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Abstract: This paper proposes an adaptive noise detector and a new weighted mean filter to remove
random-valued impulse noise from the images. Unlike other noise detectors, the proposed detector
computes a new and adaptive threshold for each pixel. The detection accuracy is further improved
by employing edge identification stage to ensure that the edge pixels are not incorrectly detected
as noisy pixels. Thus, preserving the edges avoids faulty detection of noise. In the filtering stage,
a new weighted mean filter is designed to filter only those pixels which are identified as noisy in
the first stage. Different from other filters, the proposed filter divides the pixels into clusters of
noisy and clean pixels and thus takes into only clean pixels to find the replacement of the noisy
pixel. Simulation results show that the proposed method outperforms state-of-the-art noise detection
methods in suppressing random valued impulse noise.

Keywords: adaptive threshold; clustering; edge preserving; noise detector; random value impulse
noise; weighted mean filter

1. Introduction

For image analysis, de-noising is an important pre-processing step. Digital images are oftentimes
corrupted by impulse noise during acquisition, transmission and impaired camera sensors [1],
which degrades image features such as edges, sharpness, depth, etc. These degradations can severely
hamper the performance of some post-processing steps such as image segmentation, edge detection,
feature extraction, target detection, recognition and classification. Therefore, the removal of impulse
noise from these images is one of the most fundamental problems in the field of digital image processing.
It refers to the removal of noise from corrupted images and the preservation of useful information
such as edges and discontinuities. Unlike Gaussian noise, Impulse noise does not corrupt every pixel
in the image. It corrupts only certain number of pixels based on noise density. Impulse noise is of two
types: Salt & Pepper Noise (SPN) and Random Valued Impulse Noise (RVIN) [2]. SPN corrupts image
with two fixed extreme Values while RVIN takes any arbitrary value in range [nmin, nmax]. For 8-bit
images, nmin = 0 and nmax = 255. Therefore, detection of RVIN is much more complex and difficult
as compare to SPN [3]. For simplicity, let xi,j and ci,j be the intensities of pixels of noisy and original
images, respectively. Then, the noise model for RVIN [4] can be described as:
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xi,j =

{
ci,j, for p = 1− p0,

ni,j, for p = p0,
(1)

where ni,j shows gray level of uniformly distributed noise in range [nmin,nmax] while p0 is the
probability of noise.

To suppress impulse noise, different filters have been used. However, most of these filters have a
disadvantage of losing some important information such as edges [5]. These are simple low pass filters
where, for every pixel, some operation is performed on all the neighboring pixels in the predefined
window and the result replaces the central pixel. The simplest filter to remove impulse noise is
median filter (MF) [6]. This filter replaces every pixel in the image by the median value of the given
window, irrespective of whether the pixel is noisy or non-noisy. Though MF is computationally
simple and less expensive, but as the clean pixels are also replaced by median value of the selected
window, this degrades the quality of image, and also produces edge jitters and streaking. Similarly,
some patches are also created at higher noise density [7].

To make a trade-off between edges preservation and complexity, multiple variants of MF [8] have
been proposed. Some proposed variants are Tri-State Median filter (TSMF) [9], Recursive Weighted
Median Filter (RWMF) [10], the Multi-state Median Filter [11] the Central Weighted Median Filter
(CWMF) [12], the Rank-Order Mean Filter and the Stack Filter [13]. However, these filters still degrade
the quality of images as they replace all pixels in the image without considering whether the test
pixel is noisy or not [14]. To overcome this drawback, several filtering schemes have been developed
which are integrated with noise detectors. In these techniques, image de-noising is performed in two
stages. In the first stage, the noisy pixels are detected by approximation from neighborhood pixels.
In the second stage, only those pixels which are detected as noisy are cleaned while remaining pixels
are left unchanged. The performance of detection stage heavily depends on the estimation of proper
threshold value. A prior threshold is used by most of the techniques, where the predefined threshold
is used throughout the image. Some notable examples of the filtering techniques which use a fixed
threshold for noise detection are: adaptive center-weighted median (ACWM) filter [15], the optimal
direction median filter [2], the two-pass switching rank-ordered arithmetic mean (TSRAM) [16] filter,
Progressive Switching Median Filter (PSMF) [17], Luo-Iterative Median Filter (Luo) [18], Directional
Weighted Median (DWM) filter [19], the contrast Enhancement-based Filter (CEF) [20] and robust
outlyingness ratio non-local mean (ROR-NLM) [21], etc. The ACWM supresses the RVIN by using
the difference between the output of CWM and the current pixel. In CEF, exponential function is
used to enlarge the differences, which are then summed to detect the noisy pixels. The DWM only
considers pixels along four certain directions to detect noise. Once the noise is detected, the noisy
pixel is replaced by weighted median value in the optimal direction. In ROR-NLM [21], the weights of
non-local means filter (NLM) [22] were used as noise detectors on initial denoised image. These filters
usually perform well at lower noise density. However, at higher noise density, these filters have limited
performance in terms of image details and edges preservation. This is because the statistics of the
image are not uniform for the whole image, so the threshold value suitable for specific region may
not be adapted well to other region in same image. In addition, the threshold value adjusted for a
particular image may not work well for other image.

In order to reduce the shortcomings of the fixed threshold scheme, an Adaptive Switching Median
Filter (ASWM) [23] was proposed. This filter automatically defines a new threshold for every pixel
based on the local standard deviation, and does not require a priori knowledge for the threshold
selection. Though this filter provides better detection results, when the noise is not too much high.
However, due to random noise, some intensity values of noisy pixels may be very different from other
neighbor pixels inside a current sliding window—in which case, the standard deviation of current
window is very large, which can result a very large threshold. Thus, the higher standard deviation can
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cause inaccurate calculation of the local threshold. Secondly, the detected noisy pixel is replaced with
simple median value of the whole current window. As the current sliding window also contains noisy
pixels, the median value of such noisy window is thus not always accurate. This leads to incorrect
replacement of a noisy pixel. Thus, the image details are not preserved. In order to overcome the
shortcomings of this technique, we propose an adaptive two staged technique, where, for each pixel
processing, a more accurate threshold is calculated. Hence, the main contributions of our proposed
technique are:

1. We propose an adaptive noise detector and a new weighted mean filter to remove random valued
impulse noise from the images.

2. In contrast to other state-of-the-art noise detectors, the proposed detector computes a novel
adaptive threshold for each pixel. The accuracy of the detection scheme is further enhanced
by employing additional steps to avoid faulty detection of edge pixels, which are noisy pixels.
This step indeed ensures the preservation of the edges avoiding faulty detection of noise.

3. In the filtering stage, a novel weighted mean filter is designed to filter only those pixels which
are identified as noisy in the detection stage. In contrast to the existing filtering techniques,
the proposed filter first divides the pixels into clusters of clean and noisy pixels. Then, to design
the filter, only clean pixels are utilized to find the replacement of the noisy pixel.

Extensive simulation results are presented that show that the proposed RVIN suppression
mechanism is superior compared to the state-of-the-art schemes.

2. Proposed Noise Detection Scheme

In this section, we present the proposed efficient noise detector for the detection of noisy pixels.
Before the detection process, window size is adjusted for the whole image. The window size is selected
adaptively as it is set automatically based on the noise density. To estimate the noise density, we adopt
the idea of the universal threshold [24]. In this method, wavelet transform is used to estimate the noise
density σ of the noisy signal using Robust Median Estimator as:

σ =
median(HF)

0.6745
, (2)

where HF is the high frequency sub-band. In this technique, the noisy image or signal is divided into
sub-bands of low and high frequencies. The edges, sharp details and sudden changes are found in the
high frequencies [25]. Thus, mostly, the high frequency components contain noise. Therefore, only a
high frequency sub-band (HF) is used to estimate the noise of the signal, as illustrated in Equation (2).
For example, if σ comes to be 50, the image has 50% noise and so on. The size of the window depends
on σ, such that, for low σ, a smaller window is selected, while a larger window is selected for high σ.

Once the window is adjusted, then the detection process starts. Figure 1 illustrates the block
diagram of the proposed noise detector. Each block given in Figure 1 is then elaborated with example
in the following subsections.

2.1. Calculation of Separating Threshold

Once the window size is defined, the first step of the proposed noise detection process is the
selection of separating threshold γs. The algorithm to find separating threshold is illustrated with the
help of example in Figure 2 and elaborated in the following steps.
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Figure 1. Proposed noise detection scheme.

Figure 2. Separating threshold calculation.
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1. Let xi,j be the pixel under observation at location (i, j) to know whether it is noise or clean, then it
is considered as a central pixel. Window of the size found in Equation (2) is set around the
central pixel.

2. The corresponding pixel values of of the current window are sorted in ascending order in vector
s. The outliers are removed from s by adopting the “three sigma rule” with median absolute
deviation (MAD) [21]. The MAD for s is found as:

MAD = median | s−median(s). | (3)

Vector s is searched, and, if the difference between any value in s and the median value is greater
than 3×MAD, it is considered as an outlier and is not taken into account for further calculation.
After removal of outliers, let sn be the resultant vector, where n denotes the size of sn.

3. Compute the absolute difference dk between every two adjacent pixels in sn as:

dk =| sk − sk+1 |, (4)

where k = 1, 2, . . . , n− 1.
4. The separating threshold γs is found as:

γs = m + e
1

σ/100 , (5)

where

m =
1

n− 1

n−1

∑
k=1

d(k). (6)

We can observe that the term e
1

σ/100 depends upon the noise density σ. It can be observed that,
for lower noise density, this term is large and, for higher noise density, this term is small. This term
adjusts the threshold to ensure that clean pixels are not considered noisy pixels at very low noise
density. Similarly, it also adjusts the threshold to make sure noisy pixels are not grouped into clean
pixels, as this threshold will be used in grouping discussed in the following subsection.

2.2. Separation of Pixels into Clusters

Using the separating threshold γs, in this section, we divide the pixels in the sorted vector sn in
groups as follows:

1. Initialize from the first pixel in sorted vector sn. If the difference between current pixel si and
next pixel si+1 is less than or equal to γs, keep the pixel si+1 in the current group together with si.

2. However, if the difference is greater than γs, finish the current group and start a new group,
such that the first element of the new group will be si+1. Apply the same procedure until the last
element of vector sn.

3. The clean and noisy groups are decided based on the size of the group. The first two largest
clusters are considered as clean clusters while all other clusters are considered as noisy and are
discarded. The clean clusters are denoted as g1 and g2. Cluster g1 is used in the detection phase
while g1 and g2 are used in filtering.
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2.3. Noise Detection

Using the results of the group stage, in this section, the noise detection stage is presented. The noise
detector is:

xi,j =

{
Clean, if | xi,j − µ |≤ γ,

Noisy, Otherwise,
(7)

where threshold γ is
γ = 3×MAD(g1), (8)

and g1 is the largest group discussed in the grouping stage.
Similarly, xi,j is the central pixel and µ is the mean value of g1. If the xi,j is detected as noisy,

filtering is required to replace the xi,j with the filtered output. On the other hand, if xi,j is a clean pixel,
it is left unchanged.

2.4. Edge Pixel Identification

In this section, we present a mechanism to avoid the faulty detection of edge pixels as noisy pixels.
This step is performed only when the pixel is identified as a noisy pixel. This will make the detection
scheme more robust by verification of the noisy pixels to avoid situations where the edge pixel is
wrongly considered as a noisy pixel. This process is performed as follows:

1. Keeping xi,j as a reference pixel, pixels present along four directions are taken into account.
These four directions θA, θB, θC and θD are illustrated in Figure 3.

2. θ′A contains the pixels from the direction θA excluding xi,j. Similarly, θ′B, θ′C and θ′D contain
the pixels from the directions θB, θC and θD, respectively, excluding xi,j.

3. Find the absolute difference between central pixel xi,j with all pixels along direction θ′A.
The difference vector is defined as dA= | xi,j − θ′A |.

4. dA is searched to find the values less than or equal to m. Indexes of pixels corresponding to these
values are identified in θA. These pixels are stacked in vector v. The vector v is considered to be
an edge if total number of pixels in v is at least 50% of direction θA. Step 4 is only performed if
this condition holds true. Otherwise, discard the v and go to step 5.

5. Take the standard deviation of central pixel xi,j with v. The pixel is identified as an edge if
standard deviation of e and xi,j is less than or equal to threshold γ:

xi,j =

{
Edge, if std(v, xi,j) ≤ γ,

Go to next Direction, Otherwise.
(9)

6. If xi,j is not identified an edge in direction θA, then the three other directions θB, θC and θD are
checked for an edge identification by applying the five steps above on each direction.

If xi,j is not identified an edge in all four directions, it is considered a noisy pixel and filtering is
required to de-noise it.
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Figure 3. Edges in different directions (a) θA; (b) θB; (c) θC; (d) θD.

3. Illustration

This section illustrates the noise detection of the proposed method with example. Consider the
image patch given in Figure 4 that is taken from a 40% noisy “lena” image. The size of the window
depends on the noisy density σ such that:

Size of window =

{
7× 7, if σ ≥ 60,

5× 5, otherwise.
(10)

To check whether the specified central pixel is noisy, the following steps are performed.

1. Using Equation (2), the noise density of the whole image is calculated. As the noisy density is
40%, therefore, according to Equation (10), the window size is selected 5×5.

2. Sort all the pixels inside the selected patch in ascending order as x = [17 64 64 65 65 65 65 66 66 67
68 68 69 69 83 84 112 112 133 143 152 199 227 236 252].

3. The extreme outliers are removed by using MAD given in Equation (3). The MAD value of
vector x is 5, while the median value of x is 69. Therefore, according to the “Three Sigma Rule”,
any value below 54 (69 − 15) and above 84 (69 + 15) is discarded and the vector x becomes [ 64 64
65 65 65 65 66 66 67 68 68 69 69 83 84].

4. Next, the deference between every two consecutive pixels is found to be d = [0 0 0 0 1 0 1 1 0 1 0
14 2].

5. The average value m of the vector d is equal to 1.4. Putting this value of m in Equation (5),
γs becomes 13.59.

6. Using the separating threshold, all pixels of x are divided into groups as [64 64 65 65 65 65 66 66
67 68 68 69 69], [83 84].

7. The largest group is [64 64 65 65 65 65 66 66 67 68 68 69 69], whose size is much greater compared to
other group. Thus, this group is considered the clean group, while the other group is considered
the noisy group.

8. Using Equation (8), threshold γ becomes 3. Similarly, mean value becomes µ = 66.
9. By employing Equation(9), any value greater than 69 and less than 63 is considered to be noisy.
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In this example, the value of the central pixel is 67; therefore, it is a clean pixel and does not need
filtering. In case the pixel comes out to the noisy pixel, then we need filtering to replace the noisy pixel
with estimated clean pixel. In the next section, we present the filtering scheme.

Figure 4. A patch from Lena image: (a) original image; (b) 40% noisy image.

4. Proposed Filtering Scheme

After the detection of the noise, the appropriate filter is required to replace the noisy pixel. For this,
we design a novel Weighted Mean Filter (WMF), which is more robust compared to the existing median
and mean filters. In a smooth region, the absolute difference among all neighbor pixels is very small
and the whole region is flat [26], so, in most cases, only one large clean group is formed. On the other
hand, the region that contains the edge is not as flat, in which case more than one cluster is required
to replace the noisy pixel. Therefore, in the proposed filtering scheme, the second largest group g2 is
also considered. We remark that the g2 is not required in detection stage. Instead, there is a separate
section for edge detection. The two largest groups are assigned weights based on standard deviation
and size of the group. Supposing that xi,j is the noisy pixel at location (i, j), then the filtered pixel x̂i,j is
given as:

x̂i,j = mean{w1 � g1, w2 � g2}, (11)

where � is the replication operator [27] that shows the repetition of any term. For example, if w1 is 2,
and w2 is 1, then g1 is repeated two times while g2 is repeated 1 time, such as x̂i,j = mean{g1, g1, g2},
as the size of g1 is greater than g2. Therefore, to decide the weights, we also consider the standard
deviation of both groups. The weights w1 and w2 are determined by a ratio R as:

R =
s2

s1
× sd1

sd2
, (12)

where s1, s2 represents the size, while sd1 and sd2 represent the standard deviation of g1 and g2,
respectively. This relation defines the weights of g2 with respect to g1. As the higher standard
deviation means less correlation, it is inversely proportional to the R, while the larger size shows
larger priority; therefore, it is in direct relation to R. Based on the value of R, the following weights are
assigned in Equation (11).

1. If the size of g1 is very large compared to the size of g2 or R ≤ 0.5, then w1 = 1, w2 = 0.
2. Similarly, when 0.5 ≤ R ≤ 1, the assigned weights are: w1 = 1, w2 = 1.
3. Finally, for 1 ≤ R ≤ 2, the assigned weights are: w1 = 1, w2 = 2.
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The filtering is further improved by only considering the closest neighbor pixels of the central
pixel from the selected groups, such that, if there are at least three pixels from the selected groups which
are in a 3 × 3 window around the central pixel, then take the mean value of only these closest pixels.

5. Summary of the Proposed Denoising Scheme

Although the proposed scheme gives good results in single iterations, with second iterations,
it gives the best performance and there is no need to apply further iterations as in other iterative
methods. The larger threshold value is used in the first iteration while a smaller threshold value is used
in the second iteration [2]. Therefore, if the threshold in the first iteration is 3×MAD, in the second
iteration, the threshold is set to 1.5×MAD. We summarize our proposed technique in Algorithm 1 as:

Algorithm 1: Proposed algorithm for random valued impulse noise removal.
Input : The noisy image X, with size of L1 × L2

1 Set iteration i=1.
2 Outer loop: for l1 = 1, ...L1, Inner loop: for l2 = 1, ....L2

3 Set a sliding window centered at xi,j, the size of window is determined by σ.
4 Divide the window into groups of clean and noisy pixels using separating threshold computed

in Equation (5).
5 Find mean µ and threshold γ from clean cluster, while discard the noisy clusters.
6 Using Equation (7) check xi,j for noise. If | xi,j − µ |≤ γ, go to step (2).
7 If the pixel is identified as noisy, check xi,j for an edge using Equation (9). Such that if

std(e, xi,j) ≤ γ, go to step (2).
8 Filter xi,j as in Equation (11).
9 i=i+1, if i > imax, stop iteration, else X←− Y, go to next iteration.

Output : De-noised image Y

6. Experimental Results

To assess the capability the proposed noise removal procedure, in this section, comprehensive
numerical results are compared with other state-of-the-art techniques.

6.1. Comparison of Noise Detection

We compare our proposed noise detection scheme with different state-of-the-art techniques such
as (ACWM) [15], the (DWM) [19], (TSM) [9] (PSMF [17], (Luo) [18], (ROR-NLM) [21], SBF [28] and
(ASWM) [23].

In Table 1, the noise detection results of noisy “lena” image with noise densities 40%, 50% and
60% are given. The table lists three results of the noise detection: the number of undetected noisy
pixels (False Negative), the number of clean pixels that are falsely detected as noisy (False Positive)
and the Total number (False Negative + False Positive).

From Table 1, it is clear that the proposed detection scheme has generated less ‘Total’ number than
all of the above techniques especially at higher noise density. At lower noise density, only ROR-NLM
produces a lower total number, but they produce much higher false negative terms, indicating that
they miss most of the noisy pixels, and most of noise patches are left unchanged. Thus, the proposed
detection technique shows superiority over other detection schemes. It is because a noise detector
is considered to be efficient and robust, if it reduces both false positive and false negative numbers.
When the noise density increases, the superiority of the proposed method is clear as it generates far
less ‘Total’ terms than all other methods. This means that our technique is more efficient and robust,
even at high noise density.
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Table 1. Detection comparison of different filters at different noise densities.

Methods 40% 50% 60%

FN FP Total FN FP Total FN FP Total

ACWM 14,590 2367 16,857 21,897 3706 25,603 30,198 6526 36,724
Luo’s 14,679 1831 16,510 21,665 3068 24,733 33,987 2780 36,767
TSM 18,921 5201 24,122 23,921 6218 30,139 28,123 8903 37,026
PSM 18,672 4982 23,654 23,762 6123 29,885 27,987 8393 36,380

ASWM 7489 11,564 19,053 11,779 12,786 24,565 19,982 16,482 36,464
DWM 11,786 8931 20,717 15,321 8756 24,077 15,728 14,816 30,544

SD-OOD 13,500 10,675 24,175 11,987 15,827 27,814 17,821 18,261 36,082
ROR-NLM 12,890 3328 16,218 15,297 3487 18,784 21,827 7808 29,635
Propoposed 10,908 7973 18,881 11,668 9613 21,241 13,571 9760 23,331

6.2. Comparison of Image Restoration

The de-noising performance of the proposed method is tested on different standard images such
as Lena, pepper, Bridge, and Boat with different noise densities. All these images are 8-bit gray scale
and have the same size of 512 × 512 pixels. It should be noted that the size of the window is defined
only once based on the noise density using Equation (2), which is used on all pixels of the current
image. In our case, for noise density less than 60%, window size of 5 × 5 is used, while window size of
7 × 7 is used otherwise. Peak Signal to Noise Ratio (PSNR) is used as quantitative measurement to
compare the proposed method with different well known techniques. The PSNR is defined as:

PSNR (dB) = 10log10

(
2552

MSE

)
, (13)

where MSE is mean squared error and is defined as:

MSE =
1

MN

m

∑
i=1

n

∑
j=1

(
Oi,j − Ri,j

)2
, (14)

where O is the original clean image while R is the output restored image. Tables 2 and 3 illustrate
comparison of the proposed method with other state-of-the-art methods.

Table 2. Peak Signal-to-Noise Ratio (dB) values of different filters for Lena and Pepper image corrupted
by random valued impulse noise of different noise densities.

Methods Lena Pepper

(Noise Density) 40% 50% 60% 40% 50% 60%
TSM 24.91 22.22 18.98 24.02 22.56 17.78

ACWM 28.12 24.64 20.32 28.12 26.09 21.52
LOU’S 29.62 25.82 22.69 28.41 26.33 23.89
PSM 29.12 25.31 24.23 28.23 25.41 23.83

ASWM 30.91 28.42 26.25 29.02 27.12 25.33
DWM 30.92 28.91 26.51 29.13 27.79 25.48

SBF 30.12 27.12 23.13 28.89 27.02 24.67
ROR-NLM 31.42 29.21 25.61 29.61 27.89 25.45

PROPOSED 31.77 30.01 28.03 29.75 28.11 26.62

Tables 2 and 3 list the PSNR values of different test images that are contaminated by RVIN of
noise densities ranges from 40% to 60%. From both tables, it is clear that our method has performed
better as compared to all other listed methods in terms of PSNR. Figures 5 and 6 show de-noised
results of Lena and Pepper images, respectively. From these figures, it is obvious that TSM, ACWM,
PSM and Luo have created artifacts and damaged image details. While DWM, ASWM and ROR-NLM
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have performed better at lower noise densities, but their performance is degraded at higher noise
densities. This is due to the fact that these filters replace the noisy pixel by considering all the window
pixels. On the other hand, the proposed method only considers clean pixels to replace the noisy pixel.
As the noise density increases, the number of corrupted pixels in the window are also increased,
which increases the error when the central noisy pixel is replaced by mean or median value of noisy
neighbor pixels. Finally, in Figure 7, we present performance results of different filters in restoring
Lena image corrupted by different noise densities. These results confirm the results given in Tables 2
and 3 and clearly show that the proposed method outperforms other state of the art techniques.

Table 3. Peak Signal -to- Noise Ratio (dB) values of different filters for Bridge and Boat image corrupted
by random valued impulse noise of different noise densities.

Methods Bridge Boat

(Noise Density) 40% 50% 60% 40% 50% 60%
TSM 21.55 19.72 17.26 22.89 20.72 17.55

ACWM 23.72 22.19 19.12 25.32 23.56 21.45
LOU’S 23.84 22.78 19.17 25.45 23.78 21.61
PSM 23.65 21.91 19.39 24.98 22.98 20.87

ASWM 24.02 22.69 21.12 26.76 25.26 23.23
DWM 24.07 22.72 21.19 26.83 25.31 23.57

SBF 22.12 21.31 20.15 25.33 24.88 22.67
ROR-NLM 24.27 22.91 21.21 27.23 25.43 24.21

PROPOSED 24.35 23.08 21.75 27.85 26.61 24.87

Figure 5. Results of different filters in restoring 40% corrupted Lena image: (a) adaptive switching
median filter (ASWM); (b) tri-state median filter (TSM); (c) progressive switching median filter (PSM);
(d) luo-iterative median filter (Luo); (e) directional weighted median filter (DWM); (f) Adaptive
Switching Median Filter (ASWM); (g) Switching Bilateral Filter (SBF); (h) Robust Outlyingness Ratio
Non-Local Mean (ROR-NLM); (i) proposed method.
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Figure 6. Results of different filters in restoring 60% corrupted pepper image: (a) adaptive switching
median filter (ASWM); (b) tri-state median filter (TSM); (c) progressive switching median filter (PSM);
(d) luo-iterative median filter (Luo); (e) directional weighted median filter (DWM); (f) adaptive
switching median filter (ASWM); (g) switching bilateral filter (SBF); (h) robust outlyingness ratio
non-local mean (ROR-NLM); (i) proposed method.

Figure 7. Results of different filters in restoring Lena image corrupted by different noise levels.

7. Conclusions

In this paper, a new algorithm is presented to remove random valued impulse noise. The proposed
approach is based on calculation of new and adaptive thresholds for every pixel. The pixels are divided
into noisy and clean clusters. Then, only a clean cluster is used to calculate the threshold. A new edge
identification step is proposed to ensure that a clean pixel is not considered as a noisy pixel falsely.
If the pixel is identified as noisy, a novel weighted mean filter is designed to filter the noisy pixel.
Instead of taking the mean of all pixels in the selected window, the proposed filter considers only
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clean pixels to replace the noisy pixel. Simulation results show that the proposed method outperforms
state-of-the-art de-noising techniques, both visually and quantitatively (PSNR), even when the noise
density is high.
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