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Abstract: This paper will present an effective algorithm for globally solving quadratic programs with
quadratic constraints. In this algorithm, we propose a new linearization method for establishing
the linear programming relaxation problem of quadratic programs with quadratic constraints.
The proposed algorithm converges with the global optimal solution of the initial problem, and
numerical experiments show the computational efficiency of the proposed algorithm.
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1. Introduction

Quadratic programs with quadratic constraints (QPWQC) have attracted the attention of many
researchers for several decades. On the one hand, it is since these classes of problems have a broad
applications in multistage shipping, path planning, finance, and portfolio optimization, among
others. [1–11]. On the other hand, it is because these classes of problems exist as important theoretical
complexities and computational difficulties, that is to say, they are known to generally possess multiple
local optimal solutions, which are not optimal solutions.

In the last several decades, many algorithms have been developed for globally solving
the (QPWQC) and its special cases, such as branch-and-bound method [12,13], approximation
approach [14], robust approach [15], branch-reduce-bound algorithm [16–19], geometric programming
approach [20–23], and others. Except for the above approaches, some global optimization
algorithms [24–38] for linear multiplicative programming problems and generalized linear fractional
programming problems can be used to solve the quadratic programs with quadratic constraints
(QPWQC) considered in this paper. Although these algorithms can be employed to solve the QPWQC
and its special cases, less work has been done for globally solving the QPWQC considered in this paper.

In this paper, first of all, by making use of the characteristics of simple variable quadratic function,
we construct a new linearization method for establishing the linear programming relaxation problem
of the QPWQC. Next, we present a global optimization algorithm based on the branch-and-bound
scheme for solving the QPWQC. Finally, the global convergence of the proposed algorithm is
proved, and numerical experimental results demonstrate the higher computational efficiency of
the proposed algorithm.

The main features of the proposed algorithm are given as follows. (1) A new linearization
method is proposed for systematically converting the QPWQC into a sequence of linear programming
relaxation problems, and the solutions of these linear programming relaxation problems can
infinitely approximate the global optimal solution of the original QPWQC by subdividing the
linear relaxation of the feasible region of the QPWQC and solving a series of linear programming
relaxation problems. (2) The constructed linear programming relaxation problems are embedded
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within a branch-and-bound framework, which can be effectively solved by any efficient linear
programming method. (3) Combining the proposed linear programming relaxation problem with the
branch-and-bound framework, an effective algorithm is proposed for solving the problem of QPWQC.
(4) Compared with the exist algorithms [37,39–47], numerical results show that the proposed algorithm
in this paper can be used to globally solve the QPWQC with higher computational efficiency.

The remaining sections of this paper are organized as follows. Firstly, the aim of Section 2 is to
propose a new linearization method for establishing the linear programming relaxation problem of
the initial QPWQC. Secondly, based on the branch-and-bound scheme, Section 3 proposes a global
optimization algorithm, and its global convergence is proved. Thirdly, compared with the existing
methods, Section 4 describes some numerical examples to show the computational efficiency of the
proposed algorithm. Finally, some conclusions are given.

2. New Linearization Method for Deriving Linear Programming Relaxation Problem

In this paper, the mathematical modeling of quadratic programs with quadratic constraints is
given as follows:

(QPWQC)


min ψ0(x) =

n
∑

k=1
co

kxk+
n
∑

j=1

n
∑

k=1
d0

ijxjxk

s.t. ψi(x) =
n
∑

k=1
ci

kxk+
n
∑

j=1

n
∑

k=1
di

ijxjxk ≤ bi, i = 1, 2, . . . , m,

x ∈ X0 =
{

x ∈ Rn : l0 ≤ x ≤ u0},

(1)

where di
jk, ci

k, and bi are all arbitrary real numbers; l0 = (l0
1 , . . . , l0

n)
T
> −∞, u0 = (u0

1, . . . , u0
n)

T
<

+∞.
In this section, we construct a new linearization method for deriving the linear programming

relaxation problem of the QPWQC, and the detailed construction process of the linearization method
is described as follows.

For convenience, we assume without loss of generality that X = {(x1, x2, . . . , xn)
T ∈ Rn : lj ≤

xj ≤ uj, j = 1, 2, . . . , n} ⊆ X0.

Theorem 1. For any x ∈ X, k ∈ {1, 2, . . . , n}, we consider the functions x2
k , u2

k + 2uk(xk − uk) and u2
k +

2lk(xk − uk), we have the following conclusions:

u2
k + 2uk(xk − uk) ≤ x2

k ≤ u2
k + 2lk(xk − uk); (2)

lim
‖u−l‖→0

{x2
k − [u2

k + 2uk(xk − uk)]} = 0 (3)

lim
‖u−l‖→0

{u2
k + 2lk(xk − uk)− x2

k} = 0 (4)

Proof. (i) From the mean value theorem, there exists a point ξk = αlk + (1− α)uk ∈ [lk, uk], where
α ∈ [0, 1], which satisfies that

x2
k = u2

k + 2ξk(xk − uk). (5)

From lk ≤ ξk ≤ uk, it follows that

u2
k + 2lk(xk − uk) ≥ u2

k + 2ξk(xk − uk) = x2
k ≥ u2

k + 2uk(xk − uk). (6)

(ii) From
x2

k − [u2
k + 2uk(xk − uk)] = u2

k − x2
k ≤ (uk − lk)

2, (7)
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it follows that
lim

‖u−l‖→0
{x2

k − [u2
k + 2uk(xk − uk)]} = 0. (8)

Also from

u2
k + 2lk(xk − uk)− x2

k = (xk − uk)[2lk − uk − xk] ≤ 2(uk − lk)
2. (9)

Therefore, we have
lim

‖u−l‖→0
{u2

k + 2lk(xk − uk)− x2
k} = 0. (10)

The proof is completed. �

From the conclusion (2), it follows that

u2
j + 2uj(xj − uj) ≤ x2

j ≤ u2
j + 2lj(xj − uj), (11)

(xj − xk)
2 ≥ (uj − lk)

2 + 2(uj − lk)[xj − xk − (uk − lk)], (12)

(xj − xk)
2 ≤ (uj − lk)

2 + 2(lj − uk)[xj − xk − (uk − lk)]. (13)

From the conclusions (3) and (4), it follows that

lim
‖u−l‖→0

{x2
j − [u2

j + 2uj(xj − uj)]} = 0, (14)

lim
‖u−l‖→0

{u2
j + 2lj(xj − uj)− x2

j } = 0, (15)

lim
‖u−l‖→0

{(uj − lk)
2 + 2(lj − uk)[xj − xk − (uk − lk)]− (xj − xk)

2} = 0. (16)

and
lim

‖u−l‖→0
{(xj − xk)

2 − { (uj − lk)
2 + 2(uj − lk)[xj − xk − (uj − lk)]}} = 0. (17)

For any x ∈ X, j, k ∈ {1, 2, . . . , n}, j 6= k, without loss of generality, we define

ψ
jk
(x) = 1

2 {u2
j + 2uj(xj − uj) + u2

k + 2uk(xk − uk)

−{(uj − lk)2 + 2(lj − uk)[xj − xk − (uk − lk)]}]
(18)

and
ψjk(x) = 1

2 {u2
j + 2lj(xj − uj) + u2

k + 2lk(xk − uk)

−{(uj − lk)2 + 2(uj − lk)[xj − xk − (uk − lk)]}],
(19)

Theorem 2. For any x ∈ X, j, k ∈ {1, 2, . . . , n}, j 6= k, consider the functions ψ
jk
(x), xjxk and ψjk(x) ,

the following conclusions hold:

ψ
jk
(x) ≤ xjxk =

1
2
[x2

j + x2
k − (xj − xk)

2] ≤ ψjk(x), (20)

lim
‖u−l‖→0

[xjxk − ψ
jk
(x)] = 0, (21)

and
lim

‖u−l‖→0
[ψjk(x)− xjxk] = 0. (22)
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Proof. (i) By the conclusions of Theorem 1, it follows that

ψjk(x) = 1
2{u2

j + 2lj(xj − uj) + u2
k + 2lk(xk − uk)

−{(uj − lk)2 + 2(uj − lk)[xj − xk − (uk − lk)]}}
≥ 1

2 [x
2
j + x2

k − (xj − xk)
2] = xjxk

≥ 1
2{u2

j + 2uj(xj − uj) + u2
k + 2uk(xk − uk)

−{(uj − lk)2 + 2(lj − uk)[xj − xk − (uj − lk)]}}
= ψ

jk
(x).

(23)

(ii) From the inequalities (7) and (9), we have

xjxk − ψ
jk
(x) = 1

2 [x2
j + x2

k − (xj − xk)
2]− 1

2{u2
j + 2uj(xj − uj) + u2

k + 2uk(xk − uk)

−{(uj − lk)2 + 2(lj − uk)[xj − xk − (uj − lk)]}}
≤ 1

2 (uj − lj)
2 + 1

2 (uk − lk)2 + (uk + uj − lj − lk)2.

(24)

Thus, we can get that lim
‖u−l‖→0

[xjxk − ψ
jk
(x)] = 0. �

Also from the proof of Theorem 2 and the inequalities (7) and (9), we get that

ψjk(x)− xjxk =
1
2 {u2

j + 2lj(xj − uj) + u2
k + 2lk(xk − uk)

−{(uj − lk)2 + 2(uj − lk)[xj − xk − (uj − lk)]}}
− 1

2 [x
2
j + x2

k − (xj − xk)
2]

≤ (uj − lj)
2 + (uk − lk)2 + 1

2 (uk + uj − lk − lj)
2.

(25)

Thus, we can get that lim
‖u−l‖→0

[ψjk(x)− xjxk] = 0.

Without loss of generality, for any X = [l, u] ⊆ X0 for any x ∈ X, and i ∈ {0, 1, 2, . . . , m} we let

f i
kk

=

{
di

kk{u
i
k + 2uk(xk − uk)}, i f di

kk > 0 ,

di
kk{u

i
k + 2lk(xk − uk)}, i f di

kk < 0,
(26)

f i
jk
=

di
jkψ

jk
(x), i f di

jk > 0 , j 6= k,

di
jkψjk(x), i f di

jk < 0 , j 6= k,
(27)

ψL
i (x) =

n

∑
k=1

(ci
kxk + f i

kk
(x)) +

n

∑
j=1

n

∑
k=1,k 6=j

f i
jk
(x). (28)

Theorem 3. For any x ∈ X = [l, u] ⊆ X0, for each i = 0, 1, 2, . . . , m, we get that ψL
i (x) ≤ ψi(x) and

lim
‖u−l‖→0

[ψi(x)− ψL
i (x)] = 0.

Proof. (i) From (2) and (12), we have

f i
kk
≤ di

kkx2
k ≤ f

i
kk(x) and f i

jk
≤ di

jkxjxk ≤ f
i
jk(x). (29)

By (29), it follows that ψL
i (x) ≤ ψi(x).
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(ii)

ψi(x)− ψL
i (x) =

n
∑

k=1
ci

kxk+
n
∑

k=1
di

kkx2
k+

n
∑

j=1

n
∑

k=1,k 6=j
di

jkxjxk

−
[

n
∑

k=1
ci

kxk +
n
∑

k=1
f i

kk
(x) +

n
∑

j=1

n
∑

k=1,k 6=j
f i

jk
(x)

]
=

n
∑

k=1
(di

kkx2
k − f i

kk
(x)) +

n
∑

j=1

n
∑

k=1,k 6=j

[
di

jkxjxk − f i
jk
(x)
]

=
n
∑

k=1,di
kk>0

di
kk{x

2
k − [u2

k + 2uk(xk − uk)]}

+
n
∑

k=1,di
kk<0

di
kk{x

2
k − [u2

k + 2lk(xk − uk)]}

+
n
∑

j=1

n
∑

k=1,k 6=j,di
kk>0

di
jk

[
xjxk − ψ

jk
(x)
]

+
n
∑

j=1

n
∑

k=1,k 6=j,di
kk<0

di
jk

[
xjxk − ψjk(x)

]

(30)

From (3), (4), (14), and (15), we get

lim
‖u−l‖→0

{x2
k − [u2

k + 2uk(xk − uk)]} = 0, (31)

lim
‖u−l‖→0

{[u2
k + 2lk(xk − uk)]− x2

k} = 0, (32)

lim
‖u−l‖→0

[xjxk − ψ
jk
(x)] = 0 (33)

and
lim

‖u−l‖→0
[ψjk(x)− xjxk] = 0. (34)

Therefore, we have
lim

‖u−l‖→0
[ψi(x)− ψL

i (x)] = 0. (35)

The proof is completed. �

By Theorem 3, we can establish the linear programming relaxation problem (LPRP) of the QPWQC
over X as follows:

(LPRP) :


min ψL

0 (x) =
n
∑

k=1
(c0

k xk + ϕ0
kk
(x)) +

n
∑

j=1

n
∑

k=1,k 6=j
ϕ0

jk
(x),

s.t. ψL
i (x) =

n
∑

k=1
(ci

kxk + ϕi
kk
(x)) +

n
∑

j=1

n
∑

k=1,k 6=j
ϕi

jk
(x) ≤ bi, i = 1, 2, . . . , m,

x ∈ X = {x : l ≤ x ≤ u}.

(36)

From the construction process of the former linearizing method, it is obvious that for any given X,
each feasible point of the QPWQC is also feasible to the LPRP, and the optimal value of the LPRP is
less than or equal to that of QPWQC. Therefore, the LPRP offers a reliable lower bound for the optimal
value of the QPWQC. Except for the above approach, Theorem 3 also ensures the global convergence
of the proposed algorithm.

3. New Global Optimization Algorithm

In this section, based on the former LPRP, we shall present a new global optimization algorithm
for solving the QPWQC. In this algorithm, there are the following several key operations: branching,
bounding, and space reduction.
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Firstly, we choose a simple branching operation, which is called an interval bisection method.
For any selected box X′ = [l′, u′] ⊆ X0. Let δ ∈ argmax{ui

′ − li ′ : i = 1, 2, . . . , n}, subdivide [xδ
′ − xδ

′]

into [xδ
′, (xδ

′ + xδ
′)/2] and [(xδ

′ + xδ
′)/2, xδ

′], X′ can be subdivide into X′1 and X′2. The selected
branching operation is sufficient to ensure the global convergence of this algorithm.

Secondly, for each investigated sub-box X ⊆ X0, we must solve the LPRP, and set
LBs = min{LB(X)|X ∈ Ωs}, where Ωs is still not fathomed as a sub-box set. In order to update
the upper bound, we need to fathom the feasible point, and set Θ be the known feasible point set and
UBs = min{ψ0(x)|x ∈ Θ}, to be the existent best upper bound.

In addition, we can introduce an interval reduction operation from Theorem 3 [6] to improve the
convergent speed of the proposed algorithm.

3.1. Steps for Global Optimization Algorithm

For any investigated box Xs ⊆ X0, let LB(Xs) and xs = x(Xs) be the optimal value and optimal
solution of the LPRP over Xs. Based on the branch-and-bound scheme and the former LPRP, a new
global optimization algorithm is described as follows.

Algorithm Steps:
Step 1. Set ε = 10−6, solve the (LPRP) over X0 to obtain its optimal solution x0 and the optimal

value LB(X0), respectively.
Let the lower bound LB0 = LB(X0). If x0 is feasible to the QPWQC, let the upper bound be

UB0 = ψ0(x0), otherwise let the initial upper bound be UB0 = +∞.
If UB0 − LB0 ≤ ε, let the global ε– optimal solution of the QPWQC be x0, otherwise let Ω0 =

{X0}, Λ = φ, s = 1.
Step 2. Let the upper bound be UBs = UBs−1, partition Xs−1 into Xs,1 and Xs,2, and let Λ =

Λ ∪ {Xs−1} be the deleted sub-boxes set.
For each Xs,t, t = 1, 2, utilize the interval reduction method to compress the investigated box, and

let Xs,t be the remaining box.
For each remaining box Xs,t, t = 1, 2, solve the LPRP to obtain its optimal solution xs,t and optimal

value LB(Xs,t), respectively.
Set Ωs = {X

∣∣X ∈ Ωs−1 ∪ {Xs,1, Xs,2}, X /∈ Λ} and LBs = min{LB(X)|X ∈ Ωs}.
Step 3. For each Xs,t, t = 1, 2, if xmid is the feasible point of the QPWQC, let Θ := Θ ∪ {xmid}, and

let the new upper bound UBs = min
x∈Θ
{ψ0(x)}; if xs,t is feasible to the QPWQC, let the new upper bound

UBs = min{UBs, ψ0(xs,t)}, and let the best known feasible point be xs, which satisfies UBs = ψ0(xs).
Step 4. If UBs− LBs ≤ ε, then we let the ε–global optimal solution of the QPWQC be xs, otherwise

let s = s + 1, and return to Step 2.

3.2. Global Convergence of the Proposed Algorithm

If the proposed algorithm terminates after finite iterations, then, when it terminates, we can obtain
the global optimal solution of the QPWQC. Otherwise, the proposed algorithm will generate an infinite
sequence, whose limitation is the global optimal solution of the QPWQC; the detailed proof is given
as follows.

Theorem 4. If the proposed algorithm does not terminate after finite iterations, then the proposed algorithm will
generate an infinite sequence {Xs}, whose accumulation point will be the global optimal solution of the QPWQC.

Proof. First of all, in the proposed algorithm, the selected branching method is the rectangle bisection,
which is exhaustive, and which guarantees that the intervals of all variables converge to 0.

Secondly, as ‖u− l‖ → 0 , from the conclusions of Theorem 3, it follows that the LPRP will
sufficiently approximate the QPWQC, which is to say, lim

s→∞
(UBs − LBs) = 0, i.e., the proposed

algorithm satisfies that the bounding operation is consistent. Thirdly, in the proposed algorithm,
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the subdivided box which achieved the actual lower bound is immediately selected for the later
partition, and the proposed algorithm satisfies that the selected operational bound is improving.
By Theorem 4.3 of Reference [39], the proposed branch-and-bound algorithm satisfies the global
convergent sufficient condition. Hence, the proposed algorithm converges to the global optimal
solution of the QPWQC. �

4. Numerical Experiments

Let ε = 10−6 be the convergence error. Some numerical examples in recent literature are solved in
C++ program on microcomputer, and the simplex approach is employed to solve the LPRP. Compared
with the existent algorithms, these numerical examples are given as follows, and their computational
results are listed in Tables 1 and 2.

Example 1 (Reference [40])

(LPRP) :


min ψL

0 (x) =
n
∑

k=1
(c0

k xk + ϕ0
kk
(x)) +

n
∑

j=1

n
∑

k=1,k 6=j
ϕ0

jk
(x),

s.t. ψL
i (x) =

n
∑

k=1
(ci

kxk + ϕi
kk
(x)) +

n
∑

j=1

n
∑

k=1,k 6=j
ϕi

jk
(x) ≤ bi, i = 1, 2, . . . , m,

x ∈ X = {x : l ≤ x ≤ u}.
min ψ0(x) = x1

s.t. ψ1(x) = 1
4 x1 +

1
2 x2 − 1

16 x2
1 −

1
16 x2

2 ≤ 1,
ψ2(x) = − 3

7 x1 − 3
7 x2 +

1
14 x2

1 +
1

14 x2
2 ≤ −1,

1 ≤ x1 ≤ 5.5, 1 ≤ x2 ≤ 5.5,

Example 2 (Reference [40])
min ψ0(x) = x1x2 − 2x1 + x2 + 1
s.t. ψ1(x) = −6x1 − 16x2 + 8x2

2 ≤ −11,
ψ2(x) = 3x1 + 2x2 − x2

2 ≤ 7,
1 ≤ x1 ≤ 2.5, 1 ≤ x2 ≤ 2.225.

Example 3 (References [37,41,42])
min ψ0(x) = x2

1 + x2
2

s.t. ψ1(x) = 0.3x1x2 ≥ 1,
2 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 3.

Example 4 (References [41–44])
min ψ0(x) = x1

s.t. ψ1(x) = 4x2 − 4x2
1 ≤ 1,

ψ2(x) = −x1 − x2 ≤ −1,
0.01 ≤ x1, x2 ≤ 15.

Example 5 (Reference [45])
min ψ0(x) = 6x2

1 + 4x2
2 + 5x1x2

s.t. ψ1(x) = −6x1x2 ≤ −48,
0 ≤ x1, x2 ≤ 10.
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Example 6 (Reference [46])
min ψ0(x) = −x1 + x1x0.5

2 − x2

s.t. ψ1(x) = −6x1 + 8x2 ≤ 3,
ψ2(x) = 3x1 − x2 ≤ 3,
1 ≤ x1, x2 ≤ 1.5.

Example 7 (References [26,43])
min ψ0(x) = 4x2 + (x1 − 1)2 + x2 − 10x2

3
s.t. ψ1(x) = x2

1 + x2
2 + x2

3 ≤ 2,
ψ2(x) = (x1 − 2)2 + x2

2 + x2
3 ≤ 2,

2−
√

2 ≤ x1 ≤
√

2, 0 ≤ x2, x3 ≤
√

2.

Table 1. Numerical comparisons for Examples 1–7.

Example Refs. Optimal Value Optimal Solution Iteration Time (s)

1
ours 1.177124990 (1.177124344, 2.177124344) 22 0.0091
[40] 1.177124327 (1.177124327, 2.177124353) 434 1.0000

2
ours −0.999999202 (2.000000, 1.000000) 22 0.0085
[40] −1.0 (2.000000, 1.000000) 24 0.0129

3

ours 6.777809491 (2.000000000, 1.666676181) 13 0.0038
[37] 6.777778340 (2.000000000, 1.666666667) 30 0.0068
[41] 6.777782016 (2.000000000, 1.666666667) 40 0.0320
[42] 6.7780 (2.00003, 1.66665) 44 0.1800

4

ours 0.500000600 (0.500000000, 0.500000000) 26 0.0061
[41] 0.500004627 (0.5 0.5) 34 0.0560
[42] 0.5 (0.5, 0.5) 91 0.8500
[43] 0.500000442 (0.500000000, 0.500000000) 37 0.0193
[44] 0.5 (0.5, 0.5) 96 1.0000

5
ours 118.381493268 (2.564162744, 3.119857633) 70 0.0435
[45] 118.383756475 (2.5557793695, 3.1301646393) 210 0.7800

6
ours −1.162882315 (1.499977112, 1.5) 37 0.0412
[46] −1.16288 (1.5, 1.5) 84 0.1257

7
ours −11.363635682 (1.0,0.181818133, 0.983332175) 229 0.3919
[43] −11.363636364 (1.0,0.181818470, 0.983332113) 420 0.2845
[26] −10.35 (0.998712, 0.196213, 0.979216) 1648 0.3438

Table 2. Computational results for Example 8.

(n,m)
Algorithm of [47] This Paper

Computational Time (s) Computational Time (s)

(4, 6) 2.37678 1.9894
(5, 11) 6.39897 4.9867
(14, 6) 9.22732 6.4567
(18, 7) 15.8410 11.6856
(20, 5) 11.9538 8.9802
(35, 10) 74.8853 56.7866
(37, 9) 77.1476 45.6324
(45, 8) 86.7174 65.6845
(46, 5) 44.2502 32.2150
(60, 11) 315.659 216.534



Symmetry 2019, 11, 424 9 of 11

Comparing with the existent algorithms, numerical results show that the proposed algorithm has
the higher computational efficiency.

To demonstrate robustness of the proposed algorithm, we give a large-scale random numerical
example as follows.

Example 8. (Reference [47])
min ψ0(x) =

n
∑

k=1
co

kxk+
n
∑

j=1

n
∑

k=1
d0

ijxjxk

s.t. ψi(x) =
n
∑

k=1
ci

kxk+
n
∑

j=1

n
∑

k=1
di

ijxjxk ≤ bi, i = 1, 2, . . . , m,

x ∈ X0 = { x ∈ Rn : l0 ≤ x ≤ u0},

where c0
k , k = 1, 2, . . . , n, is randomly generated in [0, 1], d0

kj, k = 1, 2, . . . , n, j = 1, 2, . . . , n, is

randomly generated in [0, 1]; ci
k, i = 1, . . . , m, k = 1, 2, . . . , n, is randomly generated in [−1, 0],

di
kj, k = 1, 2, . . . , n, j = 1, 2, . . . , n, is randomly generated in [−1, 0], bi, i = 1, 2, . . . , m, is randomly

generated in [−300, −90]. In the Example 8, ‘n’ denotes the number of variables while ‘m’ denotes the
number of constraints. Numerical results about the Example 8 are given in the Table 2.

5. Concluding Remarks

This paper presents an effective algorithm for globally solving quadratic programs with quadratic
constraints. In this algorithm, a new linearization method is constructed for deriving the linear
programming relaxation problem of the QPWQC. The proposed algorithm converges to the global
optimal solution of the initial problem of QPWQC, and numerical experimental results show the higher
computational efficiency of the proposed algorithm.
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