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Abstract: In the classical GM(1,1) model, an accumulated generating operation is made on the
original non-negative sequence to obtain a monotone increasing 1-AGO sequence, and the forecasting
model is established based on the 1-AGO sequence. A great number of scholars have improved the
accuracy of grey model prediction through better developed background value and the equation for
the time response. In this work, we reconstruct the background value based on a new developed
monotonicity-preserving piecewise cubic interpolations spline, and thereby establish a new GM(1,1)
model. Numerical examples show that the new GM(1,1) model has better prediction quality of data
than the original GM(1,1) model and improves the precision of prediction in practice.

Keywords: GM(1,1); grey theory; background value; monotonicity-preserving

1. Introduction

Let an original non-negative and uniformly spaced sequence be

X(0) =
{

x(0)(1), x(0)(2), · · · , x(0)(n)
}

. (1)

The main idea of the classical grey forecasting GM(1,1) model proposed by Deng [1,2] is to make
an accumulated generating operation on the original sequence, so as to reduce the randomization of
the original data and obtain an obviously monotone increasing 1-AGO sequence X(1). Then, establish
a first-order grad forecasting differential equation on the sequence X(1). In addition, further use
the least-square method to numerically solve the differential equation to estimate the parameters.
Finally, the original data simulation and prediction are carried out by using the inverse accumulated
generating operation.

The 1-AGO sequence X(1) is given as follows

X(1) =
{

x(1)(1), x(1)(2), · · · , x(1)(n)
}

, (2)

where

x(1)(k) =
k

∑
i=0

x(0)(k) = x(1)(k− 1) + x(0)(k), k = 1, 2, · · · , n. (3)
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From Equation (3), we can see that the 1-AGO sequence X(1) has the property of
monotonicity-increasing. Suppose that x(1)(t) meets the following first-order grad forecasting
differential equation

dx(1)(t)
dt

+ ax(1)(t) = b, (4)

where the grey developmental coefficient a and the grey control parameter b are the parameters in the
model to be estimated.

The solution of the Equation (4) with the initial condition X̃(1)(1) = X(1)(1) is as follows

x(1)(t) =
[

x(1)(1)− b
a

]
e−a(t−1) +

b
a

. (5)

Therefore, to obtain the prediction model of the raw data sequence, we need to identify the effect
of the grey development coefficient a and the grey control parameter b in Equation (4). For this purpose,
we do the integral accumulation on both sides of Equation (4) for [k, k + 1] , k = 1, 2, · · · , n− 1, then we
can get

∫ k+1

k

dx(1)(t)
dt

dt + a
∫ k+1

k
x(1)(t)dt = b,

that is

x(1)(k + 1)− x(1)(k) + a
∫ k+1

k
x(1)(t)dt = b,

or

x(0)(k + 1) + a
∫ k+1

k
x(1)(t)dt = b. (6)

Let background value be z(1)(k + 1) :=
∫ k+1

k x(1)(t)dt. To calculate the background value
z(1)(k + 1), we need to integrate x(1)(t), which requires the values of a and b to be given in advance.
However, the values of a and b need to be determined from the Equation (6). Consequently, to estimate
the values of a and b, we must use some methods to estimate the background value z(1)(k + 1).
We use the piecewise linear polynomial interpolation L(t) := (k + 1− t) x(1)(k) + (t− k) x(1)(k + 1)
to approximate x(1)(t) in the classical GM(1,1) model, see [1,2], then we get the estimated background
value z(1)(k + 1) as follows

z(1)(k + 1) =
∫ k+1

k
x(1)(t)dt

≈
∫ k+1

k
L(t)dt (7)

=
1
2

[
x(1)(k) + x(1)(k + 1)

]
.

For each interval [k, k + 1], k = 1, 2, · · · , n− 1, by substituting the estimated background value
z(1)(k + 1) into Equation (6) and further applying the least-square method, we estimate the values of
the parameters a and b by the formula as follows(

a
b

)
=
(

GTG
)−1

GTX,
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where

X =


x0(2)
x0(3)

...
x0(n)

 , G =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

 .

Finally, we get the following estimated solution to the differential Equation (4) with the initial
condition X̃(1)(1) = X(1)(1) as follows

x̃(1)(t) =
[

x(1)(1)− b
a

]
e−a(t−1) +

b
a

, k = 1, 2, . . . . (8)

We thus get the following grey prediction equation

x̃(0)(k + 1) = x̃(1)(k + 1)− x̃(1)(k), k = 1, 2, . . . . (9)

From (7), it can be found that the classical GM(1,1) model uses average of adjacent values to
estimate the background value z(1)(k + 1). Its geometric meaning is to use the area of straight ladder
to replace the trapezoidal area which is based on the edge of exponential curve x(1)(t), as shown in
Figure 1. This method has a shortcoming that when the 1-AGO data sequence varies greatly, the result
of prediction will have large error (∆S) with the exponential increasing. Thus, if we apply the classical
GM(1,1) model in practice, there exist some restrictions. As pointed out in [3–5], the accuracy of
prediction in GM(1,1) model depends on the estimation of the background value z(1)(k + 1). In [6],
Li and Dai reconstructed x(1)(t) by a high-order Newton interpolation polynomial. In addition,
they estimated the background value z(1)(k + 1) based on the Newton-Cores integral. However,
as shown in [6], when there is a mass of data, the high-order Newton interpolation polynomial
may have the Runge phenomenon and thus the truncation error may be very large. Furthermore,
the numerical stability is not guaranteed when calculating the approximate value of Newton-Cores
integral. In [7], Tang and Xiang estimated the background value z(1)(k + 1) by using the piecewise
quadratic interpolation polynomial to reconstruct x(1)(t) on the interval [k, k + 1]. The advantage is
that it has the characteristics of less computation and good numerical stability. In [8], Wang et al. used
piecewise cubic interpolation spline to reconstruct x(1)(t) and thus got the estimated background value
z(1)(k + 1). The advantages of the given method are that it can avoid the Runge phenomenon resulted
from high-order polynomial. However, the methods we mentioned above all ignore the important
monotonicity-increasing feature of the curve x(1)(t) to be reconstructed. If the resulting reconstructed
curve x(1)(t) loses the monotonicity-increasing feature, there will also result in a large error on the
background value z(1)(k + 1). Therefore, an accurate approximation of the reconstructed curve x(1)(t)
is the key to enhance the estimation of the background value.

x1(t)

x1(k)

x1(k+1)

x1(t)

t
k k+1

Figure 1. Prediction error source diagram of conventional GM(1,1) model.
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Recently, lots of scholars proposed many methods to improve the classical GM(1,1) model.
Liu and his colleagues have proposed some new methods of grey development clustering based
on the multiattribute difference, which enriches the grey fixed-weight cluster theory, see [9–11] for
example. In [12–14], Xie and his colleagues proposed some new grey models, including Verhulst
model and the segmental corrected new information discrete GM(1,1) model. In [15], Yang and his
colleagues presented a dynamic GM(1,1) model based on grey system theory and cubic spline function
interpolation principle. Many scholars have put many efforts on the establishments of new grey
prediction models, see for example [16–31] and the references therein.

In this paper, we shall propose a monotonicity-preserving piecewise cubic interpolation spline
to reconstruct the curve x(1)(t) and thereby give a new scheme to estimate the background value
z(1)(k+ 1). The rest of this paper is structured as follows. Section 2 represents the construction of the C1

monotonicity-preserving cubic interpolation splines. In Section 3, based on C1 monotonicity-preserving
cubic interpolation spline, a new GM(1,1) model is constructed in detail. Several numerical examples
are also given. In addition, the conclusion is given in Section 4.

2. C1 Monotonicity-Preserving Piecewise Cubic Interpolation Spline

According to Equation (3), the 1-AGO sequence X(1) has the property of monotonicity-increasing,
that is x(1)(k) ≤ x(1)(k + 1), ∀k. The fitting exponential curve x(1)(t) to the 1-AGO sequence
X(1) is also monotonicity-increasing and has infinite smoothness. Therefore, we develop a C1

monotonic-preserving cubic interpolation spline to interpolate the 1-AGO sequence, to reconstruct the
curve x(1)(t).

For the discrete data
(

k, x(1)(k)
)

, k = 1, 2, . . . , n, we denote d(1) (k) as the derivative value at
node t = k. For t ∈ [k, k + 1], a cubic interpolation spline with local parameter αk is constructed
as follows

B(t) = (1− s)3x(1)(k) + 3(1− s)2s

[
x(1)(k) +

d(1) (k)
αk

]

+ 3 (1− s) s2

[
x(1)(k + 1)− d(1) (k + 1)

αk+1

]
+ s3x(1)(k + 1), (10)

where s = t− k ∈ [0, 1]. From Equation (10), after some computations, we haveB(k) = x(1) (k) , B(k + 1) = x(1) (k + 1) ,

B′(k) = 3d(1)(k)
αk

, B′(k + 1) = 3d(1)(k+1)
αk+1

,
(11)

which indicates that B (k−) = B (k+) , B′ (k−) = B′ (k+). This means that the cubic interpolation spline
defined by Equation (10) is C1 continuous for arbitrary nonzero local parameter. Here, C1 continuity
means that a function together with its first-order derivative function is continuous. In addition, it is
of interest to note that for all αk= 3, the cubic interpolation spline given in Equation (10) returns into
the classic cubic Hermite interpolation spline.

In practical application, we should estimate the derivative values of the cubic interpolation spline
at the nodes at first. In this paper, we calculate the derivative values by the following method

d(1) (1) =x(1) (2)− x(1) (1) ,

d(1) (k) = 1
2

[
x(1) (k + 1)− x(1) (k− 1)

]
, k = 2, 3, . . . , n− 1,

d(1) (n) =x(1) (n)− x(1) (n− 1) .

(12)
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We shall derive sufficient conditions for the C1 cubic interpolation spline preserving monotonicity.
For the monotonicity-increasing 1-AGO sequence X(1), it is obvious that the derivative value
determined by Equation (12) is non-negative, which means d(1) (k) ≥ 0, ∀k. Without loss of generality,
for t ∈ [k, k + 1], direct computation gives that

B′(t) = 3(1− s)2 d(1) (k)
αk

+ s2 d(1) (k + 1)
αk+1

+ 6 (1− s) s

{[
x(1) (k + 1)− x(1) (k)

]
−
[

d(1) (k)
αk

+
d(1) (k + 1)

αk+1

]}
.

Thus, we can see that the following conditions are sufficient to guarantee R′(t) ≥ 0
αk > 0, αk+1 > 0,[

x(1) (k + 1)− x(1) (k)
]
−
[

d(1)(k)
αk

+ d(1)(k+1)
αk+1

]
=

[
x(1)(k+1)−x(1)(k)

2 − d(1)(k)
αk

]
+

[
x(1)(k+1)−x(1)(k)

2 − d(1)(k+1)
αk+1

]
≥ 0.

(13)

Summarizing the above discussion, we can obtain the following sufficient conditions for B(t)
preserving monotonicity

α1 = max
{

0, 2d(1)(1)
x(1)(2)−x(1)(1)

}
+ a1,

αk = max
{

0, 2d(1)(k)
x(1)(k+1)−x(1)(k)

, 2d(1)(k)
x(1)(k)−x(1)(k−1)

}
+ ak, k = 2, . . . , n− 1,

αn = max
{

0, 2d(1)(n)
x(1)(n)−x(1)(n−1)

}
+ an,

(14)

where ai > 0 serves as free parameter. In practice, we recommend all ak = 3. If there is no special
explanation below, we will take all ak = 3.

3. Establish New GM(1,1) Model

For the original non-negative sequence X(0) =
{

x(0)(1), x(0)(2), · · · , x(0)(n)
}

, we first calculate its

1-AGO sequence X(1) =
{

x(1)(1), x(1)(2), · · · , x(1)(n)
}

. Then for the 1-AGO sequence X(1), we use the

sufficient conditions (14) with all the free parameters ak = 3 to determine a C1 monotonicity-preserving
piecewise cubic interpolation spline B(t) to reconstruct the exponential curve x(1)(t). For the interval
[k, k + 1], we estimate the background value z(1) (k + 1) =

∫ k+1
k x(1) (t)dt by the following method

z(1) (k + 1) =
∫ k+1

k
x(1) (t)dt

≈
∫ k+1

k
B (t)dt

=
1
4

x(1)(k) +
1
4

[
x(1)(k) +

d(1) (k)
αk

]

+
1
4

[
x(1)(k + 1)− d(1) (k + 1)

αk+1

]
+

1
4

x(1)(k + 1).
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Then by substituting the estimated background value into the grey differential Equation (6),
we further apply the following least-square method to solve Equation (6)(

a
b

)
=
(

GTG
)−1

GTX,

where

X =


x0(2)
x0(3)

...
x0(n)

 , G =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

 .

Finally, we get the following estimated solution to the differential Equation (4) with the initial
condition X̃(1)(1) = X(1)(1) as follows

x̃(1)(t) =
[

x(1)(1)− b
a

]
e−a(t−1) +

b
a

.

We thus get the following grey prediction equation

x̃(0)(k + 1) = x̃(1)(k + 1)− x̃(1)(k)

= (1− ea)

[
x(1)(1)− b

a

]
e−ak, k = 1, 2, . . . . (15)

We shall give several examples to show that the new GM(1,1) model based on C1

monotonicity-preserving piecewise cubic interpolation spline has better predict accuracy than the
classical GM(1,1) model. In the following examples, the relative error is computed by

ε =

∣∣∣x(0)(k)− x(0)(k)
∣∣∣

x(0)(k)
.

Example 1. In this example, we use the exponential function f (t) = ηeλt in [20] to generate the original data
with convexity. By letting the parameters g and k take a fixed value respectively, the original data sequence can
be obtained when the parameter t takes different values. In addition, we compare the results predicted by our new
GM(1,1) model with the GM(1,1) model and the method proposed in [20]. The results show that our new model
achieves the best results among the three prediction models and it performs very well in predicting data with
the exponential growth trend, see Table 1. On the left of Figure 2, the figure shows the 1-AGO data of Table 1
and the curves of piecewise linear interpolant, monotonic-preserving cubic interpolation spline B(t) and the
reconstruct exponential curve X(1)(t). From the right Figure 2, we can see that the interpolation spline B(t) has
C1 continuity.

Table 1. Numerical results for Example 1.

x(0)
Classical GM(1,1) New GM(1,1) The Model in [20]

Prediction Data ε (%) Prediction Data ε (%) Prediction Data ε (%)

2.9836 2.9836 0 2.9836 0 2.9836 0
4.4511 4.3804 1.5816 4.3531 2.2021 4.4561 0.1123
6.6402 6.5006 2.0903 6.5222 1.7835 6.6132 0.4066
9.9061 9.6469 2.5994 9.7720 1.3569 9.8146 0.9237

14.7781 14.3162 3.1039 14.6413 0.9344 14.5657 1.4373
22.0464 21.2454 3.6069 21.9368 0.5013 21.6168 1.9486
32.8893 31.5285 4.1065 32.8675 0.0793 32.0812 2.4570

ε (%) 2.8481 1.1429 1.2143
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(a) Curves for 1-AGO data.

1 2 3 4 5 6 7
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40
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(b) First derivative of B(t).

Figure 2. Graphic results for Example 1.

Example 2. In this example, we directly use the numerical example provided in [21]. We compare our new
GM(1,1) model with the classical GM(1,1) model and the prediction models presented in [21]. The results turn
out that our new GM(1,1) model prediction accuracy is significantly higher than the classical GM(1,1)model.
While the method proposed in [21] performs the best in this example. The reason we suppose is that the method
given in [21] simulates and predicts the sequence of exponential distribution by optimizing the background value
of the grey differential equations, so that the model has better simulation and prediction accuracy. Table 2 and
Figure 3 give the numerical results.

Table 2. Numerical results for Example 2.

x(0)
Classical GM(1,1) New GM(1,1) The Model in [21]

Prediction Data ε (%) Prediction Data ε (%) Prediction Data ε (%)

21.1 21.1 0 21.1 0 21.1000 0
26.6 24.4166 8.2083 24.0779 9.4816 23.3606 12.1782
36.1 35.7198 1.0531 32.5648 9.7928 35.7858 0.8704
52.3 52.2557 0.0847 50.3116 3.8018 54.8198 4.8180
80.1 76.4466 4.5611 77.7300 2.9588 83.9777 4.8411

126.8 111.8361 11.8012 120.0906 5.2913 128.6443 1.4545
196.3 163.6087 16.6537 185.5365 5.4832 197.0684 0.3914

ε (%) 7.0604 6.1349 4.0923

(a) Curves for 1-AGO data.

1 2 3 4 5 6 7
0

50

100

150

200

250

300

(b) First derivative of B(t).

Figure 3. Graphic results for Example 2.

Example 3. In this example, we use the example in [8] to test the new proposed GM(1,1) model. To verify the
applicability of the model to predict electricity consumption in the smart grid, we use the electricity consumption
data of Jiangsu province in 2008 into the smart grid as the raw data (in KWh). The results show that the new
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GM(1,1) has improved prediction accuracy compared to the methods proposed in [7] and the classical GM(1,1)
model. Table 3 and Figure 4 give the numerical results.

Table 3. Numerical results for Example 3.

x(0)
Classical GM(1,1) New GM(1,1) The Model in [7]

Prediction Data ε (%) Prediction Data ε (%) Prediction Data ε (%)

110,852 110,852 0 110,852 0 110,852 0
135,175 117,980 12.72 130,078 3.77 127,821 5.41
153,647 119,117 22.47 128,574 16.32 126,664 17.66
120,296 128,264 6.62 127,087 5.64 125,830 4.68
96,362 121,422 26.27 125,617 30.36 124,380 29.23
90,798 122,592 35.01 124,164 36.75 123,253 35.70
102,591 123,773 20.65 122,728 19.63 122,137 19.11
150,534 124,965 16.99 121,308 19.41 121,031 19.63
175,123 126,168 27.95 119,905 31.53 119,934 31.52
127,148 113,383 10.83 118,518 6.79 114,848 9.76
102,085 128,610 25.98 117,147 14.75 117,772 15.47
97,103 116,705 20.19 115,792 19.25 116,705 20.21

ε (%) 21.73 18.56 18.91

(a) Curves for 1-AGO data.

2 4 6 8 10 12
0.5

1

1.5

2
105

(b) First derivative of B(t).

Figure 4. Graphic results for Example 3.

Example 4. In this example, we select the grey prediction data from [9]. This set of data is based on Chinese
health statistics of people with syphilis (in millions) from 2000 to 2010. We compare the new GM(1,1) model
with the classical GM(1,1) model and the model in [9]. From Table 4, we can see that our new GM(1,1) model
prediction accuracy is improved compared to the classical GM(1,1) model and the model in [9]. Figure 5 gives
the graphic results of this example.

Table 4. Numerical results for Example 4.

x(0)
Classical GM(1,1) New GM(1,1) The Model in [9]

Prediction Data ε (%) Prediction Data ε (%) Prediction Data ε (%)

5.08 5.08 0 5.08 0 5.08 0
4.80 3.55 26.04 4.24 11.51 3.65 23.9
4.67 4.52 3.21 5.25 12.57 4.61 1.28
4.50 5.76 28.00 5.51 22.44 5.84 29.78
7.12 7.34 3.09 8.05 13.09 7.42 4.21
9.67 9.34 3.41 9.97 3.05 9.45 2.28

12.80 11.90 7.03 12.33 3.64 12.04 5.94
15.88 15.15 4.59 15.26 3.88 15.37 3.21
19.49 19.30 0.97 18.89 3.07 19.65 0.82
23.07 24.57 6.50 23.38 1.34 24.57 8.92
26.86 31.29 16.49 28.93 7.72 31.29 19.73

ε (%) 9.03 7.48 8.29
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(a) Curves for 1-AGO data.
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(b) First derivative of B(t).

Figure 5. Graphic results for Example 4.

Example 5. In [11], the data selected by the authors to show a downward trend is very representative, so we
use this data sequence in this example. The results show that our new GM(1,1) model is still applicable to
the descending sequence, and the accuracy is still slightly improved compared to the classical GM(1,1) model.
While the method proposed in [11] performs the best in this example. The reason we suppose is that the method
given in [11] simulates and predicts the sequence of exponential distribution by optimizing the background value
of the grey differential equations, so that the model has better simulation and prediction accuracy. Table 5 and
Figure 6 give the numerical results.

Table 5. Numerical results for Example 5.

x(0)
Classical GM(1,1) New GM(1,1) The Model in [11]

Prediction Data ε (%) Prediction Data ε (%) Prediction Data ε (%)

1610.71 1610.71 0 1610.71 0 1610.71 0
1245.28 1363.91 9.524 1365.22 9.632 1342.76 7.833
1347.71 1274.95 5.402 1275.75 5.340 1280.32 5.004
1382.45 1191.79 13.795 1192.14 13.766 1204.58 12.872
1018.45 1114.06 9.381 1114.01 9.383 1122.64 10.203
1014.96 1041.39 2.597 1041.00 2.566 1040.18 2.476
949.46 973.47 2.519 972.78 2.456 960.34 1.147

ε (%) 6.174 6.163 5.648

(a) Curves for 1-AGO data. (b) First derivative of B(t).

Figure 6. Graphic results for Example 5.

Example 6. In this example, we selected the relevant data from the 2012 China Statistical Yearbook in [24]
to analysis of whether our GM(1,1) model can effectively predict general statistics. Thus, we only compare
the prediction results of the classical GM(1,1) model with our new GM(1,1) model. The results show that
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our new GM(1,1) model applies to general sociological statistics, and our model performs better accuracy of
prediction compared to classical GM(1,1) model. This shows that our new GM(1,1) model has the ability for
further promotion and development. Table 6 and Figure 7 give the numerical results.

Table 6. Numerical results for Example 6.

x(0)
Classical GM(1,1) New GM(1,1)

Prediction Data ε (%) Prediction Data ε (%)

64,832.05 64,832.05 0 64,832.05 0
71,847.09 57,476.77 20.001 57,308.50 20.235
78,646.30 67,165.21 14.598 67,022.83 14.779
86,293.10 78,486.76 9.046 78,383.83 9.166
93,887.95 91,716.70 2.312 91,670.62 2.362
105,557.09 107,176.71 1.534 107,209.65 1.566
125,761.85 125,242.71 0.413 125,382.70 0.301
143,143.63 146,353.96 2.243 146,636.24 2.440
168,850.20 171,023.78 1.287 171,492.46 1.565
198,739.27 199,852.01 0.560 200,562.04 0.917
245,352.80 233,539.60 4.815 234,559.18 4.400
278,541.09 272,905.57 2.023 274,319.16 1.516
334,839.41 318,907.39 4.758 320,818.83 4.187
386,086.72 372,663.28 3.477 375,200.63 2.820

ε (%) 4.791 4.732

(a) Curves for 1-AGO data. (b) First derivative of B(t).

Figure 7. Graphic results for Example 6.

According to the results of the above numerical examples 1–6, the prediction accuracy of our
new GM(1,1) model is improved for all the numerical examples compared to classical GM(1,1) model.
In addition, our new model performs better than the methods proposed in [7,9,20]. There are different
degrees of improvement for different data features. Based on the above data characteristics, we make
the conclusion that the data applicable to our new GM(1, 1) model are generally with the continuously
increasing feature over time. In particular, the exponential growth data can show better prediction.

4. Conclusions

By using a new developed C1 monotonicity-preserving piecewise cubic interpolation spline to
reconstruct the background value, we have established a new GM(1,1) model. Numerical examples
show that the new GM(1,1) model can improve the forecasting quality, especially in prediction
reliability and this model performs better when the original data are presented with convexity in time
series. Future work will concentrate on exploring more applications of the new GM(1,1) model, such as
scientific decision-making in electricity production and manufactures.
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