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Abstract

:

Free vibration analysis of the porous functionally graded circular plates has been presented on the basis of classical plate theory. The three defined coupled equations of motion of the porous functionally graded circular/annular plate were decoupled to one differential equation of free transverse vibrations of plate. The one universal general solution was obtained as a linear combination of the multiparametric special functions for the functionally graded circular and annular plates with even and uneven porosity distributions. The multiparametric frequency equations of functionally graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form. The influences of the even and uneven distributions of porosity, power-law index, diverse boundary conditions and the neglected effect of the coupling in-plane and transverse displacements on the dimensionless frequencies of the circular plate were comprehensively studied for the first time. The formulated boundary value problem, the exact method of solution and the numerical results for the perfect and imperfect functionally graded circular plates have not yet been reported.
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1. Introduction


Functionally graded materials (FGMs) are a class of composite materials, which are made of the ceramic and metal mixture such that the material properties vary continuously in appropriate directions of structural components. In the processes of preparing functionally graded material, micro-voids and porosities may appear inside material in view of the technical issues. Zhu et al. [1] reported that many porosities appear in material during the functionally graded material preparation process by the non-pressure sintering technique. Wattanasakulpong et al. [2] reported that many porosities exist in the intermediate area of the functionally graded material fabricated by utilizing a multi-step sequential infiltration technique because of the problem with infiltration of the secondary material into the middle area. In that case, less porosities appear in the top and bottom area of material because infiltration of the material is easier in these zones.



In recent years, a significant number of articles about the free vibrations of porous functionally graded (FGM) plates have appeared in the literature due to their wide applications in many fields of engineering such as aeronautical, civil, mechanical, automotive, and ocean engineering. The gradation of properties in functionally graded materials and the diverse distributions of porosity have a significant effect on distributions of the mass and the stiffness of plates and therefore their natural frequencies. The knowledge about influence of distribution of the material properties on dynamics of plates is very important because it allows us to predict the frequency of plates and find their optimal parameters. Additionally, the comprehensive investigation of the effect of functionally graded material with porosities and diverse boundary conditions on the natural frequencies of plates is the first important step to designing their safe and rational active vibration control system.



We note that, in most engineering applications, the classical plate theory is often used to analyze the dynamic behavior of thin lightweight plates. It is impossible to review all works focused on mechanical behavior of porous FGM structures; then, we limit ourselves to chronological review of some of the works focused on mechanical behavior of porous and porous FGM plates that are closely related to our work.



Jabbari et al. [3] studied the buckling of thin saturated porous circular plate with the layers of piezoelectric actuators. Buckling load was obtained for clamped circular plate under uniform radial compressive loading. The same authors presented the buckling analysis of clamped thin saturated porous circular plate with sensor–actuator layers under uniform radial compression [4,5] investigated thermal and mechanical stability of clamped thin saturated and unsaturated porous circular plates with piezoelectric actuators. Rad and Shariyat [6] solved the three-dimensional magneto-elastic problem for asymmetric variable thickness porous FGM circular supported on the Kerr elastic foundation using the differential quadrature method and the state space vector technique. Barati et al. [7] studied buckling of functionally graded piezoelectric rectangular plates with porosities based on the four-variable plate theory. Mechab et al. [8] studied free vibration of the FGM nanoplate with porosities resting on Winkler and Pasternak elastic foundation based on the two-variable plate theory. Mojahedin et al. [9] analyzed buckling of radially loaded clamped saturated porous circular plates based on higher order shear deformation theory. Wang and Zu [10] analyzed vibration behaviors of thin FGM rectangular plates with porosities and moving in the thermal environment using the method of harmonic balance and the Runge–Kutta technique. Gupta and Talha [11] analyzed flexural and vibration response of porous FGM rectangular plates using nonpolynomial higher-order shear and the normal deformation theory. Wang and Zu [12] analyzed vibration characteristics of longitudinally moving sigmoid porous FGM plates based on the von Kármán nonlinear plate theory. Ebrahimi et al. [13] studied free vibration of smart shear deformable rectangular plates made of porous magneto-electro-elastic functionally graded materials. Feyzi and Khorshidvand [14] studied axisymmetric post-buckling behavior of a saturated porous circular plate with simply supported and clamped boundary conditions. Wang and Zu [15] studied large-amplitude vibration of thin sigmoid functionally graded plates with porosities. Wang et al. [16] studied vibrations of longitudinally travelling FGM porous thin rectangular plates using the Galerkin method and the four-order Runge–Kutta method. Ebrahimi et al. [17] used a four-variable shear deformation refined plate theory for free vibration analysis of embedded smart rectangular plates made of magneto-electro-elastic porous functionally graded materials. Shahverdi and Barati [18] developed nonlocal strain-gradient elasticity model for vibration analysis of porous FGM nano-scale rectangular plates. Shojaeefard et al. [19] studied free vibration and thermal buckling of micro temperature-dependent FGM porous circular plate using the generalized differential quadrature method. Barati and Shahverdi [20] presented a new solution to examine large amplitude vibration of a porous nanoplate resting on a nonlinear elastic foundation modeled based on the four-variable plate theory. Kiran et al. [21] studied free vibration of porous FGM magneto-electro-elastic skew plates using the finite element formulation. Cong et al. [22] presented an analytical approach to buckling and post-buckling behavior analysis of FGM rectangular plates with porosities under thermal and thermomechanical loads based on the Reddy’s higher-order shear deformation theory. Kiran and Kattimani [23] studied free vibration and static behavior of porous FGM magneto-electro-elastic rectangular plates using the finite element method. Arshid and Khorshidvand [24] analyzed free vibration of saturated porous FGM circular plates integrated with piezoelectric actuators using the differential quadrature method. Shahsavari et al. [25] used the quasi-3D hyperbolic theory for free vibration of porous FGM rectangular plates resting on Winkler, Pasternak and Kerr foundations.




2. Contribution of Current Study


The aim of the paper is to formulate and solve the boundary value problem for the free axisymmetric and non-axisymmetric vibrations of FGM circular plate with even and uneven porosity distributions and diverse boundary conditions. The defined coupled equations of motion for the porous FGM circular plate were decoupled based on the properties of physical neutral surface. The general solution of the decoupled equation of motion of a porous FGM circular plate was defined as the linear combination of the Bessel functions functionally dependent on the material parameters. The obtained characteristic equations allow us to comprehensively study the effect of the distribution of material parameters and the formulated boundary conditions on the natural frequencies of axisymmetric and non-axisymmetric vibrations of the circular plates without the necessity to solve a new eigenvalue problem for plates with a steady distribution of parameters.



Authors of many previous papers (e.g., [26,27,28,29,30]) presented the free transverse vibration analysis of the perfect (without porosity) FGM circular plates using the equation of motion including only the coefficient of the pure bending stiffness varying in the thickness direction of the plate. The coefficients of the extensional stiffness and the bending-extensional coupling stiffness were neglected because the effect of the coupled in-plane and transverse displacements was omitted for obtaining simplified solution to the eigenvalue problem.



In the present paper, the obtained equation of motion of the perfect and imperfect FGM circular plates includes the coefficients of extensional stiffness, bending-extensional coupling stiffness and bending stiffness, which appeared by decoupling the in-plane and transverse displacements using the properties of the physical neutral surface. The differences between the values of numerical results for the eigenfrequencies of the perfect FGM circular plate with and without the coupling effect are shown for diverse boundary conditions.



To the best knowledge of authors, there are no studies which focus on the free axisymmetric and non-axisymmetric vibrations of FGM and porous FGM circular plates. In particular, the obtained exact solution, the multiparametric frequency equations and the calculated eigenfrequencies for the free vibrations of perfect and imperfect FGM circular plates with clamped, simply supported, sliding and free edges have not yet been reported. The present paper fills this void in the literature.




3. FGM Circular Plate with Porosities


Consider a porous FGM thin circular plate with radius R and thickness h presented in the cylindrical coordinate (r,θ,z) with the z-axis along the longitudinal direction. The geometry and the coordinate system of the considered circular plate are shown in Figure 1. The FGM plate contains evenly (e) and unevenly (u) distributed porosities along the plate’s thickness direction. The cross-sections of the FGM circular plates with the two various types of distribution of porosities are shown in Figure 2.



The functionally graded material is a mixture of a ceramic (c) and a metal (m). If the volume fraction of the ceramic part is Vc and the metallic part is Vm, we have the well-known dependence:


Vc(z)+Vm(z)=1.



(1)







Based on the modified rule of mixtures [16] with the porosity volume fraction ψ(ψ≪1), the Young’s modulus, the density and the Poisson’s ratio for evenly (e) distributed porosities over the cross-section of the plate have the general forms:


Ee(z,ψ)=Ec[Vc(z)−ψ2]+Em[Vm(z)−ψ2],



(2a)






ρe(z,ψ)=ρc[Vc(z)−ψ2]+ρm[Vm(z)−ψ2],



(2b)






νe(z,ψ)=νc[Vc(z)−ψ2]+νm[Vm(z)−ψ2].



(2c)







The volume fraction of the ceramic part changes continually along the thickness and can be defined as [31]


Vc(z,g)=(zh+12)g, g≥0,



(3)




where g is the power-law index of the material. A change in the power g of functionally graded material results in a change in the portion of the ceramic and metal components in the circular plate. We assume that the composition is varied from the bottom surface (z=−h/2) to the top surface (z=h/2) of the circular plate. After substituting the variation of the ceramic part Vc(z,g) from Equation (3) into Equation (2), the material properties of the functionally graded circular plate with evenly distributed porosities are defined in the final form:


Ee(z,g,ψ)=(Ec−Em)(zh+12)g+Em−ψ2(Ec+Em),



(4a)






ρe(z,g,ψ)=(ρc−ρm)(zh+12)g+ρm−ψ2(ρc+ρm),



(4b)






νe(z,g,ψ)=(νc−νm)(zh+12)g+νm−ψ2(νc+νm).



(4c)







For the functionally graded circular plate with unevenly (u) distributed porosities [16], the material properties in Equations (4) can be replaced by the following forms:


Eu(z,g,ψ)=(Ec−Em)(zh+12)g+Em−ψ2(Ec+Em)(1−2|z|h),



(5a)






ρu(z,g,ψ)=(ρc−ρm)(zh+12)g+ρm−ψ2(ρc+ρm)(1−2|z|h),



(5b)






νu(z,g,ψ)=(νc−νm)(zh+12)g+νm−ψ2(νc+νm)(1−2|z|h).



(5c)







In this case, the porosity linearly decreases to zero at the top and the bottom of the cross-section of the plate. The effect of Poisson’s ratio is much less on the mechanical behavior of FGM plates than the Young’s modulus [32,33], thus the Poisson’s ratio will assume to be constant νe=νu=ν in the whole volume of the porous FGM circular plate.




4. Constitutive Relations and Governing Equations


In most practical applications, the ratio of the radius R to the thickness h of the plate is more than 10; then, the assumptions of classical plate theory (CPT) are applicable and rotary inertia and shear deformation can be successfully omitted.



For a thin circular plate, the displacement field has the form:


ur(r,θ,z,t)=u(r,θ,t)−z∂w(r,θ,t)∂r,



(6a)






uθ(r,θ,z,t)=v(r,θ,t)−zr∂w(r,θ,t)∂θ,



(6b)






w(r,θ,z,t)=w(r,θ,t),



(6c)




where u, v and w are the radial, circumferential and transverse displacements of the midplane (z=0) of the plate at time t. Based on the linear strain–displacement relations and Hook’s law, the resultant forces and the moments for porous FGM circular plate (i={e,u}) can be expressed in the following form [34]:


(NrriNθθiNrθi)=[A11iA12i0A12iA11i000A33i](εrr0εθθ0γrθ0)+[B11iB12i0B12iB11i000B33i](κrrκθθκrθ),



(7a)






(MrriMθθiMrθi)=[B11iB12i0B12iB11i000B33i](εrr0εθθ0γrθ0)+[D11iD12i0D12iD11i000D33i](κrrκθθκrθ),



(7b)




where


(εrr0,εθθ0,γrθ0)=(∂u∂r, 1r∂v∂θ+ur,1r∂u∂θ+∂v∂r−vr), 



(8a)






(κrr,κθθ,κrθ)=(−∂2w∂r2, −1r2∂2w∂θ2−1r∂w∂r,−2r∂2w∂r∂θ+2r2∂w∂θ)



(8b)




are the in-plane strains and curvatures of midplane, respectively.



We assume that the material properties are varied from the bottom surface (z=−h/2) to the top surface (z=h/2) of the plate; then, the coefficients of extensional stiffness Akli, bending-extensional coupling stiffness Bkli and bending stiffness Dkli can be defined for FGM circular plate with i-th distribution of porosities in the general forms:


(A11i,B11i,D11i)=∫−h/2h/2Ei(z,g,ψ)1−ν2(1,z,z2)dz,



(9a)






(A12i,B12i,D12i)=∫−h/2h/2νEi(z,g,ψ)1−ν2(1,z,z2)dz,



(9b)






(A33i,B33i,D33i)=∫−h/2h/2Ei(z,g,ψ)2(1+ν)(1,z,z2)dz.



(9c)







Additionally, the stiffness coefficients from Equation (9) satisfy the equations


A12i+2A33i=A11i, B12i+2B33i=B11i, D12i+2D33i=D11i. 



(10)







The resultant forces and the moments can be also defined by


(Nrri,Nθθi,Nrθi)=∫−h/2h/2(σrri,σθθi,τrθi)dz,



(11a)






(Mrri,Mθθi,Mrθi)=∫−h/2h/2(σrriz,σθθiz,τrθiz)dz, 



(11b)




where the stress components and the strain components have the form:


(σrriσθθiτrθi)=(Ei(z,g,ψ)1−ν2(εrr+νεθθ)Ei(z,g,ψ)1−ν2(εθθ+νεrr)Ei(z,g,ψ)2(1+ν)(2γrθ)),



(12)






(εrrεθθ2γrθ)=(εrr0+zκrrεθθ0+zκθθγrθ0+zκrθ).



(13)







4.1. Coupled Equations of Motion


Using the Hamilton’s principle [34] and ignoring in-plane inertia forces, the equilibrium equations of motion of the porous FGM thin circular plate have the forms:


∂Nrri∂r+1r(∂Nrθi∂θ+Nrri−Nθθi)=0,



(14a)






∂Nrθi∂r+1r∂Nθθi∂θ+2rNrθi=0,



(14b)






∂2Mrri∂r2+2r∂Mrri∂r+1r2∂2Mθθi∂θ2−1r∂Mθθi∂r+2r∂2Mrθi∂r∂θ+2r2∂Mrθi∂θ=ρih∂2w∂t2, 



(14c)




where the resultants forces and the moments can be obtained using Equations (7) and (8), and can be presented in the following form:


Nrri=A11i∂u∂r+A12i( 1r∂v∂θ+ur)−B11i∂2w∂r2−B12i(1r2∂2w∂θ2+1r∂w∂r), 



(15a)






Nθθi=A12i∂u∂r+A11i( 1r∂v∂θ+ur)−B12i∂2w∂r2−B11i(1r2∂2w∂θ2+1r∂w∂r), 



(15b)






Nrθi=A33i(1r∂u∂θ+∂v∂r−vr)−B33i(2r∂2w∂r∂θ−2r2∂w∂θ), 



(15c)






Mrri=B11i∂u∂r+B12(1r∂v∂θ+ur)−D11i∂2w∂r2−D12i(1r2∂2w∂θ2+1r∂w∂r),



(16a)






Mθθi=B12i∂u∂r+B11i(1r∂v∂θ+ur)−D12i∂2w∂r2−D11i(1r2∂2w∂θ2+1r∂w∂r), 



(16b)






Mrθi=B33i(1r∂u∂θ+∂v∂r−vr)−D33i(2r∂2w∂r∂θ−2r2∂w∂θ). 



(16c)







In Equation (14c), ρi is the averaged material density of the FGM circular plate for the i-th distribution of porosities presented in the general form:


ρi≡ρi(g,ψ)=1h∫−h/2h/2ρi(z,g,ψ)dz, i={e,u}. 



(17)







Substituting Equations (15) and (16) into Equation (14), and using relations given in Equation (10), we get the coupled equilibrium equations of motion of the porous FGM circular plate presented in terms of displacement components:


A11i(∂2u∂r2+1r∂u∂r−ur2−1r2∂v∂θ+1r∂2v∂r∂θ)+A33i(1r2∂2u∂θ2−1r∂2v∂r∂θ−1r2∂v∂θ)−B11i∂∇2w∂r=0,



(18a)






A11i(1r2∂u∂θ+1r∂2u∂r∂θ+1r2∂2v∂θ2)+A33i(1r2∂u∂θ−1r∂2u∂r∂θ+∂2v∂r2+1r∂v∂r−v2r)−B11i1r∂∇2w∂θ=0,



(18b)






D11i∇2∇2w−B11i∇2ε=−ρih∂2w∂t2, 



(18c)




where ∇2=∂2∂r2+1r∂∂r+1r2∂2∂θ2 is the Laplace operator presented in polar coordinates and


ε=∂u∂r+1r∂v∂θ+ur.



(19)








4.2. Decoupled Equation of Motion


Equation (18) show that the in-plane stretching and bending are coupled because the reference surface is a geometrical midplane. We can eliminate this coupling by introducing the physical neutral surface, where the in-plane displacements will be omitted. The in-plane displacements of the midplane can be expressed in terms of the slopes of deflection in the following form:


u(r,θ,t)=z0∂w(r,θ,t)∂r,



(20a)






v(r,θ,t)=z01r∂w(r,θ,t)∂θ, 



(20b)




where z0 is the distance between the midplane and the physical neutral surface. By substituting Equation (20) into Equations (6) and (15) and introducing z=z0, the in-plane displacements u, v and the in-plane forces Nrri, Nθθi, Nrθi must equal zero based on properties of the physical neutral surface. By substituting Equation (20) into Equation (15)


Nrri=(z0A11i−B11i)∂2w∂r2+(z0A12i−B12i)(1r2∂2w∂θ2+1r∂w∂r)=0, 



(21a)






Nθθi=(z0A12i−B12i)∂2w∂r2+(z0A11i−B11i)(1r2∂2w∂θ2+1r∂w∂r)=0,



(21b)






Nrθi=(z0A33i−B33i)(2r∂2w∂r∂θ−2r2∂w∂θ)=0



(21c)




and assuming that the Poisson’s ratio is constant, distance z0 can be obtained from relations:


z0A11i−B11i=z0A12i−B12i=z0A33i−B33i=0, 



(22)




where


z0=B11iA11i=B12iA12i=B33iA33i=∫−h/2h/2Ei(z,g,ψ)zdz∫−h/2h/2Ei(z,g,ψ)dz. 



(23)







By substituting Equations (20) and (23) into Equations (18c) and (19), we obtain the decoupled equation of transverse vibration of the porous FGM thin circular plate in the form:


Di∇2∇2w=−ρih∂2w∂t2, 



(24)




where


Di=D11i−(B11i)2A11i. 



(25)









5. Solution of the Problem


Taking into account a harmonic solution, the small vibration of the porous FGM circular plate may be expressed as follows:


w(r,θ,t)=W(r)cos(nθ)cos(ωt),



(26)




where W(r) is the radial mode function as the small deflection compared with the thickness h of the plate, n is the integer number of diagonal nodal lines, θ is the angular coordinate, and ω is the natural frequency. By substituting Equation (26) into Equation (24) using the dimensionless coordinate ξ=r/R(0<ξ≤1), the general governing differential equation assumes the following form:


Ln(W)=ρihω2W, 



(27)




where Ln(·) is the differential operator defined by


Ln(·)≡Did4dξ4+2Diξd3dξ3−(1+2n2)Diξ2d2dξ2+(1+2n2)Diξ3ddξ+(n4−4n2)Diξ4. 



(28)







The calculated general forms of material density ρi and the coefficients of extensional stiffness (A11i), extensional-bending coupling stiffness (B11i) and bending stiffness (D11i) for the porous FGM circular plate are presented in the following general forms:


ρi=ρc(2x−ψ−gψ)+ρm(2xg−ψ−ψg)2x(1+g), 



(29a)






A11i=Ech1−ν2[(2x−ψ−gψ)+EmEc(2xg−ψ−gψ)2x(1+g)], 



(29b)






B11e=B11u=Ech2(1−ν2)[g(1−EmEc)2(1+g)(2+g)],



(29c)






Di=Ech312(1−ν2)[y(6g2+6g+12)−ψ(1+g)(2+g)(3+g)+EmEc[y(2g3+6g2+16g)−ψ(1+g)(2+g)(3+g)]2y(1+g)(2+g)(3+g)], 



(29d)




where x=y=1 for the even distribution (i=e) of porosities and x=2, y=4 for the uneven (i=u) distribution of porosities. The extensional-bending coupling stiffness B11i has the same form for both types of porosities.



By substituting the obtained forms from Equation (29) into Equation (27), the generalized ordinary differential equation with variable coefficients is obtained as:


Ln(W)χ=λ2μiW,



(30)




where


Ln(·)χ≡(χ1i+χ2i)d4dξ4+2(χ1i+χ2i)ξd3dξ3−(1+2n2)(χ1i+χ2i)ξ2d2dξ2+(1+2n2)(χ1i+χ2i)ξ3ddξ+(n4−4n2)(χ1i+χ2i)ξ4,



(31)






χ1i=6xg2(Ec−Em)2Ec(1+g)(2+g)2[Ec(ψ+gψ−2x)+Em(ψ+gψ−2xg)], 



(32)






χ2i=Ec[y(12+6g+6g2)−ψ(1+g)(2+g)(3+g)]+Em[y(16g+6g2+2g3)−ψ(1+g)(2+g)(3+g)]2yEc(1+g)(2+g)(3+g), 



(33)






μi=(−gψ−ψ+2x)−ρmρc(gψ+ψ−2xg)2x(1+g),



(34)






λ=ωR2ρch/Dc, 



(35)






Dc=Ech312(1−ν2). 



(36)







The boundary conditions on the outer edge (ξ=1) of the porous FGM circular plate may be one of the following: clamped, simply supported, sliding supported and free. These conditions may be written in terms of the radial mode function W(ξ) in the following form:

	
Clamped:


W(ξ)|ξ=1=0,



(37a)






dWdξ|ξ=1=0.



(37b)







	
Simply supported:


W(ξ)|ξ=1=0,



(38a)






M(W)|ξ=1=[d2Wdξ2+νξdWdξ−νn2ξ2W]ξ=1=0. 



(38b)







	
Sliding supported:


dWdξ|ξ=1=0, 



(39a)






V(W)|ξ=1=[d3Wdξ3+1ξd2Wdξ2−(1+2n2−νn2ξ2)dWdξ+(3n2−νn2ξ3)W]ξ=1=0, 



(39b)







	
Free:


M(W)|ξ=1=0,



(40a)






V(W)|ξ=1=0.



(40b)












The static forces M(W) and V(W) are the normalized radial bending moment and the normalized effective shear force, respectively.



The one multiparametric general solution of the defined differential Equation (30) for FGM circular/annular plates with the two various types of distribution of porosities (i={e,u}) is obtained in the following form:


Wni(ξ,λ,g,ψ)=C1Jn[(λMi)1/2ξ]+C2In[(λMi)1/2ξ]+C3Yn[(λMi)1/2ξ]+C4Kn[(λMi)1/2ξ], 



(41)




where n(n∈N+) is the number of nodal lines, C1, C2, C3, C4 are the constants of integration, Jn[(λMi)1/2ξ], In[(λMi)1/2ξ], Yn[(λMi)1/2ξ], Kn[(λMi)1/2ξ] are the Bessel functions as particular solutions of Equation (30), and Mi is the generalized multiparametric function defined as:


Mi≡Mi(x,y,g,ψ,Em,Ec,ρm,ρc)=Ω1iΩ2i+Ω3i, Mi≥1∀g∈[0,∞]∧∀ψ∈[0,1), 



(42)




where


Ω1i=−Ecx(2+g)2[ρc(gψ+ψ−2x)+ρm(gψ+ψ−2xg)], 



(43a)






Ω2i=12xyg2(Ec−Em)2ρcEc(gψ+ψ−2x)+Em(gψ+ψ−2xg), 



(43b)






Ω3i=(2+g)ρc[Ec[y(12+6g+6g2)−ψ(1+g)(2+g)(3+g)]+Em[y(16g+6g2+2g3)−ψ(1+g)(2+g)(3+g)]]3+g. 



(43c)







The functions Jn[(λMi)1/2ξ] and In[(λMi)1/2ξ] are the limited linear independent solutions (limξ→0Jn[(λMi)1/2ξ]<∞, limξ→0In[(λMi)1/2ξ]<∞) of Equation (30) for the axisymmetric and non-axisymmetric deflections at center (ξ=0) of the porous FGM circular plate and diverse values of the physically justified parameters λ, g and ψ. The particular solutions Yn[(λMi)1/2ξ] and Kn[(λMi)1/2ξ] are unlimited (limξ→0Yn[(λMi)1/2ξ]=−∞, limξ→0Kn[(λMi)1/2ξ]=∞) for the deflection at the center of the plate, then, the general solution (41) for the porous FGM circular plate can be presented in the new form:


Wni(ξ,λ,g,ψ)=C1Ψ1+C2Ψ2, 



(44)




where


Ψ1≡Jn[(λMi)1/2ξ], 



(45a)






Ψ2≡In[(λMi)1/2ξ]. 



(45b)







By applying the general solution (44) and the boundary conditions (37–40) as well as assuming the existence of the non-trivial constants C1 and C2, the general nonlinear multiparametric characteristic equations of the FGM circular plate with the two various types of distribution of porosities were obtained in the form:

	
Clamped (C):


ΔCi(λ,g,ψ,n,x,y)≡|Ψ1Ψ2∂Ψ1∂ξ∂Ψ2∂ξ|ξ=1=0;



(46a)







	
Simply supported (SS):


ΔSSi(λ,g,ψ,n,x,y)≡|Ψ1Ψ2M[Ψ1]M[Ψ2]|ξ=1=0; 



(46b)







	
Sliding supported (S):


ΔSi(λ,g,ψ,n,x,y)≡|∂Ψ1∂ξ∂Ψ2∂ξV[Ψ1]V[Ψ2]|ξ=1=0; 



(46c)







	
Free (F):


ΔFi(λ,g,ψ,n,x,y)≡|M[Ψ1]M[Ψ2]V[Ψ1]V[Ψ2]|ξ=1=0.



(46d)












If x=y=1 is introduced to Equations (42) and (45), then the obtained characteristic Equation (46) will be valid for the FGM circular plates with even (i=e) distribution of porosities. If x=2, y=4 is introduced to Equations (42) and (45), then the obtained characteristic equations (46) will be valid for the FGM circular plates with uneven (i=u) distribution of porosities.



The general solution for the perfect (without porosity) FGM circular plate can be obtained from Equation (44) and presented in the following form:


Wn(ξ,λ,g)≡limψ→0Wni(ξ,λ,g,ψ)=C1limψ→0Jn[(λMi)1/2ξ]+C2limψ→0In[(λMi)1/2ξ]. 



(47)







After calculations, the final form of general solution for the perfect FGM circular plate is expressed as


Wn(ξ,λ,g)=Jn[(λY)1/2ξ]+In[(λY)1/2ξ], 



(48)




where


Y=Ec(2+g)2(3+g)(Ec+gEm)(ρc+gρm)ρc(1+g)[12Ec2+(28g+16g2+4g3)EcEm+(7g2+4g3+g4)Em2]. 



(49)







The general solution for the perfect FGM circular plate with negligible effect of the coupling in-plane and transverse displacements (A11i→0, B11i→0) has the form:


Wn(ξ,λ,g)=C1Jn[(λP)1/2ξ]+C2In[(λP)1/2ξ], 



(50)




where


P=Ec(2+g)(3+g)(ρc+gρm)ρc[3Ec(2+g+g2)+Em(8g+3g2+g3)].



(51)








6. Parametric Study


The every single fundamental and lower dimensionless frequencies of the free axisymmetric and non-axisymmetric vibrations of porous FGM circular plate were calculated for diverse values of the power-law index g, the porosity volume fraction ψ and different boundary conditions using the Newton method aided by a calculation software.



The Poisson’s ratio is taken as ν=0.3 and its variation is assumed to be negligible. In the present study, aluminum is taken as the metal and alumina is taken as the ceramic material. The values of Young’s modulus and densities are taken as follows: Em=70 GPa, Ec=380 GPa, ρm=2702 kg/m3, ρc=3800 kg/m3.



6.1. Imperfect FGM Circular Plate


The obtained numerical results for the first three dimensionless frequencies λ=ωR2ρch/Dc of the axisymmetric (n=0) and non-axisymmetric (n=1) vibrations of the perfect (ψ→0) homogeneous (g→0) circular plate with various boundary conditions are presented in Table 1 and compared with the results obtained by Wu and Liu [35], Yalcin et al. [36], Zhou et al. [37] and Duan et al. [38]. The obtained numerical results for the perfect homogeneous circular plate are in excellent agreement with those available in the literature.



The calculated fundamental dimensionless frequencies λ0 of the axisymmetric (n=0) and non-axisymmetric (n=1) vibrations of the FGM circular plate with evenly (i=e) and unevenly (i=u) distributed porosity are presented in Table 2, Table 3, Table 4 and Table 5. In the parametric study, values of the power-law index of FGMs is taken as g={0, 0.2, 0.4, 0.6, 1, 2, 3, 4, 5} and values of the porosity volume fraction is taken as ψ={0, 0.05, 0.1, 0.2, 0.3}.



The dependences of the fundamental dimensionless frequencies λ0 of the free axisymmetric (n=0) and non-axisymmetric (n=1) vibrations of the circular plate on selected values of the power-law index and the porosities volume fraction are presented in Figure 3, Figure 4, Figure 5 and Figure 6 as the two-dimensional (2D) and three-dimensional (3D) graphs for the two various types of distribution of porosity and all considered boundary conditions.




6.2. Perfect FGM Circular Plate


The obtained general solution (48) and the defined boundary conditions (37 ÷ 40) were used to calculate the first three dimensionless frequencies λ of the axisymmetric (n=0) and non-axisymmetric (n=1) vibrations of the perfect (ψ=0) FGM circular plate with various boundary conditions.



The obtained numerical results are presented in Table 6, Table 7, Table 8 and Table 9 for selected values of the power-law index g. Numerical results obtained for the clamped and simply supported plates (Table 6 and Table 7) were compared with the results presented in the paper [27], where the effect of the coupling in-plane and transverse displacements was omitted.



The fundamental dimensionless frequencies of the perfect FGM circular plates with and without the effect of the coupling in-plane and transverse displacements obtained for selected values of the power-law index and diverse boundary conditions are presented in Table 10. Additionally, the differences (errors) between obtained results were calculated according to the equation:


δ(%)=|λ0P−λ0Yλ0P|·100%,



(52)




where λ0P and λ0Y are the fundamental dimensionless frequencies of the perfect FGM circular plate without and with effect of the coupling in-plane and transverse displacements, respectively. Figure 7 presents the dependence of the differences (errors) between obtained results for the power-law index g≥0.





7. Discussion


7.1. Imperfect FGM Circular Plate


The numerical results for the fundamental dimensionless frequencies of the porous FGM circular plates presented in Table 2, Table 3, Table 4 and Table 5 and Figure 3, Figure 4, Figure 5 and Figure 6 show the following dependences:

	
the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the circular plate decreases with the increasing value of the power-law index g for the two considered distributions of porosities and all considered values of the porosity volume fraction ψ;



	
for the evenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the plate increases with the increasing value of the porosity volume fraction ψ for g∈[0, 0.4] and decreases for g∈[0.6, 5];



	
for the unevenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the plate increases with the increasing value of the porosity volume fraction ψ for g∈[0, 1] and decreases for g∈[2, 5];



	
the influence of values of the porosity volume fraction ψ on the values of the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the plate is smaller for the unevenly distributed porosities than for the evenly distributed porosities;



	
for the evenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of plate decreases faster for ψ=0.3 with the increasing values of the power-law index g than for ψ={0, 0.1, 0.2};



	
for the unevenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the plate decreases slowly with the increasing values of the power-law index g for all considered values of the porosity volume fraction ψ.








The observed dependences exist because of the diverse influence of porosity distributions, values of the power-law index and the porosity volume fraction on decreasing (increasing) the ratios of mass to stiffness of the considered circular plates. The all observed dependences are independent of the considered boundary conditions which influence only the values of the dimensionless frequencies of the plate.




7.2. Perfect FGM Circular Plate


It can be observed that the values of dimensionless frequencies of the perfect FGM circular plates obtained by omitting the effect of coupling in-plane and transverse displacements are higher than the values of the dimensionless frequencies of the considered plate with the coupling effect. The differences (errors) between the calculated dimensionless frequencies of free axisymmetric and non-axisymmetric vibration of the perfect FGM circular plate with and without the coupling effect are significant for the power-law index g∈[0, 20], but, for g∈[20, ∞], these differences decrease from 2% to 0%. It can be observed from Table 10 that the differences between the calculated dimensionless frequencies are independent of the modes of vibrations and the boundary conditions of the considered circular plate.





8. Conclusions


This paper presents the influence of two different types of distribution of porosities on the free vibrations of the thin functionally graded circular plate with clamped, simply supported, sliding supported, and free edges. To this aim, the boundary value problem was formulated and a solution was obtained in the exact form. The universal multiparametric characteristic equations were defined using the properties of the multiparametric general solution obtained for the plate with even and uneven distribution of porosities. The effects of the power-law index, the volume fraction index and diverse boundary conditions on the values of the dimensionless frequencies of the free axisymmetric and non-axisymmetric vibrations of the circular plate were comprehensively studied. Additionally, the influences of the power-law index and different boundary conditions on the values of dimensionless frequencies of the FGM circular plate without porosities were also presented.



The presented multiparametric analytical approach can be effectively applying for free vibration of circular and annular plates with other diverse models of an FGM and FGM porous material. The material parameters can be modeled via the exponential or sigmoid functions, as well as Mori–Tanaka functions or other homogenization techniques [39,40,41,42,43,44]. Diverse applied homogenization techniques only have an influence on the forms of the final replaced plate’s stiffnesses and directly on the function Mi presented in the obtained general solution in the present paper. It will be the goal of future papers.



The obtained multiparametric general solution will allow for studying the influences of diverse additional complicating effects such as stepped thickness, cracks, additional mounted elements expressed by only additional boundary conditions on the dynamic behavior of the porous functionally graded circular and annular plates. The exact frequencies of vibration presented in non-dimensional form can serve as benchmark values for researchers and engineers to validate their analytical and numerical methods applied in design and analysis of porous functionally graded structural elements.
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Figure 1. The geometry and the coordinate system of the porous FGM circular plate. 
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Figure 2. The cross-sections of the porous FGM circular plate: (a) even distribution; (b) uneven distribution. 
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Figure 3. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric (n=0) and non-axisymmetric (n=1) vibrations on selected values of the power-law index and the porosity volume fraction of the clamped circular plate with evenly and unevenly distributed porosities. 
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Figure 4. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric (n=0) and non-axisymmetric (n=1) vibrations on selected values of the power-law index and the porosity volume fraction of the simply supported circular plate with evenly and unevenly distributed porosities. 
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Figure 5. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric (n=0) and non-axisymmetric (n=1) vibrations on selected values of the power-law index and the porosity volume fraction of the sliding supported circular plate with evenly and unevenly distributed porosities. 
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Figure 6. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric (n=0) and non-axisymmetric (n=1) vibrations on selected values of the power-law index and the porosity volume fraction of the free circular plate with evenly and unevenly distributed porosities. 
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Figure 7. The dependence of the differences (errors) between the fundamental dimensionless frequencies of the perfect FGM circular plate without (λ0P) and with (λ0Y) effect of the coupling in-plane and transverse displacements for diverse values of the power-law index. 
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Table 1. The dimensionless frequencies of the perfect homogeneous circular plate.
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λ

	
Clamped

	
Simply

Supported

	
Sliding

Supported

	
Free




	
n




	
0

	
1

	
0

	
1

	
0

	
1

	
0

	
1






	
λ0

	
Present

	
10.215

	
21.260

	
4.935

	
13.898

	
14.682

	
3.082

	
9.003

	
20.474




	
[35]

	
10.216

	
21.260

	
4.935

	
13.898

	
14.682

	
3.082

	
9.003

	
20.475




	
[36]

	
10.215

	
21.260

	
4.935

	
13.898

	
-

	
-

	
9.003

	
20.474




	
[37]

	
10.215

	
21.260

	
4.935

	
13.898

	
-

	
-

	
9.003

	
20.474




	
[38]

	
10.215

	
21.260

	
4.935

	
13.898

	
-

	
-

	
9.003

	
20.474




	
λ1

	
Present

	
39.771

	
60.828

	
29.720

	
48.478

	
49.218

	
28.398

	
38.443

	
59.812




	
[35]

	
39.771

	
60.829

	
29.720

	
48.478

	
49.218

	
28.399

	
38.443

	
59.812




	
[36]

	
39.771

	
60.828

	
29.720

	
48.479

	
-

	
-

	
38.443

	
59.811




	
[37]

	
39.771

	
60.828

	
29.720

	
48.478

	
-

	
-

	
38.443

	
59.811




	
[38]

	
39.771

	
60.828

	
29.719

	
48.478

	
-

	
-

	
38.443

	
59.812




	
λ2

	
Present

	
89.104

	
120.079

	
74.156

	
102.773

	
103.499

	
72.859

	
87.750

	
118.957




	
[35]

	
89.104

	
120.079

	
74.156

	
102.772

	
103.499

	
72.859

	
87.750

	
118.957




	
[36]

	
89.104

	
120.079

	
74.156

	
102.773

	
-

	
-

	
87.705

	
118.957




	
[37]

	
89.104

	
120.080

	
74.156

	
102.773

	
-

	
-

	
87.750

	
118.957




	
[38]

	
89.104

	
120.079

	
74.156

	
102.773

	
-

	
-

	
87.750

	
118.957
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Table 2. The dimensionless fundamental frequencies of the clamped porous FGM circular plate.
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i

	
n

	
ψ

	
g




	
0

	
0.2

	
0.4

	
0.6

	
1

	
2

	
3

	
4

	
5




	
λ0






	
e

	
0

	
0

	
10.215

	
9.481

	
8.896

	
8.436

	
7.797

	
7.090

	
6.867

	
6.777

	
6.724




	
0.05

	
10.286

	
9.522

	
8.905

	
8.414

	
7.718

	
6.920

	
6.661

	
6.559

	
6.503




	
0.1

	
10.362

	
9.566

	
8.914

	
8.387

	
7.623

	
6.712

	
6.401

	
6.280

	
6.219




	
0.2

	
10.535

	
9.668

	
8.932

	
8.315

	
7.374

	
6.113

	
5.612

	
5.402

	
5.305




	
0.3

	
10.745

	
9.792

	
8.948

	
8.207

	
6.993

	
5.034

	
3.949

	
3.312

	
2.923




	
1

	
0

	
21.260

	
19.731

	
18.514

	
17.557

	
16.228

	
14.756

	
14.292

	
14.105

	
13.993




	
0.05

	
21.406

	
19.816

	
18.533

	
17.510

	
16.062

	
14.402

	
13.863

	
13.650

	
13.533




	
0.1

	
21.564

	
19.909

	
18.552

	
17.454

	
15.866

	
13.968

	
13.222

	
13.069

	
12.942




	
0.2

	
21.925

	
20.121

	
18.590

	
17.304

	
15.346

	
12.723

	
11.680

	
11.242

	
11.041




	
0.3

	
22.362

	
20.380

	
18.622

	
17.081

	
14.554

	
10.478

	
8.220

	
6.894

	
6.084




	
u

	
0

	
0

	
10.215

	
9.481

	
8.896

	
8.436

	
7.797

	
7.090

	
6.867

	
6.777

	
6.724




	
0.05

	
10.288

	
9.544

	
8.949

	
8.478

	
7.819

	
7.079

	
6.844

	
6.751

	
6.698




	
0.1

	
10.364

	
9.611

	
9.004

	
8.521

	
7.840

	
7.065

	
6.816

	
6.719

	
6.666




	
0.2

	
10.523

	
9.751

	
9.120

	
8.612

	
7.882

	
7.023

	
6.738

	
6.630

	
6.577




	
0.3

	
10.696

	
9.903

	
9.246

	
8.710

	
7.923

	
6.959

	
6.622

	
6.495

	
6.438




	
1

	
0

	
21.260

	
19.731

	
18.514

	
17.557

	
16.228

	
14.756

	
14.292

	
14.105

	
13.993




	
0.05

	
21.411

	
19.864

	
18.624

	
17.644

	
16.272

	
14.733

	
14.244

	
14.050

	
13.940




	
0.1

	
21.568

	
20.001

	
18.738

	
17.734

	
16.316

	
14.703

	
14.182

	
13.983

	
13.874




	
0.2

	
21.901

	
20.293

	
18.980

	
17.923

	
16.404

	
14.617

	
14.023

	
13.798

	
13.688




	
0.3

	
22.260

	
20.610

	
19.243

	
18.127

	
16.490

	
14.483

	
13.782

	
13.517

	
13.399
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Table 3. The dimensionless fundamental frequencies of the simply supported porous FGM circular plate.






Table 3. The dimensionless fundamental frequencies of the simply supported porous FGM circular plate.





	
i

	
n

	
ψ

	
g




	
0

	
0.2

	
0.4

	
0.6

	
1

	
2

	
3

	
4

	
5




	
λ0






	
e

	
0

	
0

	
4.935

	
4.580

	
4.297

	
4.075

	
3.767

	
3.425

	
3.317

	
3.274

	
3.248




	
0.05

	
4.969

	
4.600

	
4.302

	
4.064

	
3.728

	
3.343

	
3.218

	
3.168

	
3.141




	
0.1

	
5.005

	
4.621

	
4.306

	
4.051

	
3.683

	
3.242

	
3.092

	
3.033

	
3.004




	
0.2

	
5.089

	
4.670

	
4.315

	
4.017

	
3.562

	
2.953

	
2.711

	
2.609

	
2.563




	
0.3

	
5.190

	
4.730

	
4.322

	
3.965

	
3.378

	
2.432

	
1.908

	
1.600

	
1.412




	
1

	
0

	
13.898

	
12.898

	
12.103

	
11.477

	
10.608

	
9.646

	
9.343

	
9.220

	
9.147




	
0.05

	
13.993

	
12.954

	
12.115

	
11.446

	
10.500

	
9.415

	
9.062

	
8.923

	
8.847




	
0.1

	
14.097

	
13.015

	
12.127

	
11.410

	
10.372

	
9.131

	
8.708

	
8.543

	
8.460




	
0.2

	
14.333

	
13.153

	
12.152

	
11.312

	
10.032

	
8.317

	
7.635

	
7.349

	
7.218




	
0.3

	
14.618

	
13.322

	
12.173

	
11.166

	
9.514

	
6.849

	
5.373

	
4.506

	
3.977




	
u

	
0

	
0

	
4.935

	
4.580

	
4.297

	
4.075

	
3.767

	
3.425

	
3.317

	
3.274

	
3.248




	
0.05

	
4.970

	
4.611

	
4.323

	
4.095

	
3.777

	
3.420

	
3.306

	
3.261

	
3.236




	
0.1

	
5.006

	
4.643

	
4.349

	
4.116

	
3.787

	
3.413

	
3.292

	
3.246

	
3.220




	
0.2

	
5.083

	
4.710

	
4.406

	
4.160

	
3.808

	
3.393

	
3.255

	
3.203

	
3.177




	
0.3

	
5.167

	
4.784

	
4.467

	
4.207

	
3.828

	
3.362

	
3.199

	
3.137

	
3.110




	
1

	
0

	
13.898

	
12.898

	
12.103

	
11.477

	
10.608

	
9.646

	
9.343

	
9.220

	
9.147




	
0.05

	
13.997

	
12.985

	
12.174

	
11.534

	
10.637

	
9.631

	
9.311

	
9.185

	
9.113




	
0.1

	
14.099

	
13.075

	
12.249

	
11.592

	
10.666

	
9.611

	
9.273

	
9.141

	
9.069




	
0.2

	
14.317

	
13.266

	
12.408

	
11.716

	
10.724

	
9.555

	
9.167

	
9.020

	
8.948




	
0.3

	
14.551

	
13.473

	
12.580

	
11.850

	
10.780

	
9.468

	
9.009

	
8.836

	
8.759
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Table 4. The dimensionless fundamental frequencies of the porous FGM circular plate with sliding support.
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i

	
n

	
ψ

	
g




	
0

	
0.2

	
0.4

	
0.6

	
1

	
2

	
3

	
4

	
5




	
λ0






	
e

	
0

	
0

	
14.682

	
13.626

	
12.785

	
12.124

	
11.206

	
10.190

	
9.870

	
9.740

	
9.663




	
0.05

	
14.782

	
13.685

	
12.798

	
12.092

	
11.092

	
9.946

	
9.573

	
9.426

	
9.346




	
0.1

	
14.892

	
13.749

	
12.811

	
12.053

	
10.956

	
9.646

	
9.199

	
9.025

	
8.938




	
0.2

	
15.141

	
13.895

	
12.837

	
11.950

	
10.597

	
8.786

	
8.066

	
7.764

	
7.625




	
0.3

	
15.442

	
14.074

	
12.860

	
11.796

	
10.051

	
7.236

	
5.676

	
4.761

	
4.201




	
1

	
0

	
3.082

	
2.860

	
2.684

	
2.545

	
2.352

	
2.139

	
2.072

	
2.045

	
2.029




	
0.05

	
3.103

	
2.873

	
2.687

	
2.538

	
2.328

	
2.088

	
2.010

	
1.980

	
1.962




	
0.1

	
3.126

	
2.886

	
2.690

	
2.530

	
2.300

	
2.025

	
1.931

	
1.894

	
1.876




	
0.2

	
3.178

	
2.917

	
2.695

	
2.509

	
2.225

	
1.844

	
1.693

	
1.630

	
1.600




	
0.3

	
3.242

	
2.954

	
2.700

	
2.476

	
2.110

	
1.519

	
1.191

	
0.999

	
0.882




	
u

	
0

	
0

	
14.682

	
13.626

	
12.785

	
12.124

	
11.206

	
10.190

	
9.870

	
9.740

	
9.663




	
0.05

	
14.786

	
13.717

	
12.861

	
12.184

	
11.237

	
10.174

	
9.836

	
9.703

	
9.627




	
0.1

	
14.895

	
13.812

	
12.940

	
12.246

	
11.268

	
10.154

	
9.795

	
9.656

	
9.581




	
0.2

	
15.124

	
14.014

	
13.107

	
12.377

	
11.328

	
10.094

	
9.684

	
9.529

	
9.453




	
0.3

	
15.372

	
14.233

	
13.289

	
12.518

	
11.388

	
10.002

	
9.518

	
9.334

	
9.253




	
1

	
0

	
3.082

	
2.860

	
2.684

	
2.545

	
2.352

	
2.139

	
2.072

	
2.045

	
2.029




	
0.05

	
3.104

	
2.880

	
2.700

	
2.558

	
2.359

	
2.136

	
2.065

	
2.037

	
2.021




	
0.1

	
3.127

	
2.890

	
2.716

	
2.571

	
2.365

	
2.131

	
2.056

	
2.027

	
2.011




	
0.2

	
3.175

	
2.942

	
2.752

	
2.598

	
2.378

	
2.119

	
2.033

	
2.000

	
1.984




	
0.3

	
3.227

	
2.988

	
2.790

	
2.628

	
2.391

	
2.100

	
1.998

	
1.960

	
1.942
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Table 5. The dimensionless fundamental frequencies of the free porous FGM circular plate.
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i

	
n

	
ψ

	
g




	
0

	
0.2

	
0.4

	
0.6

	
1

	
2

	
3

	
4

	
5




	
λ0






	
e

	
0

	
0

	
9.003

	
8.355

	
7.840

	
7.435

	
6.872

	
6.248

	
6.052

	
5.973

	
5.926




	
0.05

	
9.064

	
8.391

	
7.848

	
7.415

	
6.802

	
6.099

	
5.870

	
5.780

	
5.731




	
0.1

	
9.132

	
8.431

	
7.856

	
7.391

	
6.718

	
5.915

	
5.641

	
5.534

	
5.480




	
0.2

	
9.284

	
8.521

	
7.872

	
7.328

	
6.498

	
5.388

	
4.946

	
4.761

	
4.675




	
0.3

	
9.469

	
8.630

	
7.886

	
7.233

	
6.163

	
4.437

	
3.481

	
2.919

	
2.576




	
1

	
0

	
20.474

	
19.002

	
17.830

	
16.908

	
15.628

	
14.211

	
13.764

	
13.584

	
13.476




	
0.05

	
20.615

	
19.084

	
17.848

	
16.863

	
15.468

	
13.870

	
13.350

	
13.145

	
13.033




	
0.1

	
20.767

	
19.173

	
17.866

	
16.809

	
15.280

	
13.452

	
12.829

	
12.586

	
12.464




	
0.2

	
21.115

	
19.378

	
17.902

	
16.665

	
14.779

	
12.253

	
11.248

	
10.827

	
10.633




	
0.3

	
21.535

	
19.628

	
17.934

	
16.450

	
14.016

	
10.091

	
7.916

	
6.639

	
5.859




	
u

	
0

	
0

	
9.003

	
8.355

	
7.840

	
7.435

	
6.872

	
6.248

	
6.052

	
5.973

	
5.926




	
0.05

	
9.067

	
8.411

	
7.886

	
7.471

	
6.890

	
6.239

	
6.032

	
5.950

	
5.903




	
0.1

	
9.133

	
8.470

	
7.935

	
7.509

	
6.909

	
6.226

	
6.007

	
5.921

	
5.875




	
0.2

	
9.274

	
8.593

	
8.037

	
7.590

	
6.947

	
6.190

	
5.938

	
5.843

	
5.796




	
0.3

	
9.426

	
8.728

	
8.149

	
7.676

	
6.983

	
6.133

	
5.836

	
5.724

	
5.674




	
1

	
0

	
20.474

	
19.002

	
17.830

	
16.908

	
15.628

	
14.211

	
13.764

	
13.584

	
13.476




	
0.05

	
20.620

	
19.129

	
17.935

	
16.992

	
15.670

	
14.188

	
13.718

	
13.531

	
13.425




	
0.1

	
20.771

	
19.262

	
18.045

	
17.078

	
15.713

	
14.160

	
13.660

	
13.466

	
13.361




	
0.2

	
21.091

	
19.543

	
18.279

	
17.261

	
15.798

	
14.077

	
13.505

	
13.288

	
13.182




	
0.3

	
21.437

	
19.848

	
18.532

	
17.457

	
15.881

	
13.948

	
13.273

	
13.017

	
12.903
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Table 6. The dimensionless frequencies of the clamped perfect FGM circular plate.
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n

	
λ

	
g




	
1

	
2

	
3

	
4

	
5

	
∞






	
0

	
λ0

	
Present

	
7.797

	
7.090

	
6.867

	
6.777

	
6.724

	
5.199




	
[27]

	
8.498

	
8.123

	
7.911

	
7.733

	
7.573

	
-




	
λ1

	
Present

	
30.357

	
27.604

	
26.737

	
26.386

	
26.177

	
20.243




	
[27]

	
33.086

	
31.625

	
30.798

	
30.107

	
29.485

	
-




	
λ2

	
Present

	
68.012

	
61.845

	
59.902

	
59.116

	
58.649

	
45.352




	
[27]

	
74.127

	
70.855

	
69.002

	
67.453

	
66.059

	
-




	
1

	
λ0

	

	
16.228

	
14.756

	
14.292

	
14.105

	
13.993

	
10.821




	
λ1

	
Present

	
46.430

	
42.219

	
40.893

	
40.357

	
40.038

	
30.961




	
λ2

	

	
91.655

	
83.344

	
80.725

	
79.667

	
79.037

	
61.118
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Table 7. The dimensionless frequencies of the simply supported perfect FGM circular plate.
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n

	
λ

	
g




	
1

	
2

	
3

	
4

	
5

	
∞






	
0

	
λ0

	
Present

	
3.767

	
3.425

	
3.317

	
3.274

	
3.248

	
2.512




	
[27]

	
4.105

	
3.924

	
3.821

	
3.736

	
3.658

	
-




	
λ1

	
Present

	
22.685

	
20.628

	
19.980

	
19.717

	
19.562

	
15.127




	
[27]

	
24.724

	
23.633

	
23.015

	
22.498

	
22.033

	
-




	
λ2

	
Present

	
56.602

	
51.470

	
49.853

	
49.199

	
48.810

	
37.744




	
[27]

	
61.692

	
58.968

	
57.426

	
56.137

	
54.977

	
-




	
1

	
λ0

	

	
10.608

	
9.646

	
9.343

	
9.220

	
9.147

	
7.074




	
λ1

	
Present

	
37.003

	
33.648

	
32.591

	
32.163

	
31.909

	
24.675




	
λ2

	

	
78.446

	
71.332

	
69.091

	
68.185

	
67.646

	
52.310
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Table 8. The dimensionless frequencies of the free perfect FGM circular plate.
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n

	
λ

	
g




	
1

	
2

	
3

	
4

	
5

	
∞






	
0

	
λ0

	
6.872

	
6.248

	
6.052

	
5.973

	
5.926

	
4.582




	
λ1

	
29.343

	
26.682

	
25.844

	
25.505

	
25.303

	
19.567




	
λ2

	
66.979

	
60.905

	
58.992

	
58.218

	
57.757

	
44.663




	
1

	
λ0

	
15.628

	
14.211

	
13.764

	
13.584

	
13.476

	
10.421




	
λ1

	
45.653

	
41.513

	
40.209

	
39.682

	
39.368

	
30.443




	
λ2

	
90.799

	
82.565

	
79.971

	
78.922

	
78.298

	
60.547











[image: Table]





Table 9. The dimensionless frequencies of the perfect FGM circular plate with sliding support.
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n

	
λ

	
g




	
1

	
2

	
3

	
4

	
5

	
∞






	
0

	
λ0

	
11.206

	
10.190

	
9.870

	
9.740

	
9.663

	
7.473




	
λ1

	
37.568

	
34.161

	
33.088

	
32.654

	
32.396

	
25.051




	
λ2

	
79.000

	
71.836

	
69.579

	
68.667

	
68.124

	
52.680




	
1

	
λ0

	
2.352

	
2.139

	
2.072

	
2.045

	
2.029

	
1.568




	
λ1

	
21.676

	
19.711

	
19.091

	
18.841

	
18.692

	
14.454




	
λ2

	
55.612

	
50.569

	
48.981

	
48.338

	
47.956

	
37.084
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Table 10. The differences between the fundamental dimensionless frequencies of the perfect FGM circular plates with and without effect of the coupling in-plane and transverse displacements.






Table 10. The differences between the fundamental dimensionless frequencies of the perfect FGM circular plates with and without effect of the coupling in-plane and transverse displacements.





	
BCs

	
n

	
λ

	
g




	
1

	
2

	
3

	
4

	
5

	
10

	
30

	
60

	
∞






	
Clamped

	
0

	
λ0P

	
8.498

	
8.123

	
7.911

	
7.733

	
7.573

	
6.977

	
6.064

	
5.687

	
5.199




	
λ0Y

	
7.797

	
7.090

	
6.867

	
6.777

	
6.724

	
6.512

	
5.960

	
5.654

	
5.199




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
1

	
λ0P

	
17.687

	
16.906

	
16.464

	
16.094

	
15.762

	
14.520

	
12.621

	
11.835

	
10.821




	
λ0Y

	
16.228

	
14.756

	
14.292

	
14.105

	
13.993

	
13.552

	
12.404

	
11.767

	
10.821




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
Simply supported

	
0

	
λ0P

	
4.105

	
3.924

	
3.821

	
3.736

	
3.658

	
3.370

	
2.929

	
2.747

	
2.512




	
λ0Y

	
3.767

	
3.425

	
3.317

	
3.274

	
3.248

	
3.145

	
2.879

	
2.731

	
2.512




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
1

	
λ0P

	
11.562

	
11.051

	
10.762

	
10.521

	
10.303

	
9.492

	
8.250

	
7.737

	
7.074




	
λ0Y

	
10.608

	
9.646

	
9.343

	
9.220

	
9.147

	
8.859

	
8.108

	
7.692

	
7.074




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
Sliding supported

	
0

	
λ0P

	
12.214

	
11.675

	
11.369

	
11.114

	
10.885

	
10.027

	
8.716

	
8.173

	
7.473




	
λ0Y

	
11.206

	
10.190

	
9.870

	
9.740

	
9.663

	
9.359

	
8.566

	
8.126

	
7.473




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
1

	
λ0P

	
2.564

	
2.451

	
2.387

	
2.333

	
2.285

	
2.105

	
1.830

	
1.716

	
1.569




	
λ0Y

	
2.352

	
2.139

	
2.072

	
2.045

	
2.029

	
1.964

	
1.798

	
1.706

	
1.569




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
Free

	
0

	
λ0P

	
7.489

	
7.159

	
6.972

	
6.815

	
6.674

	
6.149

	
5.344

	
5.012

	
4.582




	
λ0Y

	
6.872

	
6.248

	
6.052

	
5.973

	
5.926

	
5.739

	
5.252

	
4.983

	
4.582




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0




	
1

	
λ0P

	
17.033

	
16.281

	
15.855

	
15.499

	
15.179

	
13.984

	
12.155

	
11.398

	
10.421




	
λ0Y

	
15.628

	
14.211

	
13.764

	
13.584

	
13.476

	
13.051

	
11.945

	
11.332

	
10.421




	
δ(%)

	
8.2

	
12.7

	
13.2

	
12.3

	
11.2

	
6.6

	
1.7

	
0.5

	
0
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