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Abstract: In this paper, a generalized picture fuzzy soft set is proposed, which is an extension of the
picture fuzzy soft sets. We investigate the basic properties of picture fuzzy soft sets and define an
F-subset, M-subset, extended union, extended intersection, restricted union, restricted intersection
and also prove the De Morgan’s laws for picture fuzzy soft information. We investigate upper and
lower substitution for both picture fuzzy sets and generalized picture fuzzy soft sets. Meanwhile,
the related proofs are given in detail. Finally, we propose an algorithm to deal with generalized
picture fuzzy soft information. To show the supremacy and effectiveness of the proposed technique,
we illustrate a descriptive example using generalized picture fuzzy soft information. Results indicate
that the proposed technique is more generalized and effective over all the existing structures of fuzzy
soft sets.

Keywords: picture fuzzy sets; picture fuzzy soft sets; picture fuzzy Dombi weighted average operator;
picture fuzzy weighted averaging operator

1. Introduction

This universe is loaded with qualm, imprecision, and ambiguity. In reality, the greater part of
the ideas we deal contain unclear information rather than exact. Managing qualm or uncertainty is
a noteworthy issue in numerous territories, for example, economics, engineering, natural science,
medicinal science, and sociology. Such a large number of authors have turned out recently to have keen
interest in demonstrating unclearness. Traditional speculations like fuzzy sets [1], rough sets [2] and
vague sets [3] are notable and assume vital jobs in demonstrating uncertainty. In [4], an intuitionistic
fuzzy set is introduced by Atanassov. In [5], Molodtsov defined soft sets which are a totally new
scientific instrument for managing uncertainties.

Molodtsov soft set theory attracts many authors because it has a wide range of applications in
fields of decision making, forecasting and in data analysis. Nowadays many authors try to hybridize the
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soft set with different mathematical models. In [6], fuzzy soft sets are defined by Maji, which consists
of both a fuzzy set and a soft set. Also, Maji [7], combine intuitionistic fuzzy set and soft set and
defined an intuitionistic fuzzy soft set. Then the further extensions of soft sets like the interval-valued
fuzzy soft set [8], the generalized fuzzy soft set [9], the vague soft set [10], the soft rough set [11],
the trapezoidal fuzzy soft set [12], the neutrosophic soft set [13], the intuitionistic neutrosophic soft
set [14], the multi-fuzzy soft set [15] and the hesitant fuzzy soft set [16] are introduced. In [17],
Agarwal generalizes the notion of the intuitionist fuzzy soft set by adding a parameter which shows
the director opinion about the legitimacy of the given data and called it the generalized intuitionistic
fuzzy soft set. Later, the existing definition of a generalized intuitionistic fuzzy soft set is clarified and
reformulated by Feng [18]. Under an uncertainty environment, these mathematical models have been
successfully applied in decision making problems.

The soft matrix in a soft set, its related operations and the method of how it works for solving
decision-making problems are introduced by Cagman and Enginoglu in [19]. Feng and Zhou [20],
introduced the soft discernibility matrix and gave a technique to solve decision making problems.

In [21], Coung introduced the new notion which includes an extra output; the “neutral degree
of membership” and called it a picture fuzzy soft set (PFS). It triply consists of the degree of
positive membership, the degree of neutral membership, and the degree of negative membership.
Picture fuzzy set attracts authors to work on it because it is directly applied to solve daily life problems.
Correlation coefficients of PFS and their applications in clustering analysis are introduced by Sing [22].
With the help of novel fuzzy calculations based on the PFS domain time arrangement gauging and
climate estimating are given by Son and Thong [23,24]. Son [25,26], defined picture fuzzy separation
measures, generalized picture distance measures and picture association measures, and connected
them to tackle grouping investigation under the PFS condition. Son [27], proposed a novel fuzzy
derivation framework on PFS to enhance the inference performance of the traditional fuzzy inference
system. Thong [28,29], applied a novel picture fuzzy clustering technique for complex data and particle
swarm optimization. Wei [30], exhibited picture fuzzy aggregation operators method and applied it to
multi attribute decision making (MADM) for ranking enterprise resource planning (ERP) structures.
Wei [31], researched a basic leadership technique in light of the picture fuzzy weighted cross-entropy
and used this to rank the choices. Based on picture fuzzy soft sets, Yang [32], defined an adjustable
soft discernibility matrix and implemented it in decision making. Garg [33], contemplated aggregation
operations on picture fuzzy soft set (PFSS) and applied it to multi criteria decision-making (MCDM)

problems. Peng [34], determined an algorithm for PFS and applied it in decision making. For more
study about decision making, we refer to [35–39]. The purpose of this paper is to minimize the possible
perversions in previous evaluations made by expert groups by adding an extra picture fuzzy set given
by the director. Since the director is responsible for the department, he reviews and scrutinizes the
general quality of evaluations made by expert groups instead of evaluating all the alternatives with
respect to every characteristic. To overcome this issue, we hybridize the PFSS with picture fuzzy set
(PFS) and obtain a new mathematical model name, the generalized picture fuzzy soft set (GPFSS).
In this paper, Sections 1 and 2 consist of an introduction and preliminaries which include the basic
definition related to fuzzy sets and picture fuzzy sets. In Section 3, we define the basic properties
of picture fuzzy soft sets and define the F-subset, M-subset, extended union, extended intersection,
restricted union, restricted intersection and also prove the De Morgan’s laws for picture fuzzy soft
information. In Sections 4 and 5, we define a generalized picture fuzzy soft set and introduce its basic
properties and operations. Section 6 consists of upper and lower substitution operations of generalized
picture fuzzy soft sets. In Sections 7 and 8, we proposed an algorithm to deal with GPFS information
and the supremacy and effectiveness of the proposed technique is verified by the case study of the
construction of a tower problem. Sections 9 and 10 consist of comparisons of our proposed technique
with some existing techniques and the conclusion, respectively.



Symmetry 2019, 11, 415 3 of 27

2. Preliminaries

In this section, let us briefly recall the rudiments of fuzzy sets, soft sets, fuzzy soft fuzzy sets,
and picture fuzzy sets.

Zadeh [1], introduced the notion of a fuzzy set, which provides an effective framework for
handling imprecision based on the view of gradualness.

Definition 1. [1] A fuzzy set Ǎ over the universe X̌ is defined as

Ǎ = {( f , ξ Ǎ)| f ∈ X̌},

where ξ Ǎ : X̌ → [0, 1], is a membership function. For each f ∈ X̌, ξ Ǎ( f ) specifies the degree to which the
element f belongs to the fuzzy set Ǎ.

In [5], Molodtsov defined the soft set which is a totally new scientific instrument for managing
uncertainties from a parametrization point of view. Let X̌ be a universal set and Ě be a parameter
space. Then there is no restriction on the parameter space, that is, it might be an infinite set even if X̌ is
a finite set. Mostly, parameter space consists of attributes, characteristics or properties of elements in
the universal set.

Definition 2. [5] Let X̌ be a universal set, Ě a parameter space and P(X̌) the power set of X̌. A pair (F̌, Ǎ) is
called a soft set over X̌, where Ǎ ⊂ Ě and F̌ is a set valued mapping given by F̌ : Ǎ→ P(X̌).

In [6], P.K. Maji defined the fuzzy soft set, which is the hybrid model of a fuzzy set and a soft
set. Since it is a hybrid model, every attribute should be characterized by a membership function,
because in real life, the perception of the people is characterized by a certain degree of vagueness and
imprecision. For example, to judge the beauty of women, we cannot express the information with only
two crisp numbers, 0 and 1.

Definition 3. [6] Let X̌ be a universal set, Ě a parameter space and P(X̌) the set of all fuzzy subsets of X̌. A pair
(F̌, Ǎ) is called a fuzzy soft set over X̌, where Ǎ ⊂ Ě and F̌ is a set valued mapping given by F̌ : Ǎ→ P(X̌).

In [21], Coung introduced picture fuzzy sets by adding an extra membership function, namely,
the degree of the neutral membership function. Basically, the model of the picture fuzzy set may be
adequate in situations when we face human opinions involving more answers of the type: yes, abstain,
no, refusal. Voting can be a good example of picture fuzzy set because it involves the situation of more
answers of the type: yes, abstain, no, refusal.

Definition 4. [21] A picture fuzzy set (PFS) Ǎ over the universe X̌ is defined as

Ǎ = {( f , ξ Ǎ, ηǍ, ϑǍ)| f ∈ X̌},

where ξ Ǎ( f ) ∈ [0, 1] is called the “degree of positive membership of f in Ǎ", ηǍ( f ) ∈ [0, 1] is called the
“degree of neutral membership of f in Ǎ" and ϑǍ( f ) ∈ [0, 1] is called the “degree of negative membership of
f in Ǎ, which satisfying the following condition 0 ≤ (ξ Ǎ( f ) + ηǍ( f ) + ϑǍ( f )) ≤ 1, ∀ f ∈ X̌. Then for
f ∈ X̌, πǍ( f ) = 1− (ξ Ǎ( f ) + ηǍ( f ) + ϑǍ( f )) is called the degree of refusal membership of f in Ǎ. For PFS
(ξ Ǎ( f ), ηǍ( f ), ϑǍ( f )) are said to picture fuzzy value (PFV) or picture fuzzy number (PFN) and each PFV
can be denoted by q = (ξq, ηq, ϑq), where ξq, ηq and ϑq ∈ [0, 1], with condition that 0 ≤ ξq + ηq + ϑq ≤ 1.

In [21], Coung also defined some operations as follows.
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Definition 5. [21] Let Ǎ and B̌ be two PFSs over X̌. Then their containment, union, intersection and
complement are defined as follows:

1. Ǎ ⊂ B̌, if ξ Ǎ ≤ ξ B̌, ηǍ ≤ ηB̌ and ϑǍ ≥ ϑB̌, ∀ f ∈ X̌,
2. Ǎ ∪ B̌ = {( f , max(ξ Ǎ, ξ B̌), min(ηǍ, ηB̌), min(ϑǍ, ϑB̌))|∀ f ∈ X̌},
3. Ǎ ∩ B̌ = {( f , min(ξ Ǎ, ξ B̌), min(ηǍ, ηB̌), max(ϑǍ, ϑB̌))|∀ f ∈ X̌},
4. Ǎc = {( f , ϑǍ, ηǍ, ξ Ǎ)| f ∈ X̌}.

For comparing between two PFVs, the test function and accuracy function are defined.

Definition 6. [30] Let q = (ξq, ηq, ϑq) be a picture fuzzy value (PFV). Then their score function Θ̌ and
accuracy function v̌ are defined as follows:

Θ̌(q) = ξq − ϑq, Θ̌(q) ∈ [−1, 1],

v̌(q) = ξq + ηq + ϑq, v̌(q) ∈ [0, 1].

With the help of Definition 6, we make a comparison between two PFVs as follows.

Definition 7. [30] Let q and p be two PFVs.

1. If Θ̌(q) < Θ̌(p), then q ≺ p,
2. If Θ̌(q) > Θ̌(p), then q � p,
3. If Θ̌(q) = Θ̌(p) and v̌(q) < v̌(p), then q ≺ p,
4. If Θ̌(q) = Θ̌(p) and v̌(q) > v̌(p), then q � p,
5. If Θ̌(q) = Θ̌(p) and v̌(q) = v̌(p), then q ∼ p.

In [40], C. Jana defined the picture fuzzy Dombi weighted average (PFDWA) operator by using
Dombi t-norm and Dombi t-conorm. In Section 7, we use PFDWA to aggregate the information of an
alternative from parameters.

Definition 8. [40] Let qi = (ξ i , ηi, ϑi) (i = 1, 2, 3, ..., n) be PFVs. Then the PFDWA operator is a function
defined by qn → q such that

PFDWAω̌(q1, q2, ..., qn) = ⊕n
i=1ω̌iqi

=

1− 1

1 + {∑n
i=1 ω̌i(

ξi
1−ξi

)k}k
,

1

1 + {∑n
i=1 ω̌i(

1−ηi
ηi

)k}k
,

1

1 + {∑n
i=1 ω̌i(

1−ϑi
ϑi

)k}k

 ,

where k ≥ 1 and ω̌ = (ω̌1, ω̌2, ..., ω̌n) is the weight vector with each ω̌i > 0 and ∑n
i=1 ω̌i = 1.

In [30], G. Wei defined the picture fuzzy weighted averaging (PFWA) operator by using
arithmetic operations. In Section 7, we also use PFWA to aggregate the information of an alternative
from parameters.

Definition 9. [30] Let qi = (ξ i , ηi, ϑi) (i = 1, 2, 3, ..., n) be PFVs. Then the picture fuzzy weighted averaging
(PFWA) operator is a function defined qn → q such that

PFWAω̌(q1, q2, ..., qn) = ⊕n
i=1ω̌iqi

=

(
1−

n

∏
i=1

(1− ξi)
ω̌i ,

n

∏
i=1

(ηi)
ω̌i ,

n

∏
i=1

(ϑi)
ω̌i

)
,

where ω̌ = (ω̌1, ω̌2, ..., ω̌n) is the weight vector with each ω̌i > 0 and ∑n
i=1 ω̌i = 1.
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3. Picture Fuzzy Soft Sets

In [32], Y. Yang defined the PFSS, which is a hybrid model of picture fuzzy set and soft set.
With the help of PFSS, we can see uncertainties from a parametrization point of view in picture fuzzy
environment, that is, every element (alternative) of a universal set X̌ can be viewed from different
parameters (attributes).

Definition 10. [32] Let X̌ be a universal set and Ě a parameter space. Let PF(X̌) denote the set of all picture
fuzzy sets of X̌. A pair (F̌, Ǎ) is called a picture fuzzy soft set (PFSS), where Ǎ ⊂ Ě and F̌ is a mapping given
by F̌ : Ǎ→ PF(X̌).

From the definition of PFSS, we can see that it is not a set, but it is a parametrized family of
picture fuzzy subsets of X̌. For any h ∈ Ǎ, F̌(h) is PFS of X̌. Clearly, F̌(h) can be written as a picture
fuzzy set such that F̌(h) = {( f , ξ F̌(h), ηF̌(h), ϑF̌(h))| f ∈ X̌}, where ξ F̌(h), ηF̌(h) and ϑF̌(h) are the positive
membership, neutral membership, and negative membership functions, respectively. Y. Yang et al. [32],
also defined the equality and complement of PFSSs.

Definition 11. Let (X̌, Ě) be a universe space and Ǎ, B̌ ⊆ Ě. Suppose that L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be
two PFSSs over X̌. Then L1 is said to be picture fuzzy soft equal to L2, denoted by L1 = L2, if Ǎ = B̌ and
F̌(h) = Ǧ(h) for all h ∈ Ǎ.

Definition 12. Let (X̌, Ě) be a universe space and Ǎ ⊆ Ě. Suppose that L = (F̌, Ǎ) is a PFSS over X̌.
The complement of L is defined as the PFSS Lc = (Ǧ, Ǎ) such that Ǧ(h) = [F̌(h)]c for all h ∈ Ǎ.

Example 1. Consider a PFSS (F̌, Ǎ) over X̌, where X̌ = { f1, f2, f3, f4, f5, f6} are six laptops under
consideration of the decision makers to purchase and parameter space is given by Ě = {h1, h2, h3, h4, h5},
where each hi stands for “battery life", “portability", “keyboard/touch pad", “cheap" and “hard drive/RAM",
respectively. Let Ǎ = {h1, h2, h3, h5} ⊂ Ě chosen by an observer. In the view of criteria “battery life",
“portability", “keyboard/touch pad" and “hard drive/RAM" are the most useful characteristics for evaluation.
Evaluation is made by the customer and respective results are described by the PFSS, (F̌, Ǎ), where

F̌(h1) = {(0.7, 0.1, 0.1)/ f1, (0.3, 0.2, 0.4)/ f2, (0.1, 0.5, 0.3)/ f3, (0.4, 0.1, 0.3)/ f4,

(0.2, 0.5, 0.2)/ f5, (0.6, 0.1, 0.2)/ f6},

F̌(h2) = {(0.5, 0.1, 0.3)/ f1, (0.3, 0.2, 0.4)/ f2, (0.2, 0.3, 0.4)/ f3, (0.6, 0.2, 0.2)/ f4,

(0.5, 0.2, 0.3)/ f5, (0.6, 0.1, 0.2)/ f6},

F̌(h3) = {(0.4, 0.1, 0.5)/ f1, (0.1, 0.2, 0.5)/ f2, (0.5, 0.1, 0.3)/ f3, (0.4, 0.1, 0.5)/ f4,

(0.7, 0.1, 0.2)/ f5, (0.3, 0.2, 0.4)/ f6},

F̌(h5) = {(0.5, 0.2, 0.2)/ f1, (0.3, 0.1, 0.4)/ f2, (0.6, 0.1, 0.2)/ f3, (0.3, 0.2, 0.3)/ f4,

(0.4, 0.1, 0.3)/ f5, (0.2, 0.1, 0.5)/ f6}.

The tabular representation of (F̌, Ǎ) is shown in the Table 1.
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Table 1. The picture fuzzy soft set, PFSS = (F̌, Ǎ).

X̌ h1 h2 h3 h5

f1 (0.7, 0.1, 0.1) (0.5, 0.1, 0.3) (0.4, 0.1, 0.5) (0.5, 0.2, 0.2)
f2 (0.3, 0.2, 0.4) (0.3, 0.2, 0.4) (0.1, 0.2, 0.5) (0.3, 0.1, 0.4)
f3 (0.1, 0.5, 0.3) (0.2, 0.3, 0.4) (0.5, 0.1, 0.3) (0.6, 0.1, 0.2)
f4 (0.4, 0.1, 0.3) (0.6, 0.2, 0.2) (0.4, 0.1, 0.5) (0.3, 0.2, 0.3)
f5 (0.2, 0.5, 0.2) (0.5, 0.2, 0.3) (0.7, 0.1, 0.2) (0.4, 0.1, 0.3)
f6 (0.6, 0.1, 0.2) (0.6, 0.1, 0.2) (0.3, 0.2, 0.4) (0.2, 0.1, 0.5)

Now, we define two types of containment in PFSSs, namely, F-subset and M-subset which covers
every aspect of containment in PFSSs.

Definition 13. Let (X̌, Ě) be a universe space and Ǎ, B̌ ⊆ Ě. Suppose that L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be
two PFSSs over X̌. Then L1 is said to be picture fuzzy soft F-subset of L2, denoted by L1 ⊆F L2, if Ǎ ⊆ B̌ and
F̌(h) ⊆ Ǧ(h) for all h ∈ Ǎ.

Definition 14. Let (X̌, Ě) be a universe space and Ǎ, B̌ ⊆ Ě. Suppose that L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be
two PFSSs over X̌. Then L1 is said to be picture fuzzy soft M-subset of L2, denoted by L1 ⊆M L2, if Ǎ ⊆ B̌
and F̌(h) = Ǧ(h) for all h ∈ Ǎ.

Now, we define the operations of extended union and extended intersection for PFSSs as follows.

Definition 15. Let L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be two PFSSs over X̌. Then extended union of L1 and L2 is
defined as the PFSS (Ȟ, Č) = (F̌, Ǎ) ∪ε (Ǧ, B̌), where Č = Ǎ ∪ B̌ and for all h ∈ Č,

Ȟ(h) =


F̌(h), if h ∈ Ǎ \ B̌,

Ǧ(h), if h ∈ B̌ \ Ǎ,

F̌(h) ∪ Ǧ(h), if h ∈ Ǎ ∩ B̌.

Definition 16. Let L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be two PFSSs over X̌. Then extended intersection of L1 and
L2 is defined as the PFSS (Ȟ, Č) = (F̌, Ǎ) ∩ε (Ǧ, B̌), where Č = Ǎ ∪ B̌ and for all h ∈ Č,

Ȟ(h) =


F̌(h), if h ∈ Ǎ \ B̌,

Ǧ(h), if h ∈ B̌ \ Ǎ,

F̌(h) ∩ Ǧ(h), if h ∈ Ǎ ∩ B̌.

Next definitions of restricted union and intersection of PFSSs are given.

Definition 17. Let L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be two PFSSs over X̌ such that Č = Ǎ ∩ B̌ 6= ∅. Then the
restricted union of L1 and L2 is defined as the PFSS (Ȟ, Č) = (F̌, Ǎ) ∪R (Ǧ, B̌), where Ȟ(h) = F̌(h) ∪ Ǧ(h),
for all h ∈ Č.

Definition 18. Let L1 = (F̌, Ǎ) and L2 = (Ǧ, B̌) be two PFSSs over X̌ such that Č = Ǎ ∩ B̌ 6= ∅.
Then the restricted intersection of L1 and L2 is defined as the PFSS (Ȟ, Č) = (F̌, Ǎ) ∩R (Ǧ, B̌),
where Ȟ(h) = F̌(h) ∩ Ǧ(h), for all h ∈ Č.

Remark 1. The notion of extended union and extended intersection become identical with the restricted union
and restricted intersection, respectively, when we have the same set of parameters for two PFSSs.

Now, we prove basic properties of the extended union, extended intersection, restricted union
and restricted intersection in PFSSs.
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Theorem 1. Let L = (F̌, Ǎ) be a PFSS. Then the following properties hold:

1. L ∪ε L = L ∪R L = L,
2. L ∩ε L = L ∩R L = L.

Proof. Straightforward.

Theorem 2. Let L1 = (F̌, Ǎ) and L1 = (Ǧ, B̌) be two PFSSs. Then the following properties hold:

1. L1 ∪ε L2 = L2 ∪ε L1,
2. L1 ∩ε L2 = L2 ∩ε L1,
3. L1 ∪R L2 = L2 ∪R L1;
4. L1 ∩R L2 = L2 ∩R L1.

Proof. Straightforward.

Now, we prove De Morgan’s laws for extended union and extended intersection in PFSSs.

Theorem 3. Let (F̌, Ǎ) and (Ǧ, B̌) be two PFSSs over X̌. Then

1. [(F̌, Ǎ) ∪ε (Ǧ, B̌)]c = (F̌, Ǎ)c ∩ε (Ǧ, B̌)c, for all Ǎ, B̌ ⊆ Ě,
2. [(F̌, Ǎ) ∩ε (Ǧ, B̌)]c = (F̌, Ǎ)c ∪ε (Ǧ, B̌)c, for all Ǎ, B̌ ⊆ Ě.

Proof. L.H.S.
Let

(Ȟ, Č) = (F̌, Ǎ) ∪ε (Ǧ, B̌), where Č = Ǎ ∪ B̌.

Then
(Ȟ, Č)c = [(F̌, Ǎ) ∪ε (Ǧ, B̌)]c.

For all h ∈ Č = Ǎ ∪ B̌, Ȟ(h) has the form

Ȟ(h) =


F̌(h), if h ∈ Ǎ \ B̌,

Ǧ(h), if h ∈ B̌ \ Ǎ,

F̌(h) ∪ Ǧ(h), if h ∈ Ǎ ∩ B̌;

then

Ȟc(h) =


F̌c(h), if h ∈ Ǎ \ B̌,

Ǧc(h), if h ∈ B̌ \ Ǎ,

[F̌(h) ∪ Ǧ(h)]c, if h ∈ Ǎ ∩ B̌.

Since De Morgan’s laws hold in PFSs [21], therefore,

Ȟc(h) =


F̌c(h), if h ∈ Ǎ \ B̌,

Ǧc(h), if h ∈ B̌ \ Ǎ,

F̌c(h) ∩ Ǧc(h), if h ∈ Ǎ ∩ B̌.

∈ (Ȟ, Č)c

R.H.S.
Let

( Ǐ, Č) = (F̌, Ǎ)c ∩ε (Ǧ, B̌)c, where Č = Ǎ ∪ B̌.



Symmetry 2019, 11, 415 8 of 27

For all h ∈ Č = Ǎ ∪ B̌ and Ǐ(h) ∈ ( Ǐ, Č) has the form

Ǐ(h) =


F̌c(h), if h ∈ Ǎ \ B̌,

Ǧc(h), if h ∈ B̌ \ Ǎ,

F̌c(h) ∩ Ǧc(h), if h ∈ Ǎ ∩ B̌.

∈ (Ȟ, Č)c

From the above calculations and the fact that both sides have the same set of parameters, therefore,
L.H.S=R.H.S.

Similarly, we can prove the second part of the theorem.
Also, we can prove De Morgan’s laws for restricted union and restricted intersection in PFSSs.

Theorem 4. Let (F̌, Ǎ) and (Ǧ, B̌) be two PFSSs over X̌. Then

1. [(F̌, Ǎ) ∪R (Ǧ, B̌)]c = (F̌, Ǎ)c ∩R (Ǧ, B̌)c, for all Ǎ, B̌ ⊆ Ě,
2. [(F̌, Ǎ) ∩R (Ǧ, B̌)]c = (F̌, Ǎ)c ∪R (Ǧ, B̌)c, for all Ǎ, B̌ ⊆ Ě.

Proof. L.H.S.
Let Č = Ǎ ∩ B̌ 6= ∅, and

(Ȟ, Č) = (F̌, Ǎ) ∪R (Ǧ, B̌), where Č = Ǎ ∩ B̌.

Then
(Ȟ, Č)c = [(F̌, Ǎ) ∪R (Ǧ, B̌)]c.

For all h ∈ Č = Ǎ ∩ B̌, Ȟ(h) ∈ (Ȟ, Č) has the form Ȟ(h) = F̌(h) ∪ Ǧ(h). Then Ȟc(h) ∈ (Ȟ, Č)c

has the form
Ȟc(h) = F̌c(h) ∩ Ǧc(h),

since De Morgan’s laws hold in PFSs [21].
R.H.S.
Let

( Ǐ, Č) = (F̌, Ǎ)c ∩R (Ǧ, B̌)c, where Č = Ǎ ∩ B̌.

Then for all h ∈ Č = Ǎ ∩ B̌, we have Ǐ(h) = F̌c(h) ∩ Ǧc(h). From the above calculations and the
fact that both sides have the same set of parameters, therefore, the proof is complete.

Similarly, we can easily prove the second part of the theorem.

4. Generalized Picture Fuzzy Soft Sets

In this section, we define a generalized picture fuzzy soft set (GPFSS), which is an extension of
picture fuzzy soft set (PFSS). GPFSS is a hybrid model of picture fuzzy soft set and picture fuzzy set.
In GPFSS, we have an extra output in the form of picture fuzzy set in Ǎ. Actually, the concept of picture
fuzzy soft set arising from picture fuzzy set is generalized by adding a parameter reflecting a director
or moderator’s opinion about the validity of the information provided. The resulting generalized
picture fuzzy soft set finds a special role in the decision-making applications. Keeping in mind the idea
of decision making, if there is a committee for taking an important decision, the committee evaluates
the given alternatives according to the given criteria (attributes) in the form of PFSS. To minimize the
possible perversion in previous evaluation made by committee director reviews and scrutinizes the
general quality of evaluation made by the committee and give their opinion in the form of PFS.

Definition 19. Let X̌ be a universal set, Ǎ ⊂ Ě a parametric set and ¶(Ǎ) the set of all picture fuzzy subsets
of Ǎ. By a generalized picture fuzzy soft set we mean a triple (F̌, Ǎ, ρ), where (F̌, A) is a PFSS over X̌ and
ρ : Ǎ→ ¶(Ǎ) is a PFS in Ǎ.
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Keeping the idea of decision-making in mind, we called (F̌, Ǎ) the basic picture fuzzy soft sets
(BPFSS) and ρ is called the parametric picture fuzzy set (PPFS) of the generalized picture fuzzy soft
set GPFSS (F̌, Ǎ, ρ). Clearly, from the definition we can see that ρ is a picture fuzzy set in Ǎ and can
be written as ρ = {(h, ξρ, ηρ, ϑρ)|∀ h ∈ Ǎ}, which is different from the Definition 10, where we have
picture fuzzy set over universal set X̌, which can be written as F̌(h) = {( f , ξ F̌(h), ηF̌(h), ϑF̌(h))| f ∈ X̌}.
We denote the collection of all generalized picture fuzzy soft set over X̌ is GPFSSĚ(X̌), where Ě is a
parametric space and GPFSSǍ(X̌) for the fixed parametric space Ǎ ⊂ Ě.

Example 2. Consider a GPFSS (F̌, Ǎ, ρ) over X̌, where (F̌, Ǎ) be PFSS in Example 1, and ρ a PPFS which
is given by

ρ = {(0.3, 0.3, 0.2)/h1, (0.5, 0.2, 0.3)/h2, (0.2, 0.2, 0.5)/h3, (0.7, 0.1, 0.2)/h5},

which describes an additional opinion of a moderator on the general quality of work done for evaluating
alternatives on the basis of given criteria (attributes). All the data about laptops is summarized in terms of
GPFSS (F̌, Ǎ, ρ), whose tabular representation shown in Table 2.

Table 2. The generalized picture fuzzy soft set, GPFSS = (F̌, Ǎ, ρ).

X̌ h1 h2 h3 h5

f1 (0.7, 0.1, 0.1) (0.5, 0.1, 0.3) (0.4, 0.1, 0.5) (0.5, 0.2, 0.2)
f2 (0.3, 0.2, 0.4) (0.3, 0.2, 0.4) (0.1, 0.2, 0.5) (0.3, 0.1, 0.4)
f3 (0.1, 0.5, 0.3) (0.2, 0.3, 0.4) (0.5, 0.1, 0.3) (0.6, 0.1, 0.2)
f4 (0.4, 0.1, 0.3) (0.6, 0.2, 0.2) (0.4, 0.1, 0.5) (0.3, 0.2, 0.3)
f5 (0.2, 0.5, 0.2) (0.5, 0.2, 0.3) (0.7, 0.1, 0.2) (0.4, 0.1, 0.3)
f6 (0.6, 0.1, 0.2) (0.6, 0.1, 0.2) (0.3, 0.2, 0.4) (0.2, 0.1, 0.5)
ρ (0.3, 0.3, 0.2) (0.5, 0.2, 0.3) (0.2, 0.2, 0.5) (0.7, 0.1, 0.2)

Based on our new definitions of F-subset and M-subset in PFSSs, we extend these definitions to
GPFSSs, which covers every aspect of containment in GPFSSs.

Definition 20. Let (X̌, Ě) be a universe space and Ǎ, B̌ ⊆ Ě. Suppose that Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ)

be two GPFSSs over X̌. The Γ1 is said to be generalized picture fuzzy soft F-subset of Γ2, denoted by Γ1 vF Γ2,
if the following conditions satisfied:

1. (F̌, Ǎ) ⊆F (Ǧ, B̌);
2. ξρ(h) ≤ ξσ(h), ηρ(h) ≤ ησ(h) and ϑρ(h) ≥ ϑσ(h), for all h ∈ Ǎ.

Definition 21. Let (X̌, Ě) be a universe space and Ǎ, B̌ ⊆ Ě. Suppose that Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ)

be two GPFSSs over X̌. The Γ1 is said to be generalized picture fuzzy soft M-subset of Γ2, denoted by Γ1 vM Γ2,
if the following conditions satisfied:

1. (F̌, Ǎ) ⊆M (Ǧ, B̌);
2. ξρ(h) ≤ ξσ(h), ηρ(h) ≤ ησ(h) and ϑρ(h) ≥ ϑσ(h), for all h ∈ Ǎ.

The equality and complement of GPFSSs are defined as follows.

Definition 22. The two GPFSSs Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) are said to be generalized picture fuzzy
soft equal and denoted by Γ1 = Γ2, if Ǎ = B̌, (F̌, Ǎ) = (Ǧ, Ǎ) and ρ = σ.

Definition 23. Suppose Γ1 = (F̌, Ǎ, ρ) be a GPFSS over X̌. The complement of Γ1 is defined as the GPFSS
(F̌, Ǎ, ρ)c = (Ǧ, Ǎ, σ) where (Ǧ, Ǎ) is the complement of the BPFSS (F̌, Ǎ) and σ is the complement of PPFS
ρ, respectively.
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5. Basic Operations of Generalized Picture Fuzzy Soft Sets

In this section, we define the operations of extended union, extended intersection, restricted union
and restricted intersection for GPFSSs, which are helpful in the decision support system. Also,
we prove some basic properties and De Morgan’s laws for these operations.

Now, we define the operations of extended union and extended intersection for GPFSSs
as follows.

Definition 24. Let Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) be two GPFSSs over X̌. Then extended union is
denoted by (Ȟ, Č, τ) = (F̌, Ǎ, ρ) tε (Ǧ, B̌, σ) and defined as

• (Ȟ, Č) = (F̌, Ǎ) ∪ε (Ǧ, B̌), where Č = Ǎ ∪ B̌.
• For all h ∈ Č = Ǎ ∪ B̌,

ξτ(h) =


ξρ(h), if h ∈ Ǎ \ B̌,

ξσ(h), if h ∈ B̌ \ Ǎ,

max{ξρ(h), ξσ(h)}, if h ∈ Ǎ ∩ B̌,

• for all h ∈ Č = Ǎ ∪ B̌,

ητ(h) =


ηρ(h), if h ∈ Ǎ \ B̌,

ησ(h), if h ∈ B̌ \ Ǎ,

min{ηρ(h), ησ(h)}, if h ∈ Ǎ ∩ B̌,

• for all h ∈ Č = Ǎ ∪ B̌,

ϑτ(h) =


ϑρ(h), if h ∈ Ǎ \ B̌,

ϑσ(h), if h ∈ B̌ \ Ǎ,

min{ϑρ(h), ησ(h)}, if h ∈ Ǎ ∩ B̌.

Definition 25. Let Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) be two GPFSSs over X̌. Then extended intersection is
denoted by (Ȟ, Č, τ) = (F̌, Ǎ, ρ) uε (Ǧ, B̌, σ) and defined as

• (Ȟ, Č) = (F̌, Ǎ) ∩ε (Ǧ, B̌), where Č = Ǎ ∪ B̌.
• For all h ∈ Č = Ǎ ∪ B̌,

ξτ(h) =


ξρ(h), if h ∈ Ǎ \ B̌,

ξσ(h), if h ∈ B̌ \ Ǎ,

min{ξρ(h), ξσ(h)}, if h ∈ Ǎ ∩ B̌,

• for all h ∈ Č = Ǎ ∪ B̌,

ητ(h) =


ηρ(h), if h ∈ Ǎ \ B̌,

ησ(h), if h ∈ B̌ \ Ǎ,

min{ηρ(h), ησ(h)}, if h ∈ Ǎ ∩ B̌,
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• for all h ∈ Č = Ǎ ∪ B̌,

ϑτ(h) =


ϑρ(h), if h ∈ Ǎ \ B̌,

ϑσ(h), if h ∈ B̌ \ Ǎ,

max{ϑρ(h), ϑσ(h)}, if h ∈ Ǎ ∩ B̌.

The operations of restricted union and restricted intersection are defined for GPFSSs as follows.

Definition 26. Let Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) be two GPFSSs over X̌ such that Č = Ǎ ∩ B̌ 6= ∅.
Then restricted union of Γ1 and Γ1 is defined as the GPFSS

(Ȟ, Č, τ) = (F̌, Ǎ, ρ) tR (Ǧ, B̌, σ)

such that

• (Ȟ, Č) = (F̌, Ǎ) ∪R (Ǧ, B̌);
• for all h ∈ Ȟ, ξτ(h) = max{ξρ(h), ξσ(h)}, ητ(h) = min{ηρ(h), ησ(h)} and

ϑτ = min{ϑρ(h), ϑσ(h)}.

Definition 27. Let Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) be two GPFSSs over X̌ such that Č = Ǎ ∩ B̌ 6= ∅.
Then the restricted intersection of Γ1 and Γ1 is defined as the GPFSS

(Ȟ, Č, τ) = (F̌, Ǎ, ρ) uR (Ǧ, B̌, σ)

such that

• (Ȟ, Č) = (F̌, Ǎ) ∩R (Ǧ, B̌);
• for all h ∈ Ȟ, ξτ(h) = min{ξρ(h), ξσ(h)}, ητ(h) =min{ηρ(h), ησ(h)} and

ϑτ = max{ϑρ(h), ϑσ(h)}.

Example 3. A person wants to go to spend holidays and has four cities as alternatives X̌ = { f1, f2, f3, f4}.
He has different characteristics in his mind, that is, attributes Ě = {h1, h2, h3, h4, h5}, where each hi stands for
“picnic place", ‘shopping place", “cheap", “distance from the house", and “weather conditions", respectively.
Let Ǎ = {h1, h3, h4} ⊂ Ě and B̌ = {h1, h2, h3, h5} ⊂ Ě chosen by an observer. Now, according to attributes,
the evaluation is made by the person and respective results are describe as a PFSSs (F̌, Ǎ) and (Ǧ, B̌), where

F̌(h1) = {(0.4, 0.2, 0.1)/ f1, (0.5, 0.2, 0.2)/ f2, (0.3, 0.3, 0.3)/ f3, (0.2, 0.2, 0.5)/ f4},

F̌(h3) = {(0.6, 0.1, 0.1)/ f1, (0.6, 0.1, 0.2)/ f2, (0.2, 0.3, 0.4)/ f3, (0.3, 0.5, 0.1)/ f4},

F̌(h4) = {(0.6, 0.2, 0.1)/ f1, (0.5, 0.2, 0.2)/ f2, (0.4, 0.4, 0.2)/ f3, (0.2, 0.4, 0.2)/ f4}.

In addition, ρ is the PPFS which is given by

ρ = {(0.7, 0.1, 0.1)/h1, (0.5, 0.3, 0.1)/h3, (0.3, 0.2, 0.4)/h4},

which complete the GPFSS (F̌, Ǎ, ρ), whose tabular representation is shown in Table 3. Also,

Ǧ(h1) = {(0.3, 0.5, 0.1)/ f1, (0.4, 0.3, 0.2)/ f2, (0.2, 0.3, 0.4)/ f3, (0.1, 0.5, 0.3)/ f4},

Ǧ(h2) = {(0.4, 0.5, 0.1)/ f1, (0.2, 0.1, 0.5)/ f2, (0.3, 0.4, 0.2)/ f3, (0.1, 0.6, 0.1)/ f4},
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Ǧ(h3) = {(0.7, 0.1, 0.1)/ f1, (0.2, 0.2, 0.5)/ f2, (0.4, 0.1, 0.3)/ f3, (0.1, 0.7, 0.1)/ f4},

Ǧ(h5) = {(0.3, 0.2, 0.4)/ f1, (0.6, 0.1, 0.1)/ f2, (0.5, 0.1, 0.3)/ f3, (0.2, 0.2, 0.5)/ f4, }.

In addition, σ is the PPFS which is given by

σ = {(0.5, 0.2, 0.3)/h1, (0.3, 0.4, 0.2)/h2, (0.2, 0.3, 0.4)/h3, (0.1, 0.4, 0.4)/h5},

which completes the GPFSS (Ǧ, B̌, σ), whose tabular representation is shown in Table 4.

Table 3. The GPFSS (F̌, Ǎ, ρ).

X̌ h1 h3 h4

f1 (0.4, 0.2, 0.1) (0.6, 0.1, 0.1) (0.6, 0.2, 0.1)
f2 (0.5, 0.2, 0.2) (0.6, 0.1, 0.2) (0.5, 0.2, 0.2)
f3 (0.3, 0.3, 0.3) (0.2, 0.3, 0.4) (0.4, 0.4, 0.2)
f4 (0.2, 0.2, 0.5) (0.3, 0.5, 0.1) (0.2, 0.4, 0.2)
ρ (0.7, 0.1, 0.1) (0.5, 0.3, 0.1) (0.3, 0.2, 0.4)

Table 4. The GPFSS (Ǧ, B̌, σ).

X̌ h1 h2 h3 h5

f1 (0.3, 0.5, 0.1) (0.4, 0.5, 0.1) (0.7, 0.1, 0.1) (0.3, 0.2, 0.4)
f2 (0.4, 0.3, 0.2) (0.2, 0.1, 0.5) (0.2, 0.2, 0.5) (0.6, 0.1, 0.1)
f3 (0.2, 0.3, 0.4) (0.3, 0.4, 0.2) (0.4, 0.1, 0.3) (0.5, 0.1, 0.3)
f4 (0.1, 0.5, 0.3) (0.1, 0.6, 0.1) (0.1, 0.7, 0.1) (0.2, 0.2, 0.5)
ρ (0.5, 0.2, 0.3) (0.3, 0.4, 0.2) (0.2, 0.3, 0.4) (0.1, 0.4, 0.4)

First, we consider the extended union

(Ȟ1, Ǎ ∪ B̌, τ1) = (F̌, Ǎ, ρ) tε (Ǧ, B̌, σ).

By calculation,

τ1 = {(0.7, 0.1, 0.1)/h1, (0.3, 0.4, 0.2)/h2, (0.5, 0.3, 0.1)/h3, (0.3, 0.2, 0.4)/h4,

(0.1, 0.4, 0.4)/h5}.

Moreover, we have

Ȟ1(h1) = {(0.4, 0.2, 0.1)/ f1, (0.5, 0.2, 0.2)/ f2, (0.3, 0.3, 0.3)/ f3, (0.2, 0.2, 0.3)/ f4},

Ȟ1(h2) = {(0.4, 0.5, 0.1)/ f1, (0.2, 0.1, 0.5)/ f2, (0.3, 0.4, 0.2)/ f3, (0.1, 0.6, 0.1)/ f4},

Ȟ1(h3) = {(0.7, 0.1, 0.1)/ f1, (0.6, 0.1, 0.2)/ f2, (0.4, 0.1, 0.3)/ f3, (0.3, 0.5, 0.1)/ f4},

Ȟ1(h4) = {(0.6, 0.2, 0.1)/ f1, (0.5, 0.2, 0.2)/ f2, (0.4, 0.4, 0.2)/ f3, (0.2, 0.4, 0.2)/ f4},

Ȟ1(h5) = {(0.3, 0.2, 0.4)/ f1, (0.6, 0.1, 0.1)/ f2, (0.5, 0.1, 0.3)/ f3, (0.2, 0.2, 0.5)/ f4, }.

Similarly, we can find extended intersection as follows

(Ȟ2, Ǎ ∪ B̌, τ2) = (F̌, Ǎ, ρ) uε (Ǧ, B̌, σ),

which we calculate in Example 4. In addition, the restricted union is obtained as follows

(Ȟ3, Ǎ ∩ B̌, τ3) = (F̌, Ǎ, ρ) tR (Ǧ, B̌, σ),
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and the restricted intersection

(Ȟ4, Ǎ ∩ B̌, τ4) = (F̌, Ǎ, ρ) uR (Ǧ, B̌, σ),

which are given in Tables 5 and 6.

Table 5. The GPFSS (Ȟ3, Ǎ ∩ B̌, τ3) = (F̌, Ǎ, ρ) tR (Ǧ, B̌, σ).

X̌ h1 h3

f1 (0.4, 0.2, 0.1) (0.7, 0.1, 0.1)
f2 (0.5, 0.2, 0.2) (0.6, 0.2, 0.2)
f3 (0.3, 0.3, 0.3) (0.4, 0.1, 0.3)
f4 (0.2, 0.2, 0.3) (0.3, 0.5, 0.1)
τ3 (0.7, 0.1, 0.1) (0.5, 0.3, 0.1)

Table 6. The GPFSS (Ȟ4, Ǎ ∩ B̌, τ4) = (F̌, Ǎ, ρ) uR (Ǧ, B̌, σ).

X̌ h1 h3

f1 (0.3, 0.2, 0.1) (0.6, 0.1, 0.1)
f2 (0.4, 0.2, 0.2) (0.2, 0.1, 0.5)
f3 (0.2, 0.3, 0.4) (0.2, 0.1, 0.4)
f4 (0.1, 0.2, 0.5) (0.1, 0.5, 0.1)
τ4 (0.5, 0.1, 0.3) (0.2, 0.3, 0.4)

Remark 2. The notion of extended union and extended intersection become identical with the restricted union
and restricted intersection, respectively, when we have the same set of parameters for two GPFSSs.

Now, we prove some properties of the extended union, extended intersection, restricted union,
and restricted intersection.

Theorem 5. Let Γ = (F̌, Ǎ, ρ) be GPFSS. Then we have

1. Γ tε Γ = Γ tR Γ = Γ;
2. Γ uε Γ = Γ uR Γ = Γ.

Proof. Straightforward.

Theorem 6. Let Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) be two GPFSSs. Then we have

1. Γ1 tε Γ2 = Γ2 tε Γ1;
2. Γ1 uε Γ2 = Γ2 uε Γ1;
3. Γ1 tR Γ2 = Γ2 tR Γ1;
4. Γ1 uR Γ2 = Γ2 uR Γ1.

Proof. Straightforward.

Now, we prove De Morgan’s laws for the extended union, extended intersection, restricted union,
and restricted intersection.

Theorem 7. Let (F̌, Ǎ, ρ) and (Ǧ, B̌, σ) be two GPFSSs over X̌. Then we have

1. [(F̌, Ǎ, ρ) tε (Ǧ, B̌, σ)]c = (F̌, Ǎ, ρ)c uε (Ǧ, B̌, σ)c, for all Ǎ, B̌ ⊆ Ě;
2. [(F̌, Ǎ, ρ) uε (Ǧ, B̌, σ)]c = (F̌, Ǎ, ρ)c tε (Ǧ, B̌, σ)c, for all Ǎ, B̌ ⊆ Ě.

Proof. From Theorem 3 and the fact that De Morgans laws hold in PFSs [21], we can easily complete
our proof.
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Also, we can prove De Morgan’s laws for restricted union and restricted intersection in GPFSSs.

Theorem 8. Let (F̌, Ǎ, ρ) and (Ǧ, B̌, σ) be two GPFSSs over X̌. Then we have

1. [(F̌, Ǎ, ρ) tR (Ǧ, B̌, σ)]c = (F̌, Ǎ, ρ)c uR (Ǧ, B̌, σ)c, for all Ǎ, B̌ ⊆ Ě;
2. [(F̌, Ǎ, ρ) uR (Ǧ, B̌, σ)]c = (F̌, Ǎ, ρ)c tR (Ǧ, B̌, σ)c, for all Ǎ, B̌ ⊆ Ě.

Proof. From Theorem 4 and the fact that De Morgans laws hold in PFSs [21], we can easily complete
our proof.

6. Substitution Operations of Generalized Picture Fuzzy Soft Sets

In this section, we define upper and lower substitutions for GPFSSs and prove some important
results related to it.

Definition 28. Let ρ = {( f , ξρ( f ), ηρ( f ), ϑρ( f ))| f ∈ X̌} be a PFS. Then

{( f , max(ξρ( f ), ϑρ( f )), ηρ( f ), min(ξρ( f ), ϑρ( f ))| f ∈ X̌}

is called the upper substitution picture fuzzy set of ρ and denoted by U(ρ).

Definition 29. Let ρ = {( f , ξρ( f ), ηρ( f ), ϑρ( f ))| f ∈ X̌} be a PFS. Then

{( f , min(ξρ( f ), ϑρ( f )), ηρ( f ), max(ξρ( f ), ϑρ( f ))| f ∈ X̌}

is called the lower substitution picture fuzzy set of ρ and denoted by L(ρ).

Theorem 9. Let ρ be a PFS in X̌. Then U(ρ) and L(ρ) are also PFSs over X̌ such that L(ρ) ⊆ ρ ⊆ U(ρ).

Proof. Let ρ = {( f , ξρ( f ), ηρ( f ), ϑρ( f ))| f ∈ X̌} be a PFS. Then 0 ≤ ξρ( f ) + ηρ( f ) + ϑρ( f ) ≤ 1.
If

σ = U(ρ) = {( f , ξσ( f ), ησ( f ), ϑσ( f ))| f ∈ X̌},

then
ξσ( f ) = max(ξρ( f ), ϑρ( f )) and ϑσ( f ) = min(ξρ( f ), ϑρ( f )).

If ξσ( f ) = ξρ( f ), then ϑσ( f ) = ϑρ( f ), therefore, 0 ≤ ξσ( f ) + ησ( f ) + ϑσ( f ) ≤ 1 and hence
σ = U(ρ) is a PFS. Similarly, we can prove L(ρ) is also a PFS. In addition, from the definition it is
clear that

min(ξρ( f ), ϑρ( f )) ≤ ξρ( f ) and ϑρ( f ) ≤ max(ξρ( f ), ϑρ( f )),

which implies that L(ρ) ⊆ ρ. Similarly, we have ρ ⊆ U(ρ).

Theorem 10. Let ρ be a PFS in X̌. Then we have

1. [U(ρ)]c = L(ρ),
2. [L(ρ)]c = U(ρ),
3. U(ρc) = U(ρ),
4. L(ρc) = L(ρ).

Proof. Straightforward.

Theorem 11. Let ρ be a PFS in X̌. Then we have

1. U(ρ) = ρ ∪ ρc,
2. L(ρ) = ρ ∩ ρc.
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Proof. Straightforward.

Theorem 12. Let ρ and σ be two PFSs in X̌. Then we have

1. U(ρ ∪ σ) = (U(ρ) ∪ σ) ∩ (ρ ∪U(σ)),
2. U(ρ ∩ σ) = (U(ρ) ∪ σc) ∩ (ρc ∪U(σ)).

Proof. By Theorem 11, we have

U(ρ ∪ σ) = (ρ ∪ σ) ∪ (ρ ∪ σ)c.

Since De Morgan’s laws hold in PFSs [21], therefore,

U(ρ ∪ σ) = (ρ ∪ σ) ∪ (ρc ∩ σc)

= (ρ ∪ σ ∪ ρc) ∩ (ρ ∪ σ ∪ σc)

= (ρ ∪ ρc ∪ σ) ∩ (ρ ∪ σ ∪ σc)

= (U(ρ) ∪ σ) ∩ (ρ ∪U(σ)).

This completes our first proof.
Similarly, for second proof, we have

U(ρ ∩ σ) = (ρ ∩ σ) ∪ (ρ ∩ σ)c.

Since De Morgan’s laws hold in PFSs [21], therefore,

U(ρ ∩ σ) = (ρ ∩ σ) ∪ (ρc ∪ σc)

= (ρ ∪ ρc ∪ σc) ∩ (σ ∪ ρc ∪ σc)

= (ρ ∪ ρc ∪ σ) ∩ (ρ ∪ σ ∪ σc)

= (U(ρ) ∪ σc) ∩ (ρc ∪U(σ)).

This completes our second proof.

Theorem 13. Let ρ and σ be two PFSs in X̌. Then we have

1. L(ρ ∪ σ) = (L(ρ) ∩ σc) ∪ (ρc ∩ L(σ)),
2. L(ρ ∩ σ) = (L(ρ) ∩ σ) ∪ (ρ ∩ L(σ)).

Proof. The proof is similar to the proof of Theorem 12.

Definition 30. Let Γ = (F̌, Ǎ, ρ) be a GPFSS. Then Ǔ(Γ) = (Ǧ, Ǎ, σ) is called an upper substitution
GPFSS of Γ if the following conditions hold:

1. σ = U(ρ),
2. Ǧ(h) = U(F̌(h)), for all h ∈ Ǎ.

Definition 31. Let Γ = (F̌, Ǎ, ρ) be a GPFSS. Then Ľ(Γ) = (Ǧ, Ǎ, σ) is called lower substitution GPFSS of
Γ if the following conditions hold:

1. σ = L(ρ),
2. Ǧ(h) = L(F̌(h)), for all h ∈ Ǎ.

Theorem 14. Let Γ = (F̌, Ǎ, ρ) be a GPFSS in X̌. Then Ǔ(F̌, Ǎ, ρ) and Ľ(F̌, Ǎ, ρ) are also GPFSSs over X̌
such that Ľ(F̌, Ǎ, ρ) ⊆F Γ ⊆F Ǔ(F̌, Ǎ, ρ).
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Proof. This theorem follows directly from Definitions 20, 30, 31 and Theorem 9.

Now, we prove an important theorem of this section.

Theorem 15. Let Γ = (F̌, Ǎ, ρ) be a GPFSS over X̌. Then we have

1. Γ tε Γc = Γ tR Γc = Ǔ(Γ);
2. Γ uε Γc = Γ uR Γc = Ľ(Γ).

Proof. Since Γ and Γc have the same set of parameters Ǎ, therefore, by Remark 2, we have

Γ tε Γc = Γ tR Γc.

Let Γ tε Γc = (Ǧ, Ǎ, σ). Then by Definition 24, we have

(Ǧ, Ǎ) = (F̌, Ǎ) ∪ε (F̌, Ǎ)c,

where for all h ∈ Ǎ, we have
Ǧ(h) = F̌(h) ∪ F̌c(h).

By Theorem 11, we have

Ǧ(h) = F̌(h) ∪ [F̌(h)]c

= U(F̌(h)).

Also, by Theorem 11, we have

σ = ρ ∪ ρc

= U(ρ).

Hence,
Γ tε Γc = Γ tR Γc = Ǔ(Γ).

Similarly, we can obtain the second result.

7. A Generalized Picture Fuzzy Soft Sets Based MADM Process

In this section, we defined the expectation score function, Dombi aggregated picture fuzzy
decision value (DAPFDV), aggregated picture fuzzy decision value (APFDV), an algorithm for
solving MADM problems and example in support of algorithm.

First, we define the expectation score function of PFV, which we use for finding weight vector
for PFDWA and PFWA operators. After, we define DAPFDV and APFDV, on the basis of which we
rank alternatives.

Definition 32. Let q = (ξ, η, ϑ) be a PFV. Then the expectation score function δ̌ is defined as follows:

δ̌(q) =
ξq − ϑq + ηq + 1

2
, δ̌(q) ∈ [0, 1].

Definition 33. Let Γ = (F̌, Ǎ, ρ) be a GPFSS over X̌ such that

∑
h∈Ǎ

δ̌τ(h) = b < +∞,
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where δ̌ is an expectation score function calculated by Definition 32. Then by using Definition 8, the Dombi
aggregated picture fuzzy decision value (DAPFDV) of f in X̌ is given by

WΓ( f ) = ⊕h∈Ǎ
δ̌τ(h)

b
F̌(h)( f ),

for all f ∈ X̌.

Definition 34. Let Γ = (F̌, Ǎ, ρ) be a GPFSS over X̌ such that

∑
h∈Ǎ

δ̌τ(h) = b < +∞,

where δ̌ is an expectation score function calculated by Definition 32. Then by Definition 9, the aggregated picture
fuzzy decision value (APFDV) of f in X̌ is given by

YΓ( f ) = ⊕h∈Ǎ
δ̌τ(h)

b
F̌(h)( f ),

for all f ∈ X̌.

The GPFSS is used to solve the multi attribute decision making (MADM) problems, where the
moderator or director lead the two different groups of experts with their specialties in different fields
related to the problem where we make a decision. Experts evaluate the options, choices or alternatives
on the basis of criteria of different attributes or characteristics. The following algorithm shows the
complete procedure. For simplicity, we assume that all the characteristics are of the beneficial type.

7.1. Algorithm

Step 1. Let X̌ = { f1, f2, ..., fn}, and Ě = Ǎ ∪ B̌ = {h1, h2, ..., hn}. Two expert groups construct two
BPFSSs (F̌, Ǎ) and (Ǧ, B̌) over X̌ separately. Two PPFSs ρ and σ are given by the head or
director, which completes the construction of two GPFSSs Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ).

Step 2. By using Definition 25, calculate extended intersection Γ = Γ1 uε Γ2 = (Ȟ, Č, τ), of Γ1 and Γ2.
Step 3. Calculate the Dombi aggregated picture fuzzy decision values (DAPFDVs) by using picture

fuzzy Dombi weighted average operator (PFDWA) as follows,

WΓ( fi) = ⊕m
j=1

δ̌τ(hj)

b
Ȟ(hj)( fi).

Step 4. Ascendingly rank WΓ( fi) according to Definition 7.
Step 5. Rank fi (i = 1, 2, 3, ..., n) ascendingly according to the rank of WΓ( fi) and output fi as the

optimal decision if it is the largest PFV according to Definition 7.

Remark 3. Section 7.1 is directly applied to the real life problems and we can extend it to the finite number
of groups. In this algorithm, we can easily see that the groups which consist of experts (who make proper and
effective evaluation on the basis of their experiences) gave BPFSSs, and the head/director (who is the responsible
of the firm or department) judge the evaluation made by groups generally and give their opinion in the form of
PPFSs, which completes the formulation of GPFSSs. In the third step, we use extended intersection to integrate
the information from GPFSSs. Next it is very important that we calculate the weight vector from PPFS by
using expectation score function and make proper use of PPFS and after that we calculate DAPFDVs and rank
fi according to the rank of DAPFDVs.

First, we proceed the calculations for optimal decision in Example 3.
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Example 4. Let Γ1 = (F̌, Ǎ, ρ) and Γ2 = (Ǧ, B̌, σ) be two GPFSS over X̌ which define in Example 3.
We apply Section 7.1 to find an optimal alternative.

Step 1. First, we find the extended intersection by using Definition 25.

Let
Γ = (Ȟ, Č, τ) = (F̌, Ǎ, ρ) uε (Ǧ, B̌, σ).

For all h ∈ Č = Ǎ ∪ B̌, we have

τ = {(0.5, 0.1, 0.3)/h1, (0.3, 0.4, 0.2)/h2, (0.2, 0.3, 0.4)/h3, (0.3, 0.2, 0.4)/h4,

(0.1, 0.4, 0.4)/h5}.

Moreover, we have

Ȟ(h1) = {(0.3, 0.2, 0.1)/ f1, (0.4, 0.2, 0.2)/ f2, (0.2, 0.3, 0.4)/ f3, (0.1, 0.2, 0.5)/ f4},

Ȟ(h2) = {(0.4, 0.5, 0.1)/ f1, (0.2, 0.1, 0.5)/ f2, (0.3, 0.4, 0.2)/ f3, (0.1, 0.6, 0.1)/ f4},

Ȟ(h3) = {(0.6, 0.1, 0.1)/ f1, (0.2, 0.1, 0.5)/ f2, (0.2, 0.1, 0.4)/ f3, (0.1, 0.5, 0.1)/ f4},

Ȟ(h4) = {(0.6, 0.2, 0.1)/ f1, (0.5, 0.2, 0.2)/ f2, (0.4, 0.4, 0.2)/ f3, (0.2, 0.4, 0.2)/ f4},

Ȟ(h5) = {(0.3, 0.2, 0.4)/ f1, (0.6, 0.1, 0.1)/ f2, (0.5, 0.1, 0.3)/ f3, (0.2, 0.2, 0.5)/ f4, }.

The tabular representation of extended union is shown in Table 7.

Table 7. The GPFSS Γ = (Ȟ, Ǎ ∪ B̌, τ) = (F̌, Ǎ, ρ) uε (Ǧ, B̌, σ).

X̌ h1 h2 h3 h4 h5

f1 (0.3, 0.2, 0.1) (0.4, 0.5, 0.1) (0.6, 0.1, 0.1) (0.6, 0.2, 0.1) (0.3, 0.2, 0.4)
f2 (0.4, 0.2, 0.2) (0.2, 0.1, 0.5) (0.2, 0.1, 0.5) (0.5, 0.2, 0.2) (0.6, 0.1, 0.1)
f3 (0.2, 0.3, 0.4) (0.3, 0.4, 0.2) (0.2, 0.1, 0.4) (0.4, 0.4, 0.2) (0.5, 0.1, 0.3)
f4 (0.1, 0.2, 0.5) (0.1, 0.6, 0.1) (0.1, 0.5, 0.1) (0.2, 0.4, 0.2) (0.2, 0.2, 0.5)
ρ (0.5, 0.1, 0.3) (0.3, 0.4, 0.2) (0.2, 0.3, 0.4) (0.3, 0.2, 0.4) (0.1, 0.4, 0.4)

Step 2. Now, we calculate Dombi aggregated picture fuzzy decision values (DAPFDVs) by Definition
33, using PFDWA for k = 1. First, we calculate weight vectors from the picture fuzzy set by
using expectation score function δ̌τ(hj)

(j = 1, 2, ..., 5) using Definition 32, where the expectation

score functions are δ̌1 = 0.65, δ̌2 = 0.75, δ̌3 = 0.55, δ̌4 = 0.55, δ̌5 = 0.55 and their sum is
b = ∑h∈Ǎ δ̌τ(h) = 3.05. Following is the weight vector

ω̌ = (0.2131, 0.2459, 0.1803, 0.1803, 0.1803)T ,

which is calculated from the formula ω̌j =
δ̌τ(hj)

b (j = 1, 2, ..., 5), where b = ∑h∈Ǎ δ̌τ(h). More detail
founds in Table 8.

Table 8. Weights calculated from the PFS τ.

X̌ h1 h2 h3 h4 h5

τ (0.5, 0.1, 0.3) (0.3, 0.4, 0.2) (0.2, 0.3, 0.4) (0.3, 0.2, 0.4) (0.1, 0.4, 0.4)
δ̌τ(hj) 0.65 0.75 0.55 0.55 0.55

ω̌j 0.2131 0.2459 0.1803 0.1803 0.1803
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Now using these weight vector, the DAPFDVs can be calculated as:

WΓ( fi) = PFDWAω̌(Ȟ(h1)( fi), Ȟ(h2)( fi), Ȟ(h3)( fi), Ȟ(h4)( fi), Ȟ(h5)( fi))

= ⊕5
j=1ω̌j Ȟ(hj)( fi).

So, the DAPFDVs are
WΓ( f1) = (0.46622, 0.19367, 0.11565),

WΓ( f2) = (0.41155, 0.12450, 0.21633),

WΓ( f3) = (0.33521, 0.18581, 0.26914),

WΓ( f4) = (0.13881, 0.31365, 0.16806).

Step 3. Find score function of WΓ( fi) (i = 1, 2, 3, 4) as

Θ̌(WΓ( f1)) = 0.466221− 0.115649 = 0.350572.

Similarly, we get Θ̌(WΓ( f2)) = 0.195212, Θ̌(WΓ( f3)) = 0.066075 and Θ̌(WΓ( f4)) = −0.029246.
More detail founds in Table 9.

Table 9. Dombi aggregated picture fuzzy decision values (DAPFDV) and score functions.

X̌ DAPFDVs Θ̌(WΓ( fi))

f1 (0.46622, 0.19367, 0.11564) 0.35057
f2 (0.41155, 0.12450, 0.21633) 0.19521
f3 (0.33521, 0.18581, 0.26914) 0.06607
f4 (0.13881, 0.31365, 0.16806) −0.02925

Step 4. Ranking the DAPFDVs according to Definition 7, we have

Θ̌(WΓ( f4)) ≺ Θ̌(WΓ( f3)) ≺ Θ̌(WΓ( f2)) ≺ Θ̌(WΓ( f1)).

Step 5. From above calculations, alternatives have the order

f4 ≺ f3 ≺ f2 ≺ f1.

Hence f1 is the most suitable/optimal choice for the customer.

Remark 4. For consistency, when we use the k = 2 and k = 3, still we have the f1 optimal. Details are in
Tables 10 and 11.

Table 10. DAPFDVs and score functions for k = 2.

X̌ DAPFDVs Θ̌(WΓ( fi))

f1 (0.49911, 0.16944, 0.10902) 0.39009
f2 (0.45682, 0.11842, 0.17800) 0.27882
f3 (0.36493, 0.15158, 0.25334) 0.11158
f4 (0.14853, 0.27444, 0.13990) 0.00864
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Table 11. DAPFDVs and score functions for k = 3.

X̌ DAPFDVs Θ̌(WΓ( fi))

f1 (0.52317, 0.15332, 0.10610) 0.41708
f2 (0.48730, 0.11415, 0.15637) 0.33093
f3 (0.38935, 0.13442, 0.24167) 0.14768
f4 (0.15735, 0.25227, 0.12725) 0.03010

Remark 5. In Algorithm 7.1, if we calculate the aggregated picture fuzzy decision values (APFDVs) by using
picture fuzzy weighted averaging operator (PFWA) as follows,

YΓ( fi) = ⊕m
j=1

δ̌τ(hj)

b
Ȟ(hj)( fi).

Next, rank ascendingly YΓ( fi) according to the Definition 7, then rank fi (i = 1, 2, 3, 4) ascendingly and output
fi as the optimal decision if it is the largest PFV according to Definition 7.

Example 5. In Example 4, we calculate APFDVs according to Definition 34, then again we get the f1 is
optimal or best choice. Detail founds in Table 12.

Θ̌(YΓ( f4)) ≺ Θ̌(YΓ( f3)) ≺ Θ̌(YΓ( f2)) ≺ Θ̌(YΓ( f1)).

f4 ≺ f3 ≺ f2 ≺ f1.

Table 12. APFDVs and score functions.

X̌ APFDVs Θ̌(YΓ( fi))

f1 (0.44918, 0.22115, 0.12843) 0.32075
f2 (0.38991, 0.13138, 0.26087) 0.12904
f3 (0.32468, 0.22823, 0.28267) 0.04201
f4 (0.13742, 0.35031, 0.21348) −0.07606

Remark 6. Since two types of criteria occur in GPFSS (F̌, Ǎ, ρ), namely, cost and benefit criteria. So,
for consolidation, we must normalize the (F̌, Ǎ, ρ) through the following equation:

q =

{
(ξq, ηq, ϑq), if q is a benifit criteria,

(ϑq, ηq, ξq), if q is a cost criteria,

such that the normalized GPFSS is denoted by (F̌′ , Ǎ, ρ
′
), where (F̌′ , Ǎ) is the normalization of BPFSS (F̌, Ǎ)

and ρ
′

is the normalization of PPFS ρ.

8. Case Study: A Tower Construction Problem

A private bank wants to build a tower of height 400 m. It involves a very complicated evaluation
and decision-making because it is a very big project. The construction company may be examined by
different attributes like “credentials”, “modern equipment and technology” and so forth. To chose the
felicitous alternative the director to consult with experts for their professional opinions.

Suppose X̌ = { f1, f2, f3, f4, f5, f6, f7, f8}, be the top eight world construction companies.
For felicitous choice the director who is head of the committee which contains the experts from
different departments like architecture, engineering, management, construction, finance management
and planing departments. The committee evaluated the company on the basis of the following criteria
Ě = {h1, h2, h3, h4, h5, h6}, where hj stands for “credentials”, “modern equipment and technology”,
“a skilled team”, “cost”, “strong risk management” and “rich portfolios", respectively. The director
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divides the committee into two groups to do the evaluation. The set of attributes Ǎ = {h2, h3, h4, h6}
is assigned to the first group and B̌ = {h1, h2, h3, h5} is given to the second group. These two groups
evaluate the alternatives (companies) and gives the PFSSs (F̌, Ǎ) and (Ǧ, B̌) accordingly. The director
scrutinizes the work done by two expert groups generally and gives the two PFSs ρ and σ that complete
the constructions of two GPFSSs (F̌, Ǎ, ρ) and (Ǧ, B̌, σ) as shown in Tables 13 and 14.

Table 13. The GPFSS (F̌, Ǎ, ρ).

X̌ h2 h3 h4 h6

f1 (0.4, 0.3, 0.2) (0.2, 0.3, 0.4) (0.5, 0.1, 0.3) (0.3, 0.2, 0.5)
f2 (0.3, 0.4, 0.3) (0.3, 0.2, 0.4) (0.4, 0.2, 0.3) (0.4, 0.1, 0.4)
f3 (0.2, 0.2, 0.5) (0.5, 0.3, 0.1) (0.6, 0.1, 0.2) (0.4, 0.2, 0.3)
f4 (0.5, 0.1, 0.3) (0.6, 0.1, 0.2) (0.1, 0.1, 0.7) (0.2, 0.4, 0.3)
f5 (0.6, 0.1, 0.2) (0.2, 0.2, 0.5) (0.2, 0.2, 0.5) (0.2, 0.2, 0.4)
f6 (0.2, 0.2, 0.5) (0.1, 0.3, 0.4) (0.3, 0.1, 0.4) (0.5, 0.1, 0.3)
f7 (0.3, 0.1, 0.5) (0.3, 0.3, 0.3) (0.3, 0.2, 0.4) (0.3, 0.1, 0.5)
f8 (0.4, 0.2, 0.3) (0.4, 0.2, 0.3) (0.5, 0.3, 0.1) (0.4, 0.1, 0.5)
ρ (0.4, 0.2, 0.3) (0.5, 0.1, 0.3) (0.3, 0.2, 0.5) (0.2, 0.2, 0.5)

Table 14. The GPFSS (Ǧ, B̌, σ).

X̌ h1 h2 h3 h5

f1 (0.1, 0.3, 0.5) (0.2, 0.3, 0.4) (0.3, 0.2, 0.5) (0.4, 0.1, 0.4)
f2 (0.5, 0.1, 0.3) (0.5, 0.1, 0.3) (0.6, 0.1, 0.2) (0.3, 0.2, 0.5)
f3 (0.2, 0.4, 0.3) (0.3, 0.3, 0.3) (0.5, 0.3, 0.1) (0.5, 0.1, 0.3)
f4 (0.6, 0.1, 0.2) (0.1, 0.3, 0.4) (0.2, 0.2, 0.5) (0.2, 0.2, 0.5)
f5 (0.2, 0.2, 0.5) (0.3, 0.2, 0.4) (0.4, 0.1, 0.3) (0.6, 0.1, 0.2)
f6 (0.5, 0.1, 0.3) (0.6, 0.2, 0.1) (0.3, 0.2, 0.3) (0.3, 0.1, 0.5)
f7 (0.4, 0.2, 0.3) (0.4, 0.3, 0.2) (0.7, 0.1, 0.2) (0.4, 0.2, 0.3)
f8 (0.3, 0.4, 0.3) (0.1, 0.5, 0.2) (0.2, 0.3, 0.4) (0.3, 0.1, 0.4)
σ (0.4, 0.2, 0.3) (0.3, 0.4, 0.3) (0.4, 0.1, 0.4) (0.5, 0.2, 0.3)

Since the attribute h4 involves the cost criteria, therefore, we have to normalize the (F̌, Ǎ, ρ) using
Remark 6, as shown in Table 15.

Table 15. The GPFSS (F̌′ , Ǎ, ρ
′
).

X̌ h2 h3 h4 h6

f1 (0.4, 0.3, 0.2) (0.2, 0.3, 0.4) (0.3, 0.1, 0.5) (0.3, 0.2, 0.5)
f2 (0.3, 0.4, 0.3) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4) (0.4, 0.1, 0.4)
f3 (0.2, 0.2, 0.5) (0.5, 0.3, 0.1) (0.2, 0.1, 0.6) (0.4, 0.2, 0.3)
f4 (0.5, 0.1, 0.3) (0.6, 0.1, 0.2) (0.7, 0.1, 0.1) (0.2, 0.4, 0.3)
f5 (0.6, 0.1, 0.2) (0.2, 0.2, 0.5) (0.5, 0.2, 0.2) (0.2, 0.2, 0.4)
f6 (0.2, 0.2, 0.5) (0.1, 0.3, 0.4) (0.4, 0.1, 0.3) (0.5, 0.1, 0.3)
f7 (0.3, 0.1, 0.5) (0.3, 0.3, 0.3) (0.4, 0.2, 0.3) (0.3, 0.1, 0.5)
f8 (0.4, 0.2, 0.3) (0.4, 0.2, 0.3) (0.1, 0.3, 0.5) (0.4, 0.1, 0.5)
ρ
′

(0.4, 0.2, 0.3) (0.5, 0.1, 0.3) (0.5, 0.2, 0.3) (0.2, 0.2, 0.5)

Now, in the second step we integrate the above information by using extended intersection
according to Definition 25, as

Γ = (F̌′ , Ǎ, ρ
′
) uε (Ǧ, B̌, σ),

detail founds in Table 16.
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Table 16. The GPFSS Γ = (F̌′ , Ǎ, ρ
′
) uε (Ǧ, B̌, σ).

X̌ h1 h2 h3 h4 h5 h6

f1 (0.1, 0.3, 0.5) (0.2, 0.3, 0.4) (0.2, 0.2, 0.5) (0.3, 0.1, 0.5) (0.4, 0.1, 0.4) (0.3, 0.2, 0.5)
f2 (0.5, 0.1, 0.3) (0.3, 0.1, 0.3) (0.3, 0.1, 0.4) (0.3, 0.2, 0.4) (0.3, 0.2, 0.5) (0.4, 0.1, 0.4)
f3 (0.2, 0.4, 0.3) (0.2, 0.2, 0.5) (0.5, 0.3, 0.1) (0.2, 0.1, 0.6) (0.5, 0.1, 0.3) (0.4, 0.2, 0.3)
f4 (0.6, 0.1, 0.2) (0.1, 0.1, 0.4) (0.2, 0.1, 0.5) (0.7, 0.1, 0.1) (0.2, 0.2, 0.5) (0.2, 0.4, 0.3)
f5 (0.2, 0.2, 0.5) (0.3, 0.1, 0.4) (0.2, 0.1, 0.5) (0.5, 0.2, 0.2) (0.6, 0.1, 0.2) (0.2, 0.2, 0.4)
f6 (0.5, 0.1, 0.3) (0.2, 0.2, 0.5) (0.1, 0.2, 0.4) (0.4, 0.1, 0.3) (0.3, 0.1, 0.5) (0.5, 0.1, 0.3)
f7 (0.4, 0.2, 0.3) (0.3, 0.1, 0.5) (0.3, 0.1, 0.3) (0.4, 0.2, 0.3) (0.4, 0.2, 0.3) (0.3, 0.1, 0.5)
f8 (0.3, 0.4, 0.3) (0.1, 0.2, 0.3) (0.2, 0.2, 0.4) (0.1, 0.3, 0.5) (0.3, 0.1, 0.4) (0.4, 0.1, 0.5)
τ (0.4, 0.2, 0.3) (0.3, 0.2, 0.3) (0.4, 0.1, 0.4) (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.2, 0.2, 0.5)

From the PFS τ, we calculate weight vector from picture fuzzy sets by using expectation score
function δ̌τ(hj)

(j = 1, 2, ..., 6) using Definition 32, where the expectation score functions are δ̌1 = 0.65,

δ̌2 = 0.6, δ̌3 = 0.55, δ̌4 = 0.7, δ̌5 = 0.7, δ̌6 = 0.45 and their sum b = ∑h∈Ǎ δ̌τ(h) = 3.65. Following weight
vector are

ω̌ = (0.1780, 0.1644, 0.1507, 0.1918, 0.1918, 0.1233)T ,

which is calculated from the formula ω̌j =
δ̌τ(hj)

b (j = 1, 2, ..., 6), where b = ∑h∈Ǎ δ̌τ(h). More details are
found in Table 17.

Table 17. Weights calculated from the PFS τ.

X̌ h1 h2 h3 h4 h5 h6

τ (0.4, 0.2, 0.3) (0.3, 0.2, 0.3) (0.4, 0.1, 0.4) (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.2, 0.2, 0.5)
δ̌τ(hj) 0.65 0.6 0.55 0.7 0.7 0.45

ω̌j 0.1780 0.1644 0.1507 0.1918 0.1918 0.1233

Now, using this weight vector, we calculate Dombi aggregated picture fuzzy decision values
(DAPFDVs) using Definition 33, for k = 1. The DAPFDVs can be calculated as:

WΓ( fi) = PFDWAω̌(Ȟ(h1)( fi), Ȟ(h2)( fi), Ȟ(h3)( fi), Ȟ(h4)( fi), Ȟ(h5)( fi), Ȟ(h6)( fi))

= ⊕6
j=1ω̌j Ȟ(hj)( fi).

So, the DAPFDVs are
WΓ( f1) = (0.265496, 0.157546, 0.459116),

WΓ( f2) = (0.358828, 0.123732, 0.371826),

WΓ( f3) = (0.358254, 0.160724, 0.263218),

WΓ( f4) = (0.459240, 0.123209, 0.231749),

WΓ( f5) = (0.398662, 0.132723, 0.303522),

WΓ( f6) = (0.362737, 0.118701, 0.365923),

WΓ( f7) = (0.359912, 0.139043, 0.339014),

WΓ( f8) = (0.241239, 0.172092, 0.380549).

We find score function of WΓ( fi) (i = 1, 2, ..., 8) as

Θ̌(WΓ( f1)) = 0.265496− 0.459116 = −0.19362.
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Similarly, we get Θ̌(WΓ( f2)) = −0.012998, Θ̌(WΓ( f3)) = 0.0950365, Θ̌(WΓ( f4)) = 0.227491,
Θ̌(WΓ( f5)) = 0.0951392, Θ̌(WΓ( f6)) = −0.00318571, Θ̌(WΓ( f7)) = 0.0208985 and Θ̌(WΓ( f8)) =

−0.13931. Details are found in Table 18.

Table 18. DAPFDVs and score functions.

X̌ DAPFDVs Θ̌(WΓ( fi))

f1 (0.265496, 0.157546, 0.459116) −0.193620
f2 (0.358828, 0.123732, 0.371826) −0.012998
f3 (0.358254, 0.160724, 0.263218) 0.095037
f4 (0.459240, 0.123209, 0.231749) 0.227491
f5 (0.398662, 0.132723, 0.303522) 0.095139
f6 (0.362737, 0.118701, 0.365923) −0.003186
f7 (0.359912, 0.139043, 0.339014) 0.020899
f8 (0.241239, 0.172092, 0.380549) −0.139310

We rank DAPFDVs ascendingly using Definition 7, we have

Θ̌(WΓ( f1)) ≺ Θ̌(WΓ( f8)) ≺ Θ̌(WΓ( f2)) ≺ Θ̌(WΓ( f6)) ≺ Θ̌(WΓ( f7)) ≺ Θ̌(WΓ( f3)) ≺
Θ̌(WΓ( f5)) ≺ Θ̌(WΓ( f4)).

From above calculations, alternatives have the order

f1 ≺ f8 ≺ f2 ≺ f6 ≺ f7 ≺ f3 ≺ f5 ≺ f4.

Hence f4 is the most suitable/optimal alternative (construction company) for the bank.

Remark 7. For consistency, when we use the different values for k = 1, 2, 3, ..., 10, still we have the f4 optimal
alternative. We can see from Table 19, when we change the values of parameter k, the order of alternatives
respond but for k ≥ 4, the order becomes smooth and f4 remains optimal for all values of the parameter k ≥ 1.
Details found in Tables 19 and 20.

Table 19. Rank of alternatives.

k ≥ 1 Rank

k = 1 f1 ≺ f8 ≺ f2 ≺ f6 ≺ f7 ≺ f3 ≺ f5 ≺ f4
k = 2 f1 ≺ f8 ≺ f2 ≺ f7 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 3 f1 ≺ f8 ≺ f2 ≺ f7 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 4 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 5 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 6 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 7 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 8 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 9 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
k = 10 f1 ≺ f8 ≺ f7 ≺ f2 ≺ f6 ≺ f5 ≺ f3 ≺ f4
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Table 20. Score functions of DAPFDVs.

k ≥ 1 f1 f2 f3 f4 f5 f6 f7 f8

k = 1 −0.19362 −0.01299 0.09503 0.22749 0.09513 −0.00318 0.02089 −0.13931
k = 2 −0.16522 0.01328 0.19178 0.36488 0.17957 0.04482 0.03606 −0.09816
k = 3 −0.14220 0.03890 0.25160 0.43441 0.23462 0.07727 0.04737 −0.06694
k = 4 −0.12349 0.06179 0.28713 0.47314 0.26955 0.09985 0.05584 −0.04302
k = 5 −0.11259 0.07497 0.29812 0.48843 0.28479 0.11045 0.05913 −0.03117
k = 6 −0.09550 0.09665 0.32461 0.51417 0.30931 0.12821 0.06734 −0.00906
k = 7 −0.08501 0.10925 0.33545 0.52632 0.32153 0.13747 0.07132 0.00328
k = 8 −0.07625 0.11945 0.34360 0.53555 0.33093 0.14474 0.07451 0.01346
k = 9 −0.06890 0.12778 0.34995 0.54278 0.33839 0.15058 0.07712 0.02194

k = 10 −0.06270 0.13465 0.35502 0.54859 0.34444 0.15535 0.07928 0.02906

Example 6. In case Section 8, we calculate APFDVs according to Definition 34, using PFWA, then again we
get the f4 is an optimal or best choice for construction, and the order of the alternatives is

f1 ≺ f8 ≺ f6 ≺ f2 ≺ f7 ≺ f3 ≺ f5 ≺ f4.

Detail founds in Table 21.

Table 21. APFDVs and score functions.

X̌ DAPFDVs Θ̌(WΓ( fi))

f1 (0.258760, 0.176136, 0.461797) −0.203036
f2 (0.353107, 0.130459, 0.378328) −0.025221
f3 (0.342684, 0.184364, 0.315812) 0.026872
f4 (0.402669, 0.135510, 0.282350) 0.120318
f5 (0.373864, 0.140747, 0.329943) 0.043921
f6 (0.348055, 0.124409, 0.375813) −0.027759
f7 (0.358051, 0.147591, 0.347494) 0.010557
f8 (0.233592, 0.196577, 0.388882) −0.155289

9. Comparison

1. First, we compare our method with the method proposed in [40]. In his paper he did not give any
information about how he calculated the weight vector, but in our proposed method we give a
proper way to find the weight vector by using the expectation score function ω̌ = δ̌τ(h)/ ∑h∈Ǎ δ̌τ(h).
For this, we actually use the parametric picture fuzzy soft sets (PPFSs), ρ and σ which are given
by the head or director who is responsible for firm or department in the form of PFSs, which is
actually an additional judgment about the general quality of work done by the specialists groups.

2. Secondly, if we compare our method with the method proposed in [30], we also find that they
did not give any information about the weight vector. Also, in case Section 8, when we use the
operator defined in [30], we get the same optimal decision and in addition, we are working in a
more general situation.

3. In [32], De Morgan’s laws hold with restricted conditions, while in this paper we relaxed the
conditions for De Morgan’s laws by defining the new operations, like the extended union,
extended intersection, restricted union, and restricted intersection.

4. Our proposed algorithm is related to the picture fuzzy environment while the methods proposed
in [17,18,41,42] deal with the intuitionistic fuzzy environment, generalized intuitionistic fuzzy soft
environment, and single-valued neutrosophic environment but not in picture fuzzy environment.
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10. Conclusions

In this paper, we investigate the basic properties of picture fuzzy soft sets, defined more
generalized operations of picture fuzzy soft sets and relaxed the conditions for De Morgan’s laws for
these operations. We proposed a generalized picture fuzzy soft set by combining the picture fuzzy
soft set and picture fuzzy set. We introduced some basic notions of generalized picture fuzzy soft
sets and defined some operations of generalized picture fuzzy soft sets and also proved De Morgan’s
laws for these operations. We define upper and lower substitutions for generalized picture fuzzy
soft set and prove some important results related to upper and lower substitutions. We proposed an
algorithm for solving MADM problems by using extended intersection for generalized picture fuzzy
soft information and picture fuzzy Dombi weighted average (PFDWA) operator, where we introduced
a proper method to obtain the weight vector by using the expectation score function. Then we gave
an example and case study of building a tower, where we used the proposed algorithm and got the
optimal alternative. Also, we use the picture fuzzy weighted averaging PFWA operator for both
example and case study and reached the same results. For consistency, we used different values of
k ≥ 1 in PFDWA and found the same optimal alternative. We have compared our proposed algorithm
with previously proposed methods and found it to be more generalized and effective over all the
existing structures of fuzzy soft sets. In future work, our proposed set and algorithm can be used to
solve MADM problems, risk evaluation, and some other situations under uncertainty environments.
For future work, it will be interesting to develop some new techniques, to deal with multi-attribute
classification, such as personal evaluation, medical artificial intelligence, energy management and
supplier selection evaluation using generalized picture fuzzy soft sets.
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