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Abstract: In this paper, a local meshless differential quadrature collocation method based on
radial basis functions is proposed for the numerical simulation of one-dimensional Klein–Gordon,
two-dimensional coupled Burgers’, and regularized long wave equations. Both local and global
meshless collocation procedures are used for spatial discretization, which convert the mentioned
partial differential equations into a system of ordinary differential equations. The obtained system
has been solved by the forward Euler difference formula. An upwind technique is utilized in the
case of the convection-dominated coupled Burgers’ model equation. Having no need for the mesh in
the problem domain and being less sensitive to the variation of the shape parameter as compared to
global meshless methods are the salient features of the local meshless method. Both rectangular and
non-rectangular domains with uniform and scattered nodal points are considered. Accuracy, efficacy,
and the ease of implementation of the proposed method are shown via test problems.

Keywords: meshless method; differential quadrature; radial basis functions; an upwind technique

1. Introduction

The Klein–Gordon (KG) equation can describe various vital phenomena in chemical and physical
sciences. The KG equation can be written as:

∂2U
∂t2 + α

∂2U
∂x2 + βU + γU2 = h(x, t), x ∈ [a, b], t > 0, (1)

along with initial and boundary conditions:

U(x, 0) = h1(x),
∂U(x, 0)

∂t
= h2(x),

U(a, t) = h3(t), U(b, t) = h4(t),
(2)

where α, β, and γ are the parameters.
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The nonlinear KG equation has applications in numerous fields such as nonlinear optics, quantum
mechanics, solid state physics, and in mathematical physics [1,2]. Various numerical techniques are
employed for solving the KG equation such as the symplectic finite difference method [3], the spectral
method [4], the meshless RBF method [5], the finite-difference collocation method [6], the differential
quadrature method [7], the Haar wavelet method [8], the decomposition method [2], the Laplace
transformation and Legendre wavelets method [9], the lattice Boltzmann method [10], and the
multiquadric quasi-interpolation method [11].

The 2D coupled Burgers’ equations [12–15] can be written as:

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y
− 1

Re

(
∂2U
∂x2 +

∂2U
∂y2

)
= 0, (x, y) ∈ Ω

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y
− 1

Re

(
∂2V
∂x2 +

∂2V
∂y2

)
= 0, (x, y) ∈ Ω

(3)

with initial and boundary conditions:

U(x, y, 0) = I1(x, y), V(x, y, 0) = I2(x, y), (x, y) ∈ Ω

U(x, y, t) = B1(x, y, t), V(x, y, t) = B2(x, y, t), (x, y) ∈ ∂Ω
(4)

where Re is a real constant known as the Reynolds number.
The coupled Burgers’ equations are related to many physical problems including traffic flow,

acoustic transmission, flow of a shock wave traveling in a viscous fluid, airfoil flow theory, supersonic
flow, and in turbulence phenomena (see [12–15] and the references therein for details).

The 2D nonlinear regularized long wave (RLW) equation with initial and boundary conditions
can be written as [16,17],

∂U
∂t
− ∂

∂t

(
∂2U
∂x2 +

∂2U
∂y2

)
+

∂U
∂x

+
∂U
∂y

+ U
∂U
∂x

+ U
∂U
∂y

= 0, (x, y) ∈ Ω, t > 0, (5)

U(x, y, 0) = g1(x, y), (x, y) ∈ Ω

U(x, y, t) = g2(x, y, t), U(x, y, t) = g3(x, y, t). (x, y) ∈ ∂Ω
(6)

The regularized long wave (RLW) model equation has described many physical phenomena [18].
So far, the existing literature contains many numerical methods used for solving the RLW equation
such as finite-difference methods [19,20], the interpolating element-free Galerkin method [17],
the finite-element method [21], the Fourier pseudo-spectral method [22], and the cubic B-spline
method [23]. Furthermore, the Petrov–Galerkin method [24] and the element-free kp-Ritz method [25]
are used for the generalized RLW equation.

Recently, meshless methods have seen broad attention for solving different kinds of PDE model
areas in almost all disciplines of engineering. The meshless character is one of the most important
reasons for the rising demand of such types of methods. Meshless methods reduce the complexity
caused due to dimensionality to a large extent, which is faced in the carrying out of conventional
methods like the finite-element and finite-difference procedures. Meshing in the case of complicated
geometries is another cause for the growing demand of meshless methods. The numerical results of
RBF-based algorithms have demonstrated that they are truly meshless, accurate, and easy to implement.
Some interesting models can be found in [26–30].

It is noted that the global meshless method (GMM), which is based on the global interpolation
paradigm, has faced the problems of dense ill-conditioned matrices and finding the optimum value of
the shape parameter. To avoid the limitations of the GMM, a local meshless method, which is based on
local interpolation in the sub-domains, is used as a substitute to get a stable and accurate solution for
the PDE models (see [31–37]).
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In the current work, the local meshless differential quadrature collocation method (LMM) based on
radial basis functions (RBFs) is proposed for the numerical simulation of 1D nonlinear KG, 2D coupled
Burgers’ equations, and the 2D RLW equation. The LMM is an accurate and efficient numerical
technique, which requires two steps to approximate a time-dependent PDEs. Firstly, the spatial
derivatives are approximated by using the RBFs, which could convert the given PDE into a system of
ODEs. Then, the obtained ODEs will be solved by suitable ODE solvers.

The rest of the paper is organized as follows: the suggested numerical method is highlighted in
Section 2; the implementation of the method with different test problems is presented in Section 3;
and finally, some concluding remarks are given in Section 4.

2. Implementation of the Numerical Method

The LMM [26,33] is extended to the PDE models discussed in Section 1. The derivatives of U(x, t)
at the center xi are approximated by the function values at a set of nodes in the neighborhood of
{xi1, xi2, xi3, . . . , xini} ⊂ {x1, x2, . . . , xNn}, ni � Nn, where i = 1, 2, . . . , Nn. For the one-dimensional
case, n = 1 and x = x, and for the two-dimensional case, n = 2 and x = (x, y).

Now, for the 1D case, we have:

U(m)(xi) ≈
ni

∑
k=1

λ
(m)
k U(xik), i = 1, 2, . . . , N. (7)

To find the corresponding coefficient λ
(m)
k , radial basis function ψ(‖x− xl‖) can be substituted in

Equation (7) as follows:

ψ(m)(‖xi − xl‖) =
ni

∑
k=1

λ
(m)
ik ψ(‖xik − xl‖), l = i1, i2, . . . , ini, (8)

where ψ(‖xik − xl‖) =
√

1 + (c‖xik − xl‖)2 and ψ(‖xik − xl‖) = (1 + (c‖xik − xl‖)2)−1 in the case of
multiquadric (MQ) and inverse quadratic (IQ) radial basis functions, respectively.

The matrix notation of Equation (8) is:

ψ
(m)
ni = Ani λ

(m)
ni , (9)

where:
ψ
(m)
ni =

[
ψ
(m)
i1 (xi) ψ

(m)
i2 (xi) · · · ψ

(m)
ini

(xi)
]T

,

Ani =


ψi1(xi1) ψi2(xi1) · · · ψini (xi1)

ψi1(xi2) ψi2(xi2) · · · ψini (xi2)
...

...
. . .

...
ψi1(xini ) ψi2(xini ) · · · ψini (xini )

 ,

λ
(m)
ni =

[
λ
(m)
i1 λ

(m)
i2 · · · λ

(m)
ini

]T
.

From Equation (9), we obtain:

λ
(m)
ni = A−1

ni
ψ
(m)
ni . (10)

From Equations (7) and (10), we get:

U(m)(xi) = (λ
(m)
ni )TUni ,

where:
Uni =

[
U(xi1), U(xi2), . . . , U(xini )

]T .
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For the 2D case, the derivatives of U(x, y, t) with respect to x are approximated in a similar way
as stated above and can be written as:

U(m)
x (xi, yi) ≈

ni

∑
k=1

γ
(m)
k U(xik, yik), i = 1, 2, . . . , N2, (11)

and the corresponding coefficients γ
(m)
k , k = 1, 2, . . . , ni can be found as follows:

γ
(m)
ni = A−1

ni
Φ

(m)
ni . (12)

Similarly, the derivatives of U(x, y, t) with respect to y and its corresponding coefficients η
(m)
k , k =

1, 2, . . . , ni can be found as follows:

U(m)
y (xi, yi) ≈

ni

∑
k=1

η
(m)
k U(xik, yik), i = 1, 2, . . . , N2, (13)

η
(m)
ni = A−1

ni
Φ

(m)
ni . (14)

The proposed LMM is combined with a technique based on the local supported domain, called
an upwind technique, in the case of convection-dominated PDE models. This technique has the ability
to avoid spurious oscillatory solutions. Two types of local supported domains are used, i.e., central
and upwind, as shown in Figures 1 and 2.

Figure 1. Schematics of the local supported domain in 2D geometry for ni = 5 [34].

Figure 2. Schematic of the local supported domain in 2D geometry for ni = 5 in the upwind technique [34].
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2.1. Implementation of LMM for the KG Equation

Now, using the above meshless method for Equation (1) in space, we get the second order ODE,
which is reduced to the first order ODE by substituting Ut(x, t) = V(x, t) as follows:

Ut = V, Vt = h(x, t)− αUxx − βU − γU2, (15)

with initial and boundary conditions:

U(x, 0) = f1(x), V(x, 0) = f2(x), x ∈ [a, b], (16)

U(a, t) = f3(t), U(b, t) = f4(t), V(a, t) = f5(t), V(b, t) = f6(t), t > 0. (17)

Now, applying the LMM to Equation (15):

dUi
dt

= Vni ,
dVi
dt

= hi(t)− α(λ
(2)
ni )

TUni − βUni − γU2
ni

, i = 2, 3, . . . , N − 1 (18)

Equations (17) and (18) in matrix form:

dU
dt

= V,
dV
dt

= H(t)− α(Λ(2)U)− βU− γU2, (19)

U = [U1, U2, U3, . . . , UN ]
T ,

V = [V1, V2, V3, . . . , VN ]
T ,

Λ
(2)
N×N = [mik] = λ

(2)
k , k = i1, i2, . . . , ini, i = 2, 3, . . . , N − 1

H(t) = [Ua, h2, h3, . . . , hN−1, Ub]
T ,

(20)

with the following corresponding initial condition:

U(t0) = [U0(x1), U0(x2), . . . , U0(xN)]
T ,

V(t0) = [V0(x1), V0(x2), . . . , V0(xN)]
T .

(21)

2.2. Implementation of LMM for the 2D Model Equations

Applying the LMM to 2D model equations in space along with the prescribed boundary and
initial conditions at each nodal point, we get the following form of an initial value problem:

dU
dt

= AU+ h(t), U(0) = f, (22)

where A represents the sparse coefficient matrix of order Nn × Nn (n = 1 in the 1D case and n = 2 in
the 2D case).

The matrixA is obtained once U and its spatial derivatives are discretized by the LMM. The vector
h denotes the boundary conditions of the problem, and the vector fis a vector of the corresponding
initial condition of the problem. Orders of the vectors h and f are Nn × 1, where n = 1; 2 for one- and
two-dimensional PDEs, respectively.

3. Numerical Analysis

To test the accuracy and applicability of the proposed local meshless method, several problems
have been considered. The proposed scheme works for any radial basis functions, but in this study,
multiquadric and inverse quadratic RBFs were taken into account for spatial discretization.
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The accuracy of the LMM was measured via the Labs, L2, and L∞ error norms, which are given
as follows:

Labs = |Û −U|,
L∞ = max|Labs|,

L2 =

[
∆x

N

∑
i=1

Labs
2

] 1
2

,

(23)

where Û and U represent the exact and approximate solutions, respectively. The following formulas
were used to compute the numerical rate of convergence:

log10[‖Û −U∆xi‖/‖Û −U∆xi+1‖]
log10[∆xi/∆xi+1]

, (24)

log10[‖Û −U∆ti‖/‖Û −U∆ti+1‖]
log10[∆ti/∆ti+1]

, (25)

where U∆xi and U∆ti represent the numerical solutions with spatial step size ∆xi and time step size
∆ti, respectively.

The proposed LMM is truly meshless and capable of approximating the solution on both uniform
and scattered nodal points. The size of the local sub-domain in the one-dimensional case was taken
as three, whereas in the two-dimensional case, it was taken as five. In all numerical simulations,
the multiquadric RBF with the value of the shape parameter c = 10 was used for the Klein–Gordon
equation, and the inverse quadric RBF with shape parameter c = 20 was used for the coupled Burgers’,
as well as for regularized long wave equations. The forward Euler difference formula (FEDF) was
used as the time integrator throughout the numerical simulation. The central processing unit (CPU)
time was calculated in seconds in all cases. All the computations were performed using MATLAB
(R2012a) on a Dell PC Laptop (Windows 7, 64 bit) with an Intel (R) Core(TM)i5-240M CPU 2.50 GHz
2.5 GHs4 GB RAM.

Test Problem 1. First, consider 1D Klein–Gordon Equation (1) with h(x, t) = 0, and the other
parameters are α = β = −1 and γ = 0 with the exact solution as given in [2,38].

U(x, t) = sin(x) + cosh(t), (26)

with initial conditions:
U(x, 0) = sin(x) + 1, Ut(x, 0) = 0. (27)

Using the substitution Ut = V, we get:

Ut = V, Vt = Uxx + U. (28)

The numerical results presented in Table 1 were obtained by the local meshless method at coarse
grids by using nodal points N = 11, time step size ∆t = 0.0001, spatial domain [0, 1], and up to final
time t = 1. The numerical results of the global meshless method of lines [38] versus the suggested
local meshless method are shown in Table 1. It is clear from Table 1 that the LMM gives better accuracy
compared to the numerical procedures reported in [38].
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Table 1. Numerical comparison of the L∞ error norm for Test Problem 1.

L∞

t FEDF MQ-RK4 [38] MQ-Störmer [38]

0.1 4.2548×10−6 1.90058×10−6 2.83297×10−5

0.5 3.1827×10−5 8.16948×10−5 8.60692×10−5

1 8.8951×10−5 3.18899×10−4 3.94758×10−5

In Table 2, the spatial convergence rate in terms of L∞ and L2 error norms for the MQ radial basis
function and condition number κ are given for N = 11, 21, 31, 41, ∆t = 0.0001, t = 1. It can be seen
from Table 2 that the condition number κ, as well as the convergence rate both increased with the
increase in the number of collocation points N. The table also shows the second order of convergence
rate of the LMM.

Table 2. Spatial convergence rate of the L∞ and L2 error norms for Test Problem 1.

N κ L∞ L∞-Rate L2 L2-Rate

11 4.5015×108 8.8951×10−5 . . . 6.4634×10−5 . . .
21 7.2006×109 1.9551×10−5 2.1858 1.3906×10−5 2.2166
31 3.6451×1010 6.9794×10−6 2.5342 4.9459×10−6 2.5433
41 1.1520×1011 3.2008×10−6 2.7193 2.2620×10−6 2.7288

Table 3 shows the time convergence rate in terms of the L∞ and L2 error norms for the time step
sizes ∆t = 0.1, 0.05, 0.01, 0.005, N = 11, and t = 1. The results in Table 3 show that the FEDF has the
first order convergence rate.

Table 3. Time convergence rate of the L∞ and L2 error norms for Test Problem 1.

∆t L∞ L∞-Rate L2 L2-Rate

0.1 1.9375×10−2 . . . 9.7636×10−3 . . .
0.05 5.7309×10−3 1.7574 3.1601×10−3 1.6274
0.01 1.0545×10−3 1.0518 5.7200×10−4 1.0620

0.005 5.1010×10−4 1.0478 2.6290×10−4 1.1215

Comparisons of the exact and numerical solutions using the FEDF are plotted in Figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

x

U

 

 
Exact
Numerical

Figure 3. Numerical and exact solutions for t = 1 with N = 11 for Test Problem 1.

The numerical results obtained by the local and global meshless method for a long range of shape
parameter value c, with N = 11 and t = 1, are shown in Figure 4 for Test Problem 1. Less sensitivity
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to the selection of the shape parameter c in the case of the LMM, in comparison to the GMM, can be
observed from Figure 4.
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10
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−4
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−2
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0

10
2

10
4

c

L
∞

 

 

MQ

Figure 4. c versus the L∞ error norm of the local meshless method (LMM) (left) and the global meshless
method (GMM) (right) for Test Problem 1.

Figure 5 illustrates the convergence of the proposed method, which shows that the error decreased
(L∞ and L2 error norms) with the decrease of both the time step size ∆t, as well as the distance between
nodes ∆x. Tables 2 and 3 show the convergence rate corresponding to Test Problem 1. A faster spatial
convergence rate as compared to the time convergence rate can easily be seen from the tables.

Figure 5. Convergence in space (left) and convergence in time (right) for Test Problem 1.

Test Problem 2. Consider the second test problem, by taking h(x, t) = sin(x) sin(t), α = −1, β = −2,
and γ = 0 with the exact solution given in [38,39].

U(x, t) = sin(x) sin(t), (29)

with initial and boundary conditions:

U(x, 0) = 0, Ut(x, 0) = sin(x),

U(0, t) = 0, U(π/2, t) = sin(t).
(30)

Using the substitution Ut = V, we get:

Ut = V, Vt = Uxx + 2U − 2 sin(x) sin(t). (31)
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The results of Test Problem 2, in terms of the L∞ error norm at various times t, are shown in
Table 4 for spatial domain [0, π/2], nodal points N = 11, and time step size ∆t = 0.0001. The results
obtained by the LMM are more accurate than the results reported in [38,39].

Table 4. Comparison of the numerical results of the global meshless method of lines [38] and the spline
collocation method [39] with the LMM in terms of the L∞ error norm for Test Problem 2.

Method t = 0.01 t = 0.02 t = 0.1 t = 0.5 t = 1

FEDF 3.1377×10−10 2.4101×10−9 2.9157×10−7 3.3156×10−5 2.2616×10−4

MQ-Störmer [38] 1.57022×10−7 6.29035×10−7 1.50205×10−5 8.84373×10−5 5.19689×10−5

GA-Störmer [38] 5.45453×10−7 3.31884×10−6 2.91691×10−4 1.06862×10−2 2.33701×10−2

[39] 1.7×10−7 8.4×10−7 5.4×10−5 1.2×10−3 4.3×10−3

In Table 5, the condition number κ and spatial convergence rate are given for N = 11, 21, 31, 41,
∆t = 0.0001, and t = 1 for Test Problem 2. Table 5 shows that the increase in N caused the increase in
both the condition number κ and convergence rate. One can observe from the table that the LMM had
almost second order convergence.

Table 5. Spatial convergence rate of the L∞ and L2 error norms for Test Problem 2.

N κ L∞ L∞-Rate L2 L2-Rate

11 7.3976×107 2.2616×10−4 . . . 1.9812×10−4 . . .
21 1.1829×109 5.6922×10−5 1.9903 4.9730×10−5 1.9942
31 5.9877×109 2.5382×10−5 1.9870 2.2114×10−5 1.9938
41 1.8923×1010 1.4326×10−5 1.9951 1.2480×10−5 1.9955

Time convergence rate for Test Problem 2 is shown in Table 6 with time step sizes ∆t = 0.1, 0.05,
0.01, 0.005, N = 11, and t = 0.1. First order convergence is evident from the table.

Table 6. Time convergence rate of the L∞ and L2 error norms for Test Problem 2.

∆t L∞ L∞-Rate L2 L2-Rate

0.1 1.6453×10−4 . . . 1.4005×10−4 . . .
0.05 4.1397×10−5 1.9908 3.5238×10−5 1.9908
0.01 2.0933×10−6 1.8543 1.6822×10−6 1.8901

0.005 7.4903×10−7 1.4827 6.1088×10−7 1.4614

Figure 6 (left) shows the numerical solution with N = 51, [0, π/2], ∆t = 0.0001 at various times up
to t = 10, whereas Figure 6 (right) shows the Labs error norm obtained by the FEDF for Test Problem 2.
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Figure 6. Numerical simulation (left) and Labs (right) for Test Problem 2.
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One of the drawbacks of meshless methods using shape parameter-dependent RBFs is the
sensitivity of the shape parameter value. The comparison of both the local and global version of
the meshless method for Test Problem 2 is shown in Figure 7. The results were obtained for MQ RBF
using N = 41 and t = 1. It is clear from Figure 7 that the LMM gave stable results for a long range of
shape parameter value c as compared to the GMM.
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Figure 7. c versus the L∞ error norm of the LMM (left) and GMM (right) for Test Problem 2.

Figure 8 illustrates the convergence rate of the proposed meshless method in which one can see
that the error decreased with the decrease of both the time step size ∆t, as well as the distance between
nodes ∆x. Tables 5 and 6 show the convergence rate corresponding to Test Problem 1. A faster spatial
convergence rate as compared to the time convergence rate is verified in this case, as well.

Figure 8. Convergence in space (left) at t = 1 and convergence in time (right) at t = 0.1 for the test
problem 2.

Test Problem 3. In the third test problem, consider Equation (1) with h(x, t) = −x cos(t) + x2 cos2(t)
and α = −1 β = 0, γ = 1 with the exact solution given in [38].

U(x, t) = x cos(t), (32)

with initial conditions:
U(x, 0) = x, Ut(x, 0) = 0. (33)

Using the substitution Ut = V, we get:

Ut = V, Vt = Uxx −U2 − x cos(t) + x2 cos2(t). (34)
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Numerical results for different values of t, [−1, 1], N = 11, ∆t = 0.0001 are presented in Table 7,
which shows the better performance of the LMM in comparison to the results reported in [5,10,11].

Table 7. Comparison of the L∞ and L2 error norms for Test Problem 3.

t 1 3 5 7 10

FEDF, N = 11

L∞ 3.3468×10−6 6.1312×10−6 6.8303×10−6 6.3888×10−6 5.1932×10−6

L2 2.1690×10−6 4.2790×10−6 5.4027×10−6 5.1245×10−6 4.4432×10−6

Lattice Boltzmann method [10], N = 100

L∞ 1.9558×10−3 1.3664×10−3 1.5260×10−3 1.6201×10−3 1.0465×10−3

L2 1.1135×10−3 7.6676×10−3 8.5602×10−3 9.5926×10−3 6.9848×10−3

TPSRBFs method [5], N = 100

L∞ 1.2540×10−5 1.5554×10−5 3.3792×10−5 3.7753×10−5 . . .
L2 6.5422×10−5 1.1717×10−4 2.2011×10−4 2.5892×10−4 . . .

MQ quasi-interpolation scheme [11], N = 10

L∞ 1.25905 1.5428×10−5 3.3625×10−5 3.7412×10−5 . . .
L2 2.0694×10−5 3.7065×10−5 6.9684×10−5 8.1943×10−5 . . .

Figure 9 (left) shows the numerical simulation of Test Problem 3, taking [−1, 1], N = 51, ∆t =
0.0001, and time up to t = 20, and Figure 9 (right) shows the Labs error norm by taking [−1, 1], N = 101,
∆t = 0.0001, and t = 2.
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Figure 9. Numerical simulation (left) and Labs (right) for the Test Problem 3.

In Figure 10, we compare the sensitivity of shape parameter value c for both meshless methods,
local and global. It is clear from the figure that the LMM gave stable results in the range c ∈ (0, 100),
but on the other hand, the GMM gave stable results only in the range c ∈ (0, 0.18). Figure 11 shows the
condition number κ versus shape parameter c and number of nodal points N, which is self explanatory.



Symmetry 2019, 11, 394 12 of 18

0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

c

L
∞

 

 
MQ

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

c

L
∞

 

 
MQ

Figure 10. c versus the L∞ error norm of the LMM (left) and GMM (right) for Test Problem 3.
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Figure 11. c versus κ (left) and the number of nodal points N versus κ (right) of the LMM for Test
Problem 3.

Test Problem 4. The exact solutions for the 2D coupled Burgers’ Equation (3) are written as [12,14]:

U(x, y, t) =
3
4
− 1

4 (1 + exp ((−4x + 4y− t)(Re/32)))
,

V(x, y, t) =
3
4
+

1
4 (1 + exp ((−4x + 4y− t)(Re/32)))

.
(35)

In Table 8, the numerical results were obtained by the LMM in terms of the L∞ error norm for
Test Problem 4 using the IQ radial basis function with c = 20. We have used different N and Re and
∆t = 0.0001, t = 0.5. In this table, we have compared the numerical results of the proposed Local
meshless method with the local method of approximate particular solutions (LMAPS) [15] and the
local RBF-based DQmethod (LDQ) [15]. A full agreement between the results of the LMM and the
methods reported in [15] has been observed.

In Table 9, the performance of the LMM for Test Problem 4 is shown against the other
methods [12–14] at selected points by letting Re = 100 and ∆t = 0.0001, t = 2, N = 20× 20. These
results show the accuracy and stable performance of the LMM.

Numerical solutions of the LMM corresponding to Test Problem 4 are shown in Figures 12–15 at
different Reynolds numbers. It is clear from the figures that up to Re = 300, the proposed methods
can handle the coupled Burgers’ equation, but when we increased Reynolds number, the result
became unstable. In contrast, the LMM combined with the upwind technique showed stable results at
Re = 1000, and this phenomena can be seen in Figure 15.
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Table 8. Comparison of the numerical results of the 2D coupled Burgers’ equation for Test Problem 4.

U V

N/Re 1 20 100 1 20 100

121 FEDF 1.3×10−8 8.5×10−5 7.3×10−3 3.1×10−8 8.5×10−5 7.3×10−3

LMAPS [15] 7.4×10−6 9.7×10−5 7.4×10−3 1.0×10−5 8.8×10−5 7.4×10−3

LDQ [15] 1.4×10−5 6.7×10−5 7.3×10−3 1.9×10−5 7.5×10−5 7.3×10−3

441 FEDF 3.4×10−9 2.1×10−5 2.0×10−3 8.0×10−9 2.1×10−5 2.0×10−3

LMAPS [15] 1.9×10−6 2.4×10−5 2.1×10−3 2.6×10−6 2.1×10−5 2.0×10−3

LDQ [15] 3.4×10−6 1.7×10−5 2.0×10−3 4.7×10−6 1.9×10−5 2.0×10−3

961 FEDF 5.6×10−9 9.5×10−6 8.4×10−4 6.4×10−9 9.3×10−6 8.4×10−4

LMAPS [15] 8.3×10−7 1.1×10−5 8.5×10−4 1.1×10−6 9.2×10−6 8.4×10−4

LDQ [15] 1.5×10−6 7.5×10−6 8.4×10−4 2.1×10−6 8.1×10−6 8.2×10−4

Table 9. Comparison of the 2D coupled Burgers’ equation by using the FEDF for Test Problem 4.

U V

(x, y) (0.1, 0.1) (0.3, 0.3) (0.5, 0.5) (0.1, 0.1) (0.3, 0.3) (0.5, 0.5)

Exact 0.500482 0.500482 0.500482 0.999518 0.999518 0.999518
FEDF 0.500470 0.500443 0.500417 0.999530 0.999557 0.999583

Global RBFs method [14] 0.50035 0.50042 0.50046 0.99936 0.99951 0.99958
Eulerian-Lagrangian method [13] 0.50012 0.50042 0.50041 0.99946 0.99938 0.99941

Finite difference method [12] 0.49983 0.49977 0.49973 0.99826 0.99861 0.99821
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Figure 12. Numerical solution of the 2D coupled Burgers’ with Re = 300, t = 1, N = 61× 61 for Test
Problem 4.
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Figure 13. Numerical solution of the 2D coupled Burgers’ with Re = 500, t = 1 for Test Problem 4.
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Figure 14. Numerical solution of the 2D coupled Burgers’ combined with the upwind technique for
Re = 500, t = 1 for Test Problem 4.
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Figure 15. Numerical solution of the 2D coupled Burgers’ combined with the upwind technique for
Re = 1000, t = 1 for Test Problem 4.

To show the computational efficiency of the LMM over the GMM, we have done a CPU time
(in seconds) comparison, which is shown in Figure 16.
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Figure 16. Comparison of the CPU time of the LMM and the GMM with ∆t = 0.0001, t = 0.5 for Test
Problem 4.
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Test Problem 5. Finally, consider the 2D nonlinear RLW Equation (5) with the following exact solution:

U(x, y, t) =
q
2

sech2
(√

q
2p

(x + y− vt− x0 − y0)

)
, (36)

where q = 6(v−2)
2 and p =

√
6v.

The numerical results and CPU time for Test Problem 5 for v = 2.06, N = 50, ∆t = 0.5, [−80, 100],
and up to time t = 20 are shown in Table 10. This table makes evident that the LMM is an accurate
and efficient.

Table 10. L∞ error norm and CPU time for Test Problem 5.

t = 1 t = 5 t = 10 t = 15 t = 20

L∞

6.8814×10−4 3.4458×10−3 7.0255×10−3 1.2374×10−2 2.0904×10−2

CPU time (in seconds)

2.54 2.59 2.71 2.85 2.88

In Figure 17, the Labs error is shown at t = 10.
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Figure 17. Labs error norm of the LMM for Test Problem 5.

Eliminating the requirement of meshing and approximating the solution using uniform or
scattered points in rectangular, as well non-rectangular domains is one of the salient features
of the LMM. Numerical results of the RLW equation on non-rectangular domains are shown
in Figures 18 and 19. The L∞ error norm of the LMM in the computational domain shown in
Figures 18 (left) and 19 (left) was 6.8814× 10−4 and 1.7631× 10−3, respectively, at time t = 1.
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Figure 18. Computational domains (left) and numerical results (right) for Test Problem 5.
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Figure 19. Computational domains (left) and numerical results (right) for Test Problem 5.

4. Conclusions

In the present work, the local meshless method based on RBFs was applied to the 1D
Klein–Gordon, 2D coupled Burgers’, and 2D regularized long wave equations. To check the accuracy
and efficacy of the proposed scheme on both rectangular and non-rectangular domains, different
test problems have been considered. The results of the local meshless method were compared with
the exact/approximate solutions available in the existing literature. The stable results (in the case
of a high Reynolds number) of the LMM combined with the upwind technique strongly supported
the advantage of the LMM over other conventional methods. The LMM has been found to be a
flexible interpolation method, as it removes the sensitivity of the shape parameter and produces a
well-conditioned coefficient matrix.
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