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Abstract: The present work investigated the effect of Thomson and initial stress in a thermo-porous
elastic solid under G-N electromagnetic theory. The Thomson coefficient affects the heat condition
equation. A constant Thomson coefficient, instead of traditionally a constant Seebeck coefficient,
is assumed. The charge density of the induced electric current is taken as a function of time. A normal
mode method is proposed to analyze the problem and to obtain numerical solutions. The results that
were obtained for all physical sizes are graphically illustrated and we offer a comparison between
the type II G-N theory and the G-N theory of type III, both in the present case and in the absence of
specific parameters, as initial stress, pores and the Thomson effect. Some particular cases are also
discussed in the context of the problem. The results indicate that the effect of initial stress, Thomson
coefficient effect, and magnetic field are very pronounced.

Keywords: Thomson effect; initial stress; magneto-thermoelastic; voids; normal mode method;
G-N theory

1. Introduction

In the generalized theories, the governing equations involve thermal relaxation times and they
are of the hyperbolic type. Green and Naghdi [1–3] considered a new extend theory by including the
thermal displacement gradient between the constitutive variables. As we know, the classically coupled
thermoelasticity includes the temperature gradient as one of the constitutive variables.

An important feature of this theory is that it does not accommodate the dissipation of thermal
energy. In paper by Sharma and Chauhan [4], we find an approach regarding the elastic interactions
without considering the energy dissipation due to heat sources and body forces.

An important step in evolution of the classical theory of elasticity was made through the
appearance of the theory of poroelasticity, which consider the volume of void, in an elastic body
with pores, as a kinematics variable.

This gave the opportunity to investigate some concrete types of biological and geological solids
and their useful applications. See, for instance, the applications in the fuel-cell industry [5–10].

We have to point out that the theory of linear elastic bodies with pores allows for the approach
of such properties of biological and geological medium that could not be studied in the context of
classical theory. It is very important to note that, when the volume of the pores tends to zero, we can
see that the poroelastic theory reduces to the theory of classical elasticity.
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In the paper, Nunziato and Cowin [11] first established a theory of elastic bodies with pores in the
non-linear theory case.

This theory of porous media has gained a great extension over the last period of time, and many
authors consider different mathematical models for the mechanical behavior of solids with pores,
by combining the poroelasticity theory with other different theories, in other words, combining
different effects, [12–16].

The consideration of the dynamic reaction of a thermoelastic body with additional parameters is
very helpful in solving many concrete applications. For instance, the initial stresses are considered in a
thermoelastic body with pores due to different reasons, such as the gravity variations, the difference of
temperature, the process of quenching, etc.

Clearly, the earth is constantly under the influence of high initial stresses. As such, the researchers
have allocated great importance to the study the effect of initial stresses regarding the thermal and
mechanical state of a solid. For instance, Montanaro in [17] investigated a thermoelastic isotropic body
with hydrostatic initial stress.

Of course, the laser pulse has an effect on thermal loading in an elastic body with voids.
Othman and Abd-Elaziz studied this effect in the paper [18]. Marin investigated Cesaro means
in the thermoelasticity of dipolar bodies [19]. Marin and Oechsner studied the effect of a dipolar
structure on the Holder stability in Green-Naghdi thermoelasticity [20].

Other effects, such as the effect of the Earth’s electromagnetic field on seismic propagations,
the designing of different elements of machine, emissions of electromagnetic radiations from nuclear
devices, plasma physics, etc., can be found in [21–27].

In our present study, we approach of the plane strain problem of a half-space body consisting of
an electro-magneto-thermoelastic material that possesses voids and is subjected to some initial stress
and to the Thomson effect. Our mathematical model is regarding the Green–Naghdi theory of type II
and III of thermoelasticity. We assume that the Thomson effect is a constant coefficient and the density
of charges that are induced by electric current is a function that depends on time variable.

In order to obtain the expressions for the considered parameters, it used the known normal
mode technique. We also have obtained some graphic representations for the repartition of the
considered variables.

2. Formulation of the Problem

An isotropic and homogeneous elastic body with pores (voids) is considered, with the temperature
T0, in the reference state, and the half space (y ≥ 0). The motion referred to a rectangular Cartesian
system of coordinates (x, y, z) with origins in the surface (z = 0). Additionally, the X-axis is pointing
vertically into the body. In the of a two-dimensional problem, we suppose that the evolution of the
body will be characterized by the displacement vector u, with components u = (u, v, 0). The functions
that are considered in this context are dependent on the time variable t and of the spatial variables x
and y.

We consider a magnetic field with components H = (0, 0, H3), having a constant intensity,
which acts parallel to the direction of the Z-axis.

It is known that a magnetic field of the form H = (0, 0, H0 + h(x, y, t)) produces an induced
electric field of components E = (E1, E2, 0), and an induced magnetic field, as denoted by h, and
these satisfy the electromagnetism equations, in the linearized form. We will use the Maxwell’s
equations [24] in order to characterize the evolution of the electric field and for variation of the
magnetic field, as follows:

∇ × h = J +
.

D, (1)

∇ × E = −
.
B, (2)

∇ . B = 0, ∇ . D = ρe, (3)

B = µ0 (H + h), D = ε0 E. (4)



Symmetry 2019, 11, 413 3 of 18

The modified Ohm’s law for a medium with finite conductivity supplements the above system of
coupled equations, namely

J = σ0(E + µ0
.
u× H), (5)

where µ0 is the magnetic permeability, B is the magnetic displacement vector, ε0 is the electric
permeability, J is the current density vector, ρe is the charge density, D is the electric displacement
vector, and E is the induced electric field vector.

For an isotropic and homogeneous thermoelastic body having pores, the constitutive equations
receive the following form:

σij = 2µ eij + (λ err + λ0 φ− β T )δij − L∗(δij + m∗ij), (6)

hi = αφ,i, (7)

g = − λ0 err − ξ1 ϕ + mT, (8)

ρη∗ = βerr + a0 T + mφ. (9)

The strain-displacement relation is

eij =
1
2
(ui,j + uj,i). (10)

The tensor of rotation has the components:

m∗ij =
1
2
(uj,i − ui,j), i, j = 1, 2, 3. (11)

In Green-Naghdi (G-N) theories we take into account the Thomson effect, so that the Fourier’s
law becomes

qi = − [kT,i + k∗
.
T,i] + MJi, (12)

which gives
qi,i = −

[
kT,ii + k∗

.
T,ii

]
+ M Ji,i. (13)

If we take into account Equations (1) and (3), then from Equation (13), we deduce

qi,i = − [kT,ii + k∗
.
T,ii ] + M

.
ρe. (14)

where T is the temperature above the reference temperature T0 is chosen so that |(T − T0)/T0| < 1 ,
λ, µ are the counterparts of Lame’ constants, t is the time, σij are the components of the stress tensor, h,i
is the equilibrated stress vector, ψ is the equilibrated inertia, g is the intrinsic equilibrated body force,
α, λ0, ξ1, ω0, m are constants of material that are due to the presence of the pores, β = (3 λ + 2 µ) αt,
such that αt is the coefficient of thermal expansion, δij is the Kronecker delta, ρ is the mass density,
CE is the specific heat at the constant strain, k is the thermal conductivity, η∗ is entropy per unit mass,
k∗ is a constant, and qij are the components of the first heat flux moment vector, we write the equation
of continuity for the charges in the body in the form

.
ρe +∇ · (ρevi) = 0, (15)

where the velocity of the charges has the components vi.
Let us now consider that the charge density is a function that does not depend on spatial variables,

but only on time variable. Thus, Equation (15) will reduce to

.
ρe + ρe∇ · (vi) = 0. (16)
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We will assume that the charges have the speed of components vi, which are proportional to the
components of the velocity for particles

.
ui, so that we can write

vi = p0
.
ui, (17)

which gives
∇ · vi = p0∇ ·

.
ui = p0

.
e, (18)

where p0 is a positive constant (non-dimensional).
If we take into account Equation (18), from Equation (16), we are led to

.
ρe = − ρe p0

.
e, (19)

which gives ∫ dρe

ρ
= −p0

∫
de. (20)

Hence, we obtain
ρe = ρ0

e exp(−p0e) ' ρ0
e (1− p0e), (21)

where ρ0
e is the charge density when the strain vanishes.

Then, we obtain
.
ρe = −ρ0

e (1− p0e)p0
.
e. (22)

While taking into account the Equation (22), from Equation (14) we deduce that the Fourier’s law,
in its generalized form, receives the form:

qi,i = − [kT,ii + k∗
.
T,ii] + M ρ0

e (1− p0e)p0
.
e. (23)

In the case of null heat supply, the balance energy becomes

ρT0
.
η
∗
= − qi,i. (24)

Taking into account Equations (9) and (23), from Equation (24), we deduce that the equation of
heat conduction can be written in the form

kT,ii + k∗
.
T,ii −m T0

.
φ = ρ Ce

..
T + β T0

..
ui,i + Mρ0

e (1− p0e)p0
.
e. (25)

This equation can be substitute by an approximate form

kT,ii + k∗
.
T,ii −m T0

.
φ = ρ Ce

..
T + β T0

..
ui,i + Mρ0

e p0
.
e. (26)

As a consequence, we can obtain the stress components in a simplified form. Accordingly, from
Equations (6), (10), and (11), we are led to

σxx = λ [
∂u
∂x

+
∂v
∂y

] + 2µ
∂u
∂x

+ λ0 φ− β T − L∗, (27)

σyy = λ [
∂u
∂x

+
∂v
∂y

] + 2µ
∂v
∂y

+ λ0 φ− β T − L∗, (28)

σzz = λ [
∂u
∂x

+
∂v
∂y

] + λ0 φ− β T − L∗, (29)

σxy = (µ +
L∗

2
)

∂u
∂y

+ (µ − L∗

2
)

∂v
∂x

, (30)
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σyx = (µ +
L∗

2
)

∂v
∂x

+ (µ − L∗

2
)

∂u
∂y

, σxz = σyz = 0. (31)

The equations of motion, taking into account the Lorentz force

σji,j + Fi = ρui,tt. (32)

The Lorentz force is given by
Fi = µ0(J×H)i. (33)

The current density vector J is parallel to electric intensity vector E, thus J = (J1, J2, 0).
The Ohm’s law (5) after linearization gives

J1 = σ0(E1 + µ0H0
.
v), J2 = σ0(E2 − µ0H0

.
u). (34)

Equations (1), (4), and (34) give

∂h
∂y

= σ0(E1 + µ0H0
∂v
∂t

) + ε0
∂E1

∂t
, (35)

∂h
∂x

= − σ0(E1 − µ0H0
∂u
∂t

)− ε0
∂E2

∂t
. (36)

From Equations (2) and (5), we get

∂E1

∂y
− ∂E2

∂x
= µ0

∂h
∂t

. (37)

From Equations (33) and (34), we obtain

F1 = σ0µ0H0(E2 − µ0H0
∂u
∂t

), F2 = − σ0µ0H0(E1 + µ0H0
∂v
∂t

), F3 = 0. (38)

From Equations (27)–(32) and (38), we get

(µ− L∗

2
)∇2 u + (λ + µ +

L∗

2
)

∂e
∂x

+ b
∂φ

∂x
− β

∂T
∂x

+ σ0µ0H0(E2 − µ0H0
∂u
∂t

) = ρ
∂2u
∂t2 (39)

(µ− L∗

2
)∇2 v + (λ + µ +

L∗

2
)

∂e
∂y

+ b
∂φ

∂y
− β

∂T
∂y
− σ0µ0H0(E1 + µ0H0

∂v
∂t

) = ρ
∂2v
∂t2 , (40)

in which we used the notation e = ∂u
∂x + ∂v

∂y .
For the equation of the equilibrated forces, we obtain

ρψφ,tt = hi,i + g. (41)

Also, while taking into account Equations (7), (8), and (41), we are led to

α φ,jj − λ0ui,i − ξ1φ−ω0 φ,t + m T = ρψ
..
φ. (42)

Let us define the non-dimensional sizes

(x′ i, u′ i) =
w∗1
c1

(xi, ui), (t′, t′0) = w∗1(t , t0), φ′ =
ψ w∗21

c2
1

φ, σ′ ij =
σij

µ
, p′1 =

p1

µ
, L∗

′
=

L∗

µ
,

θ′ =
T − T0

T0
, h′ =

w∗1
σ0H0µ0c2

1
h, E′ i =

w∗1
σ0H2

0 µ0c2
1

Ei, (43)
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where w∗1 =
ρcec2

1
K , c2

1 = λ+2µ
ρ .

For dimensionless sizes that are defined in Equation (43), we can write the above basic equations
in the following from

a1∇2u + a2
∂e
∂x

+ a3
∂φ

∂x
− a4

∂θ

∂x
+ a5(a6E2 −

∂u
∂t

) = a7
∂2u
∂t2 , (44)

a1∇2v + a2
∂e
∂y

+ a3
∂φ

∂y
− a4

∂θ

∂y
− a5(a6E1 +

∂v
∂t

) = a7
∂2v
∂t2 , (45)

(∇2 − a8 − a9
∂

∂t
− a10

∂2

∂t2 )φ− a11e + a12θ = 0, (46)

[(k + k∗w∗1
∂

∂t
)∇2 − a13

∂2

∂t2 ]θ + a14
∂φ

∂t
− βc∗1

∂2e
∂t2 −M0

∂e
∂t

= 0, (47)

∂h
∂y

= a15E1 + a16
∂E1

∂t
+

∂v
∂t

, (48)

∂h
∂x

= − a15E2 − a16
∂E2

∂t
+

∂u
∂t

, (49)

∂E1

∂y
− ∂E2

∂x
=

∂h
∂t

, (50)

by dropping the dashed, for convenience. Here, M0 =
Mρ0

e p0c2
1

w∗1 T0
, is the Peltier coefficient at T0 and

a1 = µ− L∗µ
2 , a2 = λ + µ + L∗µ

2 , a3 =
bc2

1
ψw∗21

, a4 = βT0, a5 =
µ2

0 H2
0 σ0c2

1
w∗1

, a6 =
µ0σ0c2

1
w∗1

, a7 = ρc2
1, a8 =

ξ1c2
1

αw∗21
,

a9 =
w0c2

1
αw∗1

, a12 = mψT0
α , a13 = ρCec2

1, a14 =
mc4

1
ψw∗31

, a15 =
σ0µ0c2

1
w∗1

, a16 = µ0ε0c2
1, a10 =

ρψc2
1

α , a11 = λ0ψ
α .

From Equations (44) and (45), we obtain

[(a1 + a2)∇2 − a7
∂

∂t
− a5

∂2

∂t2 ] e + a3∇2φ− a4∇2θ − a6a5
∂h
∂t

= 0. (51)

From Equations (48) and (49), we obtain

(∇2 − a15
∂

∂t
− a16

∂2

∂t2 )h−
∂e
∂t

= 0. (52)

3. The Solution of the Problem

3.1. Decomposition by Normal Mode Analysis

Using the normal mode analysis, we can decompose the solution of the above physical parameters
in the following form

[e, θ, φ, h, σij](x, y, t) = [e∗, θ∗, φ∗, h∗, σ∗ij](y) exp[i(a x−ω t)], (53)

in which e∗, φ∗, θ∗, h∗, σ∗ij are the amplitudes of the respective fields, i =
√
−1, ω is the frequency, and

a is the wave number.
By taking into account Equation (53) in Equations (46), (47), (51), and (52), we are led to

(r1D2 − r2) e∗ + a3(D2 − a2)φ∗ − a4(D2 − a2)θ∗ + r3h∗ = 0, (54)

(D2 − r4) φ∗ − a11e∗ + a12θ∗ = 0, (55)

(r5D2 − r6) θ∗ + r7φ∗ + r8e∗ = 0, (56)
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(D2 − r9) h∗ + iωe∗ = 0, (57)

where r1 = a1 + a2, r2 = ra2− iω a5− a7ω2, r3 = iω a6a5, r4 = a2 + a8− iωa9− a10ω2, r5 = k− iωk∗w∗,
r6 = r5a2 − a13ω2, r7 = iω a14, r8 = βω2c2

1 − iωM0, and r9 = a2 − iω a15 − a10ω2.
Eliminating (55), we get the following ordinary Equation (52) between e∗(y) φ∗(y), θ∗(y),

the differential Equation satisfied by h∗(y):(
D8 − N1 D6 + N2 D4 − N3 D2 + N4

)
{h∗(y), φ∗(y), e∗(y), θ∗(y)} = 0. (58)

We can write the Equation (58) in a decomposed form, as follows

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)(D2 − k2

4){h∗(y), φ∗(y), e∗(y), θ∗(y)} = 0, (59)

where, k2
n (n = 1, 2, 3, 4) are roots of the characteristic equation of Equation (58) and s1 =

r5r9 + r4r5 + r6, s2 = r6r9 + r4r5r9 − a12r7 + r6r4, s3 = r4r6r9 + a12r7r9, s4 = r5r6 − a12r8 + r6,
s5 = a11r6r9 − a12r8r9, s6 = r8r9 + r4r8 − a11r3, s7 = r8r4r9 − a11r7r9, s8 = r6 + r4r5, s9 =

r4r6 − a12r7, s10 = 1
r1r5

, N1 = s10(r1s1 + r2r5 − a3a11r5 + a4r8), N2 = s10(r1s2 + r2s1 − a3a11r5a2 −
a3s4 + a4s6 + a4r8a2 − iωr3r5), N3 = s10(r1s3 + r2s2 − a3s5 − a3s4a2 + a4s7 + a4s6a2 − iωr3r8),
and N4 = s10(r2s3 − a3s5a2 + a4s7a2 − iωr3r9).

The general solutions of the Equation (59), bound at y→ ∞,

e(x, y, t) =
4

∑
n=1

Rn exp[− kny + i(ax−ωt)], (60)

h(x, y, t) =
4

∑
n=1

H1nRn exp[− kny + i(ax−ωt)], (61)

θ(x, y, t) =
4

∑
n=1

H2nRn exp[− kny + i(ax−ωt)], (62)

φ(x, y, t) =
4

∑
n=1

H3nRn exp[− kny + i(ax−ωt)], (63)

where

H1n =
− iω

k2
n − s9

, H2n =
− r8(k2

n − r4)− r7a11

(k2
n − r4)(r5k2

n − r6)− r7a12
, H3n =

a11 − a12H2n

k2
n − r4

. (64)

3.2. Boundary Conditions

In the following, we will consider some boundary conditions on the surface of Equation y = 0,
which will help us to determine the above constants R1, R2, R3 and R4.

3.2.1. The mechanical boundary condition

The mechanical boundary condition that the bounding plane to the surface y = 0 has zero strain,
so we have

e(x, 0, t) = 0

3.2.2. The Boundary Restriction of Heat

We assume that the boundary surface of the body is subject to a thermal shock described by
the function

θ(x, 0, t) = θ0 exp(i(ax−ωt)), (65)
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where θ0 is constant.

3.2.3. Voids Conditions

∂φ

∂y
= 0. (66)

3.2.4. The Boundary Restriction for Electromagnetic Field

On the surface of the half-space h(x, 0, t) = h∗, we consider that the electromagnetic field intensity
is a continuous function. Here, the intensity of the magnetic field in free space is h∗.

We now assume there is no magnetic or electric field in the free space, that is,

h(x, 0, t) = h∗ = 0. (67)

In order to obtain the constants R1, R2, R3 and R4, we will use the dimensionless size θ′0 = θ0
T0

and the expressions of the variables into the boundary restrictions imposed above. Additionally, we
will use the normal mode analysis in order to obtain the system of equations

4

∑
n=1

Rn = 0, (68)

4

∑
n=1

H2nRn = θ0, (69)

4

∑
n=1

kn H3nRn = 0, (70)

4

∑
n=1

H1nRn = 0. (71)

after suppressing the primes.
After applying the inverse of matrix method for the above equations, we get the values of the

constants Rn(n = 1, 2, 3, 4), hence; we obtain the expressions of strain, magnetic intensity, temperature
distribution and the change in the volume fraction field for the generalized thermoelastic medium
with voids.

4. Special Cases

4.1. Pores Neglect

First, we will neglect the presence of the voids, that is, we have (α = λ0 = ξ1 = ω0 = m = ψ = 0).
While putting (α = λ0 = ξ1 = ω0 = m = ψ = 0) in Equations (54)–(57), we get:

(r1D2 − r2) e∗ − a4(D2 − a2)θ∗ + r3h∗ = 0, (72)

(r5D2 − r6) θ∗ + r8e∗ = 0, (73)

(D2 − r9) h∗ + iω e∗ = 0. (74)

Eliminating e∗, θ∗, and h∗ among Equations (72)–(74), we obtain the following sixth order differential
Equation, which is satisfied by e∗(y), θ∗(y) and h∗(y)

[D6 − B1 D4 + B2 D2 − B3]{e∗(y), θ∗(y), h∗(y)} = 0, (75)
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where s10 = 1
r1r5

, B2 = s10[r1r6r9 + r2r5r9 + r2r6 − r8a4(r9 + a2) + iωr3r5], B1 = s10(r1r9r5 + r1r6 +

r2r5 − r8a4), B3 = s10(r2r5r9 − r8a4r9a2 + iωr3r6).
The solutions of Equation (75) are

(e∗, h∗, θ∗)(y) =
3

∑
n=1

(1, H4n, H5n)R∗n exp(− α∗ny), (76)

where α∗2n (n = 1, 2, 3) are the roots of the characteristic equation of Equation (75) and H4n = −iω
α∗2n −r9

,

H5n = − r8
r5α∗2n −r6

.
The expressions for the strain, the induced magnetic field, and the temperature field in the

generalized initially stressed the electro-magneto-thermoelastic half-space solid with voids are:

(e∗, h∗, θ∗)(y) =
3

∑
n=1

(1, H4n, H5n)R∗n exp(− α∗n y + i (a x− ωt)). (77)

We wish to determine the above coefficients R∗n, (n = 1, 2 , 3).
To this end, we will keep in mind the boundary conditions in Equations (64), (65), and (67), and

we will use the method of inverse of the matrix, as following: R∗1
R∗2
R∗3

 =

 1 11
H51 H52 H53

H41 H42 H43


−1 0

θ0

0

. (78)

4.2. Neglecting the Initial Stress

By taking (L∗ = 0) in the governing equations, the corresponding expressions of the physical
variables can be obtained without initial stress.

5. Numerical Results and Discussion

For numerical computations, following Dhaliwal and Singh [28], magnesium material was chosen
for the purposes of numerical evaluations. All of the units of parameters that were used in the
calculation are given in SI units. The constants were taken as λ = 2.17× 1010 N/m2, µ = 3.278× 1010

N/m2,k = 1.7× 102 W/m·deg, ρ = 1.74× 103 Kg/m3, β = 2.68 × 106 N/m2·deg, Ce = 1.04 × 103

J/Kg·deg, ω∗1 = 3.58× 1011 /s, αt = 1.78× 10−5 N/m2 and T0 = 298 K.
The voids parameters are ψ = 1.753× 10−15 m2, α = 3.688× 10−5 N, ξ1 = 1.475× 1010 N/m2,

λ0 = 1.13849× 1010 N/m2, m = 2× 106 N/m2·deg and ω0 = 0.0787× 10−3 N/m2s.
The Magnetic field parameters are ε0 = 10−9/(36π) F/M, µ0 = 4π × 10−7H/M, H0 = 105 A/M

and σ0 = 9.36× 105 Col2/Cal·cm·sec.
The comparisons were carried out for a = 0.7 m, θ0 = 0.1 k, ω = χ0 + iχ1, χ0 = 2 rad/s,

χ1 = 0.09 rad/s, x = 0.2 m, and 0 ≤ y ≤ 4 m.
Since, we have exp(ωt) = [cos(χ1t) + i sin(χ1t)] exp(χ0t), and for small values of time we can

take ω = χ0, which is a real constant.
The above comparisons have been made in the context of two (G-N) theories of type II and III,

in three situations:

(i) whether we have an initial stress or not [L* =0 and 105 at M0=0.5 and H0=105];
(ii) whether we have a Thomson effect or not [M0 =0 and 0.5 at H0=105 and L*=105];
(iii) whether we have some void parameters or not [M0 = 0.5, H0 = 105 and L∗ = 105].

Case i: In the Figures 1–4, we made the calculations for t = 0.2, at x = 0.2. The values of the
deformation e, the values of the temperature θ, the electromagnetic field h, and the values of the voids
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function φ are graphically represented, for different values of y in some graphs of two-dimensional
space. In these figures, we use the solid lines for the results in the case without initial stress for the
(G-N) theory of type II. For the results in the case of the (G-N) theory of type II with initial stress,
we have used the large dashes line. In the case without initial stress for the (G-N) theory of type III,
we have used the small dashes. Finally, for the results in the case with initial stress for the (G-N) theory
of type III, we have used the small dashes line with dot.
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Figure 1 depicts the variation of the strain e versus y. The magnitude of the strain is found to
be large for the G-N theory of type III. It can be seen that the initial stress shows an increasing effect
on the magnitude of strain. In Figure 2, the parameter for the initial stress is decreasing as an effect.
Additionally, when the initial stress parameter L∗ is increasing, the value of the temperature θ is
decreasing. Figure 3 shows the variation of the induced magnetic field h versus y. The value of strain
is found to be large for the theory of G-N of type III. It can be seen that the presence of the initial stress
shows a decreasing effect on the magnitude of the induced magnetic field. Figure 4 expresses the
distribution of the change in the volume fraction field φ versus y. It was observed that the initial stress
has a great effect on the distribution of φ.

Case ii: In the Figures 5–8, calculations were made for M0 = 0.0, 0.5 at H0 = 105, and t = 0.2.
The strain e, the temperature θ, the electromagnetic field h and the voids function φ are graphically
represented in some of the graphs for different values of y. Here, the solid lines is for results in the
G-N theory of type II at M0 = 0.0, which gives the classical Fourier’s law of heat conduction, the large
dashes line is for results in the type II G-N theory at M0 = 0.5, which gives the generalized Fourier’s
law of heat conduction. We also use a small dashes line for the results for the type III G-N theory in the
case M0 = 0.0, while the line with small dashes and the dot is for results for the type III G-N theory for
M0 = 0.5. Figure 5 is for the effect of M0 in the case that it exists and we can see that the value of the
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deformation e is increasing when M0 increases with the corresponding difference. Figure 6 is for the
value of the temperature θ, which is decreasing for the parameter M0, which is increasing. In Figure 7,
the effect of parameter M0 exists and the value of the induced magnetic field h increases when the
parameter M0 increases. In Figure 8, the value of the voids function φ is increasing for the case that the
parameter M0 is increasing.
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Case iii: Figures 9–11 present the evolution of the physical sizes with regards to the distance y
in 2D during M0 = 0.5, H0 = 105, L∗ = 105, and with and without void parameter, in the context of
G-N theory of type II and type III G-N theories. In this case of comparison, the solid lines is for results
of pore effect 1.9 in the type II G-N theory, the small dashes line is also the voids effect, but in the
case of the type III G-N theory. We use a large dashes line for results in the G-N theory of type II by
neglecting the effect of pores, while the small dashes line with dot is used for results in the type III
G-N theory, neglecting the effect of pores. In Figure 9, we find the repartition of the strain e, and we
have a comparison between the values of the strain in the case of the presence of the pores to those
in the case of neglecting the voids, in the range 0 ≤ y ≤ 1.7; while, the values are the same for two
cases at y ≥ 1.7. Figure 10 illustrates the repartition of the temperature θ, and a comparison between
the temperature in the case of presence of pores to those in the case of neglecting the voids, for y in
the range 0 < y < 1.9. In the case y > 1.9, the values are the same for two cases. Figure 11 depicts the
repartition of the magnetic field h, an the values of the magnetic field h in the case of the presence of
pores are compared to those in the case of neglecting the voids, for y in the range 0 ≤ y ≤ 3; in the case
y ≥ 3. The values are the same for the two cases.
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Figures 12–15 are giving 3D surface curves for the physical quantities i.e., the strain e, the
temperature θ, the magnetic field h, and the voids fuction φ for the thermoelastic theory of
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electromagnetic bodies with pores, by taking into account the Thomson effect and the effect of the
initial stress. The importance of these figures is that they give the dependence of the above physical
sizes regarding the vertical component of distance.
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6. Conclusions

The results concluded from the above analysis can be summarized, as follows:

(1) We have derived the field equations of homogeneous, isotropic, electro-magneto-thermo- porous
elastic half-plane with the Thomson effect and initial stress.

(2) The analytical solutions that are based upon normal mode analysis for the thermoelastic problem
in solids have been developed and utilized.

(3) The presence of initial stress, void parameters, and Thomson effect play significant roles in all of
the physical quantities.

(4) The value of all physical quantities converges to zero with the increase in distance y and all of the
functions are continuous.

(5) The deformation of a body depends on the nature of the applied forces and Thomson effect,
as well as the type of boundary conditions.
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