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Abstract: In this investigation, a novel sort of retrial queueing system with working breakdown
services is introduced. Two distinct kinds of customers are considered, which are priority and ordinary
customers. The normal busy server may become inadequate due to catastrophes at any time
which cause the major server to fail. At a failure moment, the major server is sent to be fixed
and the server functions at a lower speed (called the working breakdown period) during the repair
period. The probability generating functions (PGF) of the system size is found using the concepts
of the supplementary variable technique (SVT). The impact of parameters in system performance
measures and cost optimization are examined numerically.

Keywords: priority queues; disasters; retrial queues; working breakdown services

1. Introduction

Every day we experience many queueing instances in which service is not prompt and customers
need to wait to get service. The topic of retrial queues in queueing theory has been an interesting
research topic in the last two decades. The retrial queues concept has received major efforts and attention
from numerous researchers [1,2]. Such queueing models are employed in emerging applications in
the performance analysis of an enormous scope of systems in telecommunications, data distributed
networks, traffic management on high-speed networks and production engineering.

In retrial queueing literature, retrial queues with various sorts of customers have been widely
investigated. The preemptive and non-preemptive priority concept plays a major role in priority
discipline. In this regard, Choi and Park [3] provided a non-preemptive priority retrial queue
through which customers enjoy non-preemptive priority as opposed to conventional customers.
For an extensive examination of priority queueing models, the reader may refer to Wu and Lian [4],
Gao [5] and Peng [6]. Priority retrial queues are utilized in many genuine implementations such
as manufacturing systems, real-time systems and operating systems.

In the past, queueing models with different service rates were studied by several authors.
The initiative of these models almost caused a change to the service rate depending on the situation of
the system, such as queues in a random environment, queues with breakdown, working breakdown,
models with vacations and working vacations. In 2002, Servi and Finn [7] presented an M/M/1
queueing system with working vacations. The M/M/1/WV queue to an M/G/1/WV queue was
continued by Wu and Takagi [8]. Further, Tien Van Do [9] developed a model in M/M/1/WV
with retrial concept. A short survey note on working vacation queueing models was written by
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Chandrasekaran et al. [10]. Authors like Arivudainambi et al. [11], Gao et al. [12], Rajadurai et al. [13],
Gao and Liu [14], Zhang and Liu [15] analyzed the concepts of single server retrial queueing systems
with working vacations.

In 2012, Kalidass and Ramanath [16] presented the idea of working breakdowns in M/M/1
queues, i.e., the system may face failure caused by disasters any time when the normal busy server is in
service and the system ought to be ready with an alternate (standby) server in preparedness for possible
prime server failures. The alternate server provides service to customers while the major server is
repaired. The rate of service for the alternate server is diverse from (lower than) that of the major server.
At the moment of the repair completion, the major server comes back to the system and is accessible
again. Therefore, the working breakdown service is a progressively sensible repair policy for unreliable
queueing systems. Recently, Kim and Lee [17] studied a model M/G/1 queueing system with disasters
and working breakdown services. Utilizing the matrix geometric method, Ma et al. [18] obtained
the stationary distribution of an M/M/1 queue with multiple vacations and working breakdowns.
Recently, Deepa and Kalidass [19], Jiang and Liu [20], Liu and Song [21] and Rajadurai [22] developed
a model disaster with working breakdowns.

Motivated by this factor, a new sort of M/G/1 preemptive priority retrial queue with disasters
under working breakdown services is introduced in this work. During the working breakdown period,
the server acts at a slow rate of service. The outcomes of this model are very helpful to decision-makers
for developing management policies. The novelty of this work presents a generalization of priority
retrial queueing models in the presence of working breakdown services. The result of these queueing
models has convincing applications in Wireless Sensor Networks (WSNs), which are utilized in diverse
applications to detect and transmit information to the localized node with energy effectiveness, thereby
enlarging the network’s lifespan, namely the “Priority in Node Medium Access Control” (PRIN MAC)
protocol that realizes quality of service (QoS) in terms of consuming the least energy to enlarge
the lifetime of the network [23].

This investigation considers a general comparison of other systems on retrial queues in the sense
that we have combined different characteristics together covering (i) priority arrival, (ii) disasters,
(iii) breakdowns, (iv) working breakdown services and (v) repair whilst evolving the system for
retrial queues.

2. Mathematical Model Description

We investigated a M/G/1 priority retrial queue with disasters under working breakdown services
(priority policy of M/G/1/WB). The basic assumption of this model is described as follows:

• The arrival process: Two sorts of customers were entered into the system: priority customers
and regular customers. Priority customers have preemptive priorities over regular customers
in relation to the service time of an occupied server. We supposed that both sorts of customers
came as per three independent Poisson processes outgoing from the system with rates δ

and λ, respectively.
• The retrial process: We supposed that there was no waiting capacity and consequently an arriving

priority customer saw the server free and the customer started the service directly. By the time
the priority customer arrived, the server presented service for a priority customer or working
breakdowns. A priority customer that arrived later would leave the system instantly wanting
service. However, since the orderly occupied server was working with a regular customer,
the arriving priority customer would obstruct the service of the regular customer as the server
would directly start providing service to the priority customer.

• We supposed that while an ordinary customer was preempted by a priority customer, the ordinary
customer, who was solely being served before the service of the priority customer began,
would wait in the service region for the residual service to finish. If an arriving ordinary
customer discovered the server was occupied or was on working breakdown, the arrivals entered
a pool of blocked customers, called an orbit, in accordance with FIFO discipline. This meant



Symmetry 2019, 11, 419 3 of 15

that only one customer at the head of the orbit queue was allowed to be served by the server.
Then, measured from the instant the server became free, a potential priority customer, a regular
customer and a retry customer competed to the entire server. Inter-retrial times are arbitrarily
distributed R(t) with the Laplace Stieltijes Transform (LST) R∗(ϑ). The retrial ordinary customer
wanted to try to abandon the service if the first external customer or the average customer arrived
first. In this case, the retrial ordinary customer returned to its location in the retrial queue.

• The regular service process: Whenever a new primary (priority) customer or retry customer
arrived at the server in idle state, then the server immediately started normal service for
the arrivals. The service time of priority customers followed a general distribution denoted
by the random variable Sp with distribution function Sp(t), having LST S∗p(ϑ) and the first

and second moments denoted as β
(1)
p and β

(2)
p . The service time of ordinary customers followed

a general distribution denoted by the random variable Sb with distribution function Sb(t) having
LST S∗b (ϑ), and the first and second moments denoted as β

(1)
b and β

(2)
b .

• The working breakdown process: The system had the potential to become deficient by disasters
at any time when the regular occupied server was in task with exponentially appropriated
with a rate of α. The event of disasters forced all present ordinary customers out of the system
and caused the primary server to fail. At a failure moment, the major server was sent to the reform,
and the reform period started immediately. The repair time followed an exponential distribution
with the rate of γ. We supposed that the repaired server was as good as a new server. Yet, disaster
occurred in the regular working server or when the orbit became vacuous, after which the server
left for a working breakdown. Through the duration of the working breakdown, the replacement
server worked at a minimal service rate for the arriving customers (µw < µ). When the repair was
completed, if there were customers in the orbit, the server changed to the normal working level.
Alternatively, the server started another working breakdown period. Throughout the working
breakdown periods (lower speed services), the service time pursued a general random variable Sw

with distribution function Sw(t) and LST S∗w(ϑ). We supposed that inter-arrival times, retrial times,
service times and working breakdown times were disjointed and independent of one another.

• Throughout the rest of the paper, we denote by F(x) = 1− F(x) the tail of distribution function

F(x). We also denote F∗(s) =
∞∫
0

e−sxdF(x), to be the LST of F(x) and
∼
F(s) =

∞∫
0

e−sxF(x)dx, to be

the Laplace transform of F(x). Ee assume the notation F∗(s) = 1−F∗(s)
s .

Practical Application of the Suggested Model

The proposed model has potential practical applications in the region of computer processing
systems. In a computer processing system, if an arriving message (the customer) found that
the processor (server) is complete, the messages would be incidentally put away in a retrial buffer
(orbit) limited space to be served some time later (retrial time) according to FCFS. The working mail
server might be influenced by a virus (breakdown) and the system may back off (working breakdown)
the performance of the computer system. Therefore, the major mail server would be immediately sent
for repair. The PC system may have the capacity to perform different errands, yet at a significantly
slower rate (lower service speed). On the off chance that the processor is accessible, it would show
that it is not currently chipping away at an errand and afterward a message would be prepared.
If the processor is inaccessible, the messages would be briefly put away in a support section to be
served some time later (retrial time) according to FCFS. This sort of working breakdown discipline is
a decent estimation of a computer processing system.
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3. Steady State Analysis of the System

For an M/G/1 priority retrial queue with disasters under working breakdowns (priority policy
of M/G/1/WB), we constructed the steady state difference-differential equations based on
the supplementary variable technique (SVT).

3.1. Steady State Probabilities and Notations

We defined the following notations:

N(t) ≡ the number of customers in the orbit at time t,
X(t) ≡ the state of the server at time t.

In addition, let ξ0
1(t), ξ0

2(t), ξ0
3(t), ξ0

4(t), be the elapsed times for retrial, service of priority

and ordinary customers and working breakdowns, respectively, at time t.
Assume that A1(0) = 0, A1(∞) = 1, A2(0) = 0, A2(∞) = 1, A4(0) = 0, A4(∞) = 1 are

continuous at x = 0 and A3(0) = 0, A3(∞) = 1 are continuous at y = 0.
Then the functions θ(x); µp(x); µb(y); µw(x). are the hazard rates for retrial, regular service for

priority customers, ordinary customers and lower rate service, respectively.

i.e., θ(x)dx =
dA1(x)

1− A1(x)
; µp(x)dx =

dA2(x)
1− A2(x)

; µb(y)dy =
dA3(y)

1− A3(y)
; µw(x)dx =

dA4(x)
1− A4(x)

.

Further, in the bivariate Markov process {X(t), N(t), t ≥ 0}, X(t) denotes the server state (0, 1,

2, 3, 4, 5) depending on whether the server is free, busy for priority customers, ordinary customers
and working breakdowns.

The steady state probabilities and limiting probability densities are defined as follows:

P0(t) = P{C(t) = 0, N(t) = 0}
Pi,n(x)dx = lim

t→∞
P
{

C(t) = i, N(t) = n, x < ξ0
i (t) ≤ x + dx

}
, for t ≥ 0, x ≥ 0 and n ≥ 0. (i = 1, 2, 4, 5)

P3,n(x, y)dxdy = lim
t→∞

P
{

C(t) = 3, N(t) = n, x < ξ0
2(t) ≤ x + dx, y < S0

b(t) ≤ y + dy
}

, for t ≥ 0, x ≥ 0, y ≥ 0, n ≥ 0
.

3.2. Ergodicity Condition of the Model

We dissected the ergodicity of the embedded Markov chain at departure or vacation
epochs. Let {tn; n = 1, 2, . . . } be the sequence of epochs at which either a normal service
for priority/ordinary or a lower service completion occurs. The sequence of random vectors
Zn = {X(tn+), N(tn+)} forms an embedded Markov chain in the retrial queueing system.
It follows from Appendix A that {Zn; n ∈ N} is ergodic if and only if ρ < A∗1(λ + δ), where

ρ =
(

A∗1(λ + δ) + λA∗1(λ + δ)
)
(B′A∗3

′(α) + S′(1)) + δλA∗1(λ + δ)β
(1)
p .

3.3. Steady State Equations

By the method of the SVT, we obtain the following system of equations:

(λ + δ + γ)P0 = γP0 +
∞∫
0

P2,0(x)µp(x)dx +
∞∫
0

P3,0(y)µb(y)dy +
∞∫
0

P5,0(x)µv(x)dx + α
∞∫
0

P4,n(y)dy (1)

dP1,n(x)
dx

+ (λ + δ + θ(x))P1,n(x) = 0, n ≥ 1 (2)

dP1,0(x)
dx

+ (λ + θ(x))P1,0(x) = 0, n = 0, (3)

dP2,n(x)
dx

+
(
λ + µp(x)

)
P2,n(x) = λP2,n−1(x), n ≥ 1 (4)
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∂P3,0(x, y)
∂x

+
(
λ + µp(x)

)
P3,0(x, y) = 0, n = 0, (5)

∂P3,n(x, y)
∂x

+
(
λ + µp(x)

)
P3,n(x, y) = λP3,n−1(x, y), n ≥ 1. (6)

dP4,0(y)
dy

+ (λ + δ + α + µb(y))P4,0(y) =

∞∫
0

P3,0(x, y)µp(x)dx, n = 0. (7)

dP4,n(y)
dy

+ (λ + δ + α + µb(y))P4,n(y) = λP4,n−1(y) +

∞∫
0

P3,n(x, y)µp(x)dx, n ≥ 1 (8)

dP5,0(x)
dx

+ (λ + γ + µw(x))P5,0(x) = 0, n = 0, (9)

dP5,n(x)
dx

+ (λ + γ + µw(x))P5,n(x) = λP5,n−1(x), n ≥ 1. (10)

The steady state boundary conditions at x = 0 and y = 0 are:

P1,n(0) =

∞∫
0

P2,n(x)µp(x)dx +

∞∫
0

P4,n(y)µb(y)dx +

∞∫
0

P5,n(x)µw(x)dx, n ≥ 1 (11)

P2,n(0) = δ

∞∫
0

P1,n(x)dx, n ≥ 1 (12)

P3,n(0, y) = δ(P4,n(y)), n ≥ 0 (13)

P4,0(0) =

 ∞∫
0

P1,1(x)θ(x)dx + γ

∞∫
0

P5,0(x)dx

, n = 0 (14)

P4,n(0) =

 ∞∫
0

P1,n + 1(x)θ(x)dx + λ

∞∫
0

P1,n(x)dx + γ

∞∫
0

P5,n(x)dx

, n ≥ 1 (15)

P5,n(0) =

{
(λ + δ)P0, n = 0.

0 , n ≥ 1.
(16)

The normalizing condition is:

P0 +
∞
∑

n = 1

∞∫
0

P1,n(x)dx +
∞
∑

n = 0

(
∞∫
0

P2,n(x)dx +
∞∫
0

∞∫
0

P3,n(x, y)dxdy +
∞∫
0

P4,n(y)dy +
∞∫
0

P5,n(x)dx

)
= 1. (17)

3.4. Computation of the Steady State Solution

To analyze the developed queueing model, we make use of the SVT and the PGF method.
We define the generating functions for |z| ≤ 1, as follows:

P1(x, z) =
∞
∑

n = 1
P1,n(x)zn; P1(0, z) =

∞
∑

n = 1
P1,n(0)zn; P2(x, z) =

∞
∑

n = 0
P2,n(x)zn; P2(0, z) =

∞
∑

n = 0
P2,n(0)zn;

P3(x, y, z) =
∞
∑

n = 0
P3,n(x, y)zn; P3(0, y, z) =

∞
∑

n = 0
P3,n(0, y)zn; P4(y, z) =

∞
∑

n = 0
P4,n(y)zn; P4(0, z) =

∞
∑

n = 0
P4,n(0)zn ;

P5(x, z) =
∞
∑

n = 0
P5,n(x)zn; P5(0, z) =

∞
∑

n = 0
P5,n(0)zn;
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Theorem 1. Based on the stability condition ρ < A∗1(λ + δ), the partial probability generating functions for
server states are given by:

P1(0, z) =
z(λ + δ)P0{W(z)(A∗3(C(z)) + S(z)) + (A∗4(D(z))−1)}

{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (18)

P2(0, z) =
zδ(λ + δ)A∗1(λ + δ)P0{W(z)(A∗3(C(z)) + S(z)) + (A∗4(D(z))−1)}

{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (19)

P3(0, z) = δ× P4(0, z)

(
1− A∗3(C(z))

C(z)

)
(20)

P4(0, z) =
(λ + δ)P0{(A∗4(D(z))−1)(A∗1(λ + δ) + λzA∗1(λ + δ)) + zW(z)(1−δA∗1(λ + δ))}
{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (21)

P5(0, z) = (λ + δ)P0 (22)

where W(z) =
γ(1−A∗4(D(z)))

D(z) ; S(z) =
α(1−A∗3(C(z)))

C(z) ; A∗2(B(z)) =
(

1−A∗2(B(z))
B(z)

)
;

A∗3(C(z)) =
(

1−A∗3(C(z))
C(z)

)
; B(z) = λ(1 − z), C(z) =

(
α + Ap(z) + δ(1− A∗2(B(z)))

)
and D(z) =

(γ + λ(1− z)).

Proof. From Equations (2)–(16) multiplied by zn and Taking summation over n, (n = 0, 1, 2, . . . ),

∂P1(x, z)
∂x

+ (λ + δ + θ(x))P1(x, z) = 0 (23)

∂P2(x, z)
∂x

+
(
λ(1− z) + µp(x)

)
P2(x, z) = 0 (24)

∂P3(x, y, z)
∂x

+
(
λ(1− z) + µp(x)

)
P3(x, y, z) = 0 (25)

∂P4(y, z)
∂y

+ (λ(1− z) + δ + α + µb(y))P4(y, z) =

∞∫
0

P3(x, y, z)µp(x)dx (26)

∂P5(x, z)
∂x

+ (λ(1− z) + γ + µw(x))P5(x, z) = 0. (27)

P1(0, z) =
∞∫
0

P2(x, z)µp(x)dx +
∞∫
0

P4(y, z)µb(y)dy +
∞∫
0

P5(x, z)µw(x)dx + α
∞∫
0

P4(y, z)dy− (λ + δ)P0 (28)

P2(0, z) = δ

∞∫
0

P1(x, z)dx (29)

P3(0, y, z) = δP4(y, z) (30)

P4(0, z) =
1
z

∞∫
0

P1(x, z)θ(x)dx + λ

∞∫
0

P1(x, z)dx + γ

∞∫
0

P5(x, z)dx (31)

P5(0, z) = (λ + δ)P0. (32)

Solving the partial differential Equations (23)–(27), it follows that:

P1(x, z) = P1(0, z)[1− A1(x)]e−(λ + δ)x (33)

P2(x, z) = P2(0, z)[1− A2(x)]e−B(z)x, (34)

P3(x, y, z) = P3(0, y, z)[1− A2(x)]e−B(z)x, (35)
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P4(y, z) = P4(0, z)[1− A3(y)]e−C(z)y, (36)

P5(x, z) = P5(0, z)[1− A4(x)]e−D(z)x, (37)

where B(z) = λ(1− z), C(z) =
(
α + Ap(z) + δ(1− A∗2(B(z)))

)
and D(z) = (γ + λ(1− z)) .

Inserting Equation (33) in (29), we obtain:

P2(0, z) = δP1(0, z)A∗1(λ + δ) (38)

where A∗1(λ + δ) =
(

1−A∗1(λ + δ)
λ + δ

)
.

Using (36) in (30), we obtain:

P3(0, y, z) = δ× P4(0, z)(1− A3(y))e−C(y) (39)

Inserting Equations (33) and (37) in Equation (31), we obtain:

P4(0, z) =
P1(0, z)

z

(
A∗1(λ + δ) + λzA∗1(λ + δ)

)
+ (λ + δ)P0W(z) (40)

where W(z) =
γ(1−A∗4(D(z)))

D(z) ; A∗2(B(z)) =
(

1−A∗2(B(z))
B(z)

)
; A∗3(C(z)) =

(
1−A∗3(C(z))

C(z)

)
;.

Using (33)–(40) in (28), we obtain:

P1(0, z) = P2(0, z)A∗2(B(z)) + P4(0, z)(A∗3(C(z)) + S(z)) + P5(0, z)A∗4(D(z))− (λ + δ)P0 (41)

where S(z) =
α(1−A∗3(C(z)))

C(z) ;.
Using (38)–(40) in (41), we obtain:{

z−
(

A∗1(λ + δ) + λzA∗1(λ + δ)
)
(A∗3(C(z)) + S(z))− zδA∗1(λ + δ)A∗2(B(z))

}
P1(0, z)

= z(λ + δ)P0
{

W(z)(A∗3(C(z)) + S(z)) +
(

A∗4(D(z))− 1
)}

From the above equation, we know that the key element for obtaining P(0, z) is to find the zeros
of f (z) =

{
z−

(
A∗1(λ + δ) + λzA∗1(λ + δ)

)
(A∗3(C(z)) + S(z))− zδA∗1(λ + δ)A∗2(B(z))

}
= 0

in the range 0 < z < 1 for the equation f (z) = 0. (from [11]).
Using Equations (38)–(41) after making some manipulations, we obtain:

P1(0, z) =
z(λ + δ)P0{W(z)(A∗3(C(z)) + S(z)) + (A∗4(D(z))−1)}

{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (42)

P2(0, z) =
zδ(λ + δ)A∗1(λ + δ)P0{W(z)(A∗3(C(z)) + S(z)) + (A∗4(D(z))−1)}

{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (43)

P3(0, z) = δ× P4(0, z)

(
1− A∗3(C(z))

C(z)

)
(44)

P4(0, z) =
(λ + δ)P0{(A∗4(D(z))−1)(A∗1(λ + δ) + λzA∗1(λ + δ)) + zW(z)(1−δA∗1(λ + δ))}
{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (45)

P5(0, z) = (λ + δ)P0 (46)

where W(z) =
γ(1−A∗4(D(z)))

D(z) ; S(z) =
α(1−A∗3(C(z)))

C(z) ; A∗2(B(z)) =
(

1−A∗2(B(z))
B(z)

)
;

A∗3(C(z)) =
(

1−A∗3(C(z))
C(z)

)
; B(z) = λ(1 − z), C(z) =

(
α + Ap(z) + δ(1− A∗2(B(z)))

)
and D(z) =

(γ + λ(1− z)) .

Using (18)–(22) in (33)–(37), we then obtain the limiting PGFs P1(x, z), P2(x, z), P3(x, y, z),
P4(y, z) and P5(x, z). �
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Theorem 2. The PGFs of the number of customers in the orbit when the server is idle, busy serving
a priority customer without preempting an ordinary customer, busy serving a priority customer with preempting
an ordinary customer, busy serving an ordinary customer and on working breakdowns are given by:

P1(z) =
z(λ + δ)A∗1(λ + δ)P0

{
W(z)(A∗3(C(z)) + S(z)) +

(
A∗4(D(z))− 1

)}{
z−

(
A∗1(λ + δ) + λzA∗1(λ + δ)

)(
A∗3(C(z)) + S(z)

)
− zδA∗1(λ + δ)A∗2(B(z))

} (47)

P2(z) =
(1−A∗2(B(z)))(zδ(λ + δ)A∗1(λ + δ)P0{W(z)(A∗3(C(z)) + S(z)) + (A∗4(D(z))−1)})
B(z)×{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (48)

P3(z) =
δP0(1−A∗3(C(z)))(1−A∗2(B(z)))

(B(z)×C(z))

× (λ + δ){(A∗4(D(z))−1)(A∗1(λ + δ) + λzA∗1(λ + δ)) + zW(z)(1−δA∗1(λ + δ))}
{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))}

(49)

P4(z) =
(λ + δ)P0(1−A∗3(C(z))){(A∗4(D(z))−1)(A∗1(λ + δ) + λzA∗1(λ + δ)) + zW(z)(1−δA∗1(λ + δ))}

C(z)×{z−(A∗1(λ + δ) + λzA∗1(λ + δ))(A∗3(C(z)) + S(z))−zδA∗1(λ + δ)A∗2(B(z))} (50)

P5(z) =

{
(λ + δ)P0W(z)

γ

}
(51)

P0 =
A∗1(λ + δ)− ρ

η
(52)

where ρ =
(

A∗1(λ + δ) + λA∗1(λ + δ)
)
(B′A∗3

′(α) + S′(1)) + δλA∗1(λ + δ)β
(1)
p .

η =
(

A∗1(λ + δ)− ρ
)(

1 + (λ + δ)
(
1− A∗4(γ)

)
/γ
)

+(λ + δ)
{

1 + δβ
(1)
p

}(
1− A∗4(γ)

) A∗1(λ + δ)
(

λ
γ + λA∗3

′(α)
(

1 + δβ
(1)
p

)
+ S′(1)

)
+

A∗3(α)
{

A∗1(λ + δ)− δλA∗1(λ + δ)β
(1)
p + λ

γ

(
1− δA∗1(λ + δ)

)} 
S′(1) =

λ
(

1 + δβ
(1)
p

)
α (1− A∗3(α) + αA∗3

′(α)); A∗3(α) =
(

1−A∗3(α)
α

)
; W ′(1) = λ

γ

(
1− A∗4(γ) + γA∗3

′(α)
)
; A′b = λ

(
1 + δβ

(1)
p

)
;

Proof. Inserting Equations (18)–(22) in (33)–(37) and integrating them with respect to x and y, we then
can define the partial PGFs as:

P1(z) =

∞∫
0

P1(x, z)dx,P2(z) =

∞∫
0

P2(x, z)dx,P3(z) = , P4(z) =

∞∫
0

P4(y, z)dy, P5(z) =

∞∫
0

P5(x, z)dx.

Using the normalizing condition, by setting z = 1 in (47)–(52) and applying L’Hopital’s rule
whenever necessary, we can obtain the probability that the server is idle (P0). �

Corollary 1. If the system satisfies the stability condition ρ < A∗1(λ + δ), then:
The PGF of the number of customers in the system (Ks(z)) is

Ks(z) = P0 + P1(z) + z
5

∑
i = 2

Pi(z). (53)

The PGF of the number of customers in the orbit (Ko(z)) is:

Ko(z) = P0 +
5

∑
i = 1

Pi(z). (54)
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Substituting Equations (47)–(52) into the above results, then (53) and (54) can be obtained by the PGF of
system size and orbit size by direct calculation.

4. Performance Measures

Our analysis was based on the following system characteristics of the priority M/G/1/WB retrial
queueing system.

System State Probabilities and Mean System Size

From Equations (47)–(54), by setting z→ 1 and applying L’Hopital’s rule whenever necessary,
then we obtain the following results:

(i) Let P be the steady state probability that the server is idle during the retrial time:

P1 = P1(1) = (λ + δ)A∗1(λ + δ)
η

{(
1− A∗4(γ)

)(
λ
γ + λA∗3

′(α)
(

1 + δβ
(1)
p

)
+ S′(1)

)}
. (55)

(ii) The probability that the server is busy serving a priority customer without preempting an ordinary
customer is given by:

P2 = P2(1) =
δ(λ + δ)A∗1(λ + δ)β

(1)
p

η

{(
1− A∗4(γ)

)(
λ
γ + λA∗3

′(α)
(

1 + δβ
(1)
p

)
+ S′(1)

)}
. (56)

(iii) The probability that the server is busy serving a priority customer with preempting an ordinary
customer is given by:

P3 = P3(1) =
δ(λ + δ)β

(1)
p A∗3(α)

η

(
1− A∗4(γ)

){
A∗1(λ + δ)− δλA∗1(λ + δ)β

(1)
p + λ

γ

(
1− δA∗1(λ + δ)

)}
. (57)

(iv) The probability that the server is busy serving an ordinary customer is given by:

P4 = P4(1) = (λ + δ)A∗3(α)
η

(
1− A∗4(γ)

){
A∗1(λ + δ)− δλA∗1(λ + δ)β

(1)
p + λ

γ

(
1− δA∗1(λ + δ)

)}
. (58)

(v) The probability that the server is on working vacation is given by:

P5 = P5(1) =

{
(λ + δ)P0

(
1− A∗4(γ)

)
γ

}
. (59)

(vi) The excepted number of customers in the orbit (Lq) is obtained by differentiating (54) with respect
to z and evaluating at z = 1:

Lq = K′o(1) = lim
z→1

d
dz

Ko(z). (60)

(vii) The excepted number of customers in the system (Ls) is obtained by differentiating (53) with
respect to z and evaluating at z = 1:

Ls = K′s(1) = lim
z→1

d
dz

Ks(z). (61)

(viii) The average time a customer spends in the system (Ws) and queue (Wq) is expressed as:

Ws =
Ls

λ
and Wq =

Lq

λ
. (62)
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5. Special Cases

We present the following three special cases of our model:

Case 1: No disaster and no working breakdowns:

In this case, we put γ = α = 0, and our model was reduced to a preemptive priority retrial queueing
system by Gao [5].

Case 2: No priority arrival, no retrial and exponential service:

By substituting A∗1(λ)→ 1, µb(x)→ µb and δ = 0, our model was reduced to an M/M/1
queueing system with working breakdowns by Kalidass and Ramanath [15].

Case 3: No priority arrival and no retrial:

By substituting δ = 0 and A∗1(λ)→ 1 , our model was reduced to an M/G/1 queueing system
with disasters and working breakdown services by Kim and Lee [16].

6. Cost Optimization Analysis and Sensitivity Analysis

In this section, we construct a cost function to make the system cost-effective and we discuss some
numerical examples to represent the effect of system performance measures.

6.1. Cost Optimization

The optimal design of the single server priority retrial queue with working breakdown services is
addressed [24]. In order to carry out a cost analysis, let us define:

Ch—the holding cost per unit time;
Co—the cost per unit time in operations;
Cs—the setup cost per busy cycle;
Ca—the startup cost per unit time.

Utilizing the above cost parameters and corresponding system performance measures,
the expected cost function per unit time under a linear cost structure is given by:

TC = ChLs + Co
E(Tb)
E(Tc)

+ Cs
1

E(Tc)
+ Ca

E(T0)
E(Tc)

TC = ChLs + Co(1− P0) + Csλ + CaP0

where P0, Ls, E(Tb) and E(Tc) are given in Equations (52) and (61), respectively. Our objective is to
find the total expected cost per unit of time (TC) by fixing the cost and other parameters. The effect
of decision variable behaviors is presented in Figure 2. For the following values of the cost elements
and other parameters such as λ = 0.5; δ = 2; α = 0.5; µb = 5; µp = 3; µw = 2; γ = 3; θ = 2; Ch = $5, Co = $60,
Cs = $500 and Ca = $90 are chosen according to the satisfaction of the stability condition. Then the total
expected cost per unit of time is TC = $310.3895.

Further, we explored the impact of the above system parameters on the expected cost function
for various values of the cost parameters. Tables 1 and 2 show the effects of (Ch, Co) and (Cs, Ca)
on the expected cost function, respectively. The impact of the system parameters (λ, α) on the total
expected cost per unit of time is shown in Figures 1 and 2. From this, we infer that the expected cost
function demonstrates a directly increasing trend with increasing cost parameters.

Table 1. The impact of (Ch, Co) on cost per unit of time (TC) with Cs = $500 and Ca = $90.

(Ch, Co) (5, 60) (20, 60) (15, 60) (5, 75) (5, 100)

TC 310.3895 311.5580 313.1159 325.3895 350.3895
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Table 2. The impact of (Cs, Ca) on TC with Ch = $5 and Co = $60.

(Cs, Ca) (500, 90) (550, 90) (600, 90) (500, 100) (500, 110)

TC 310.3895 335.3985 360.3985 323.2147 326.3924
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6.2. Sensitivity Analysis

Here, we discuss the sensitivity analysis based on some numerical cases to represent the impact
of different parameters on the main performance measures. For the numerical study, we assumed
that all distribution functions are considered as Exponentially, Erlangianly and Hyper Exponentially.
The values were chosen arbitrarily to the parameters, but they satisfied the stability condition.

6.3. Results and Discussion

The numerical results are summarized in Tables 3 and 4 are displayed in graphs (Figures 3–6).
To study the sensitivity of various parameters on system indices, the default parameters for
the computational results are taken as follows: λ = 0.5; δ = 2; α = 0.5; µb = 5; µp = 3; µw = 2; γ = 3; θ = 2.

From Table 3, we notice that as the retrial rate (θ) increases, the system measures like Lq and P
increase and the probability that the server is idle (P0) decreases. As can be seen in Table 4, there is
a decreasing trend of P0 as the priority rate (δ) increases. However, the other measures such as Lq

and Π1 increase as the priority rate increases.
The sensitivity of parameters with respect to different performance indices are explained

graphically in Figures 3–6. In Figure 3, the surface displays an upward trend as expected for
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the increasing value of arrival rate of ordinary (λ) and priority (δ) customers against the mean orbit
size (Lq).

It is found from Figure 4 that P0 decreases with the increasing values of failure rate (α) and ordinary
arrival rate (λ). As expected from Figure 5, the mean orbit size (Lq) decreases with the increasing value
of the lower service rate (µw) and regular service rate (µ). Figure 6 shows that the idle probability
increases with the increasing values of service rate (µ) and repair rate (η).

Table 3. The impact of retrial rate (θ) on P0, Lq and P.

Retrial Rate (θ)
Exp Erlang Hyp-Exp

P0 Lq P P0 Lq P P0 Lq P

2.00 0.4673 4.3345 0.1732 0.3507 5.4842 0.3538 0.3986 4.7128 0.2318
3.00 0.5250 3.8563 0.1155 0.4773 4.0795 0.2271 0.4766 3.9451 0.1539
4.00 0.5539 3.6547 0.0866 0.5374 3.6448 0.1671 0.5153 3.6499 0.1151
5.00 0.5712 3.5434 0.0693 0.5724 3.4337 0.1321 0.5385 3.4937 0.0920
6.00 0.5828 3.4730 0.0577 0.5952 3.3090 0.1092 0.5539 3.3970 0.0766

Table 4. The impact of priority arrival rate (δ) on P0, Lq and Π1.

Priority Arrival Rate (δ)
Exp Erlang Hyp-Exp

P0 Lq Π1 P0 Lq Π1 P0 Lq Π1

1.00 0.7208 0.0831 0.0033 0.4249 0.2487 0.0250 0.6820 0.1625 0.0116
2.00 0.5804 0.1057 0.0042 0.2526 0.3450 0.0255 0.5361 0.2029 0.0281
3.00 0.4760 0.1263 0.0043 0.1614 0.4522 0.0223 0.4341 0.2211 0.0446
4.00 0.3965 0.1446 0.0042 0.1090 0.5675 0.0191 0.3595 0.2286 0.0598
5.00 0.3348 0.1608 0.0040 0.0769 0.6935 0.0165 0.3031 0.2310 0.0732
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7. Conclusions

In this investigation, we have studied a preemptive priority retrial queue with disasters under
working breakdown services (priority policy for M/G/1/WB). Using the method of the SVT, the PGFs
for the system size and its orbit were found. Some important system characteristics like steady state
probabilities and the mean system size were obtained. The analytical results were validated with
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Appendix A

To prove the sufficient condition of ergodicity, it is very convenient to use Foster’s criterion [25],
which states that the chain {Zn; n ∈ N} is an irreducible and aperiodic Markov chain and is
ergodic if there exists a non-negative function f (j), j ∈ N and ε> 0, such that the mean drift

ψj = E[ f (zn + 1)− f (zn)/zn = j] is finite for all j ∈ N and ψj ≤ −ε for all j ∈ N, except perhaps for

a finite value of j. In our case, we consider the function f (j) = j, following which we obtain:

ψj =


ρ =

(
R∗(λ + δ) + λR∗(λ + δ)

)(
A′bS∗b ′(α) + S′(1)

)
+ δλR∗(λ + δ)β

(1)
p − 1, if j = 0,

ρ =
(

R∗(λ + δ) + λR∗(λ + δ)
)(

A′bS∗b ′(α) + S′(1)
)

+ δλR∗(λ + δ)β
(1)
p − R∗(λ + δ), if j = 1, 2 . . .

Clearly, the inequality ρ < R∗(λ + δ) is a sufficient condition for ergodicity.
To prove the necessary condition, as noted in Sennott et al. [26], if the Markov chain {Zn; n ≥ 1}

satisfies Kaplan’s condition, namely, ψj < ∞ for all j≥ 0 and there exists j0 ∈N such that ψj ≥ 0 for j≥ j0.

Notice that, in our case, Kaplan’s condition is satisfied because there is a k such that mij = 0 for j < i − k
and i > 0, where M = (mij) is the one-step transition matrix of {Zn; n ∈ N}. Then, ρ ≥ R∗(λ + δ)

implies the non-ergodicity of the Markov chain.
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