the fork.
For a symmetric fork, the Stoker conditions are approximately verified. This is explained by the strong
constraint imposed by the symmetry. Then, the only solution of the balance laws corresponds to the
Stoker conditions. When the fork is non symmetric as in our case 2, more information is needed about
what happens inside the fork. The quantities u‖i , i = 1, 2, 3 are velocities projected in the direction
of the branches and this projection leads to a loss of information. Far from the junction, the flow is
quasi-1D so that not much is lost. On the contrary, inside the junction, the flow is full 2D. A possible
solution, to be studied in the future would be to use the full conservation law including the time
dependent term. Then we would introduce a fictitious node inside the junction and couple it to the
boundaries using average differential equations obtained by integrating (9)–(11) on the fork domain.
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