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Abstract: Regular polytopes (RPs) are an extension of 2D (two-dimensional) regular polygons and
3D regular polyhedra in n-dimensional (n ≥ 4) space. The high abstraction and perfect symmetry are
their most prominent features. The traditional projections only show vertex and edge information.
Although such projections can preserve the highest degree of symmetry of the RPs, they can not
transmit their metric or topological information. Based on the generalized stereographic projection,
this paper establishes visualization methods for 5D RPs, which can preserve symmetries and convey
general metric and topological data. It is a general strategy that can be extended to visualize
n-dimensional RPs (n > 5).

Keywords: five-dimensional regular polytopes; fundamental root systems; stereographic projection;
kaleidoscope principle

1. Introduction

Regular polytopes (RPs) are an extension of 2D regular polygons and 3D regular polyhedra in
n-dimensional Euclidean space Rn (n ≥ 4), which have high abstraction and perfect symmetry [1–3].
For instance, the 5D hypercube {4, 3, 3, 3} has 32 vertices, 80 edges, 80 squares, 40 3D cubes, and 10
4D regular polytopes {4, 3, 3}. Those vertices, edges, squares, cubes, and 4D cells combine together
to form a very coordinated and symmetrical structure, which in total consists of 1920 symmetries.
The strong symmetrical structure of RPs thus gives them an aesthetic quality that has had a continuous
and deep influence in the fields of math, computer graphics, art, and commercial design [4–8].

The history of scientific and technological progress shows that the study of symmetry is of great
significance [9,10]. It has greatly promoted the integration and development of natural sciences
and has a far-reaching impact in practical fields. For example, the research of 2D symmetries
produces the profound result of planar symmetry groups, which is widely used in the fields of
architecture and decoration [4,11,12]. The study of 3D symmetrical structures has laid the foundation of
modern crystallography [13]. The exploration of RPs in higher dimensional space impels a profound
intersection between geometry and algebra and further makes many branches of mathematics
flourish [14]. The resulting technology has brought rapid innovation in the fields of physics, chemistry,
materials, etc.

In 2D or 3D space, people can construct and observe real models of regular polygons or polyhedra
so that they can understand their structures well. However, we cannot do that for RPs in more than
three dimensions. As a subject closely related to geometry, it is very important to establish the 2D or 3D
visualization methods for RPs. Based on the idea of reducing dimensions, many projection methods
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have been developed to visualize RPs, such as perspective [15], orthogonal [16], and canonical [17]
projections. However, these methods mainly aim to maintain symmetries of an RP to the highest
degree; the resulting images thus only transmit vertex and edge information. Therefore, a major
defect of existing projections is that they lack crucial metric or topological data; see the examples
illustrated in Figure 1. In fact, using traditional projections, it is difficult to establish their detailed
geometric structure. To this end, in [7], we studied the generalized stereographic projection to observe
4D RPs. This method preserves both the metric and topological data of 4D RPs, from which one can
identify their general symmetrical structure better.

(a) (b)

Figure 1. Traditional projections only show vertex and edge information. They lack crucial metric
or topological data, so that one can hardly understand the real structure of regular polytopes (RPs).
(a) Orthographic projection of a 5D hypercube {4, 3, 3, 3}. (b) Orthographic projection of an 8D
hypercube {4, 3, 3, 3, 3, 3, 3}.

Compared to 4D RPs [18,19], 5D RPs are more complex and have richer symmetries. In this paper,
by generalizing the idea of [7], we study in detail the 2D and 3D stereographic projections of 5D
RPs. It is a simple and universal strategy that can be extended to RPs in higher dimensional space.
The remainder of this paper is outlined as follows. In Section 2, we briefly introduce the structure of
5D RPs, including the symmetry group, fundamental root system, and an important algorithm that
transforms an arbitrary point of R5 into the fundamental region. Then, in Section 3, we describe the
3D and 2D visualization implementations of 5D RPs. Finally, Section 4 concludes the paper and shows
future directions on this subject.

2. Geometrical Features of 5D RPs

In this section, we briefly describe the geometrical features of 5D RPs, including their geometrical
structures, group representations, fundamental region systems, and common notations. Moreover,
we will present an important algorithm that transforms an arbitrary point of R5 into a fundamental
region symmetrically.

5D RPs are the analogs of regular polytopes in R4. Their geometrical structure is precisely
specified by the concise Schläfli symbols {p, q, r, s}, where p is the number of sides of each regular
polygon, q the number of regular polygons meeting at each vertex in a cell, r the number of regular
polyhedra {p, q}meeting along each edge, and s the number of 4D RP {p, q, r}meeting around each
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4D face. It is well known that there are only three regular polytopes in R5: 5-simplex {3, 3, 3, 3}, 5-cube
{4, 3, 3, 3}, and 5-orthoplex {3, 3, 3, 4}.

To understand the Schläfli symbol better, let us take the five-simplex {3, 3, 3, 3} as an example.
The first three tells us that face {3} is an equilateral triangle. The second three shows that there are
three {3}s meeting at each vertex. Thus we see that {3, 3} is the familiar regular tetrahedron, which is
called a cell. The third three means that there are three {3, 3}s meeting along each edge, which forms a
4D RP {3, 3, 3}, called a facet. Finally, the last three means that 5D {3, 3, 3, 3} has three 4D RPs {3, 3, 3}
around each 4D face. In short, the five-simplex {3, 3, 3, 3} has in total 6 vertices, 15 edges, 20 equilateral
triangles, 15 tetrahedrons, and 6 4D-RPs. The main geometrical features of 5D RPs are summarized in
Table 1.

Table 1. Geometrical features of 5D regular polytopes.

Name Schläfli symbol
{p, q, r, s}

Facets
{p, q, r}

Cells
{p, q}

Faces
{p} Edges Vertices

Face
Figure
{s}

Edge
Figure
{r, s}

Vertex
Figure
{q, r, s}

B5
5-simplex

(Hexateron) {3, 3, 3, 3}
6

{3, 3, 3}
15
{3, 3}

20
{3} 15 6 {3} {3, 3} {3, 3, 3}

D5

5-cube
(Penteract) {4, 3, 3, 3}

10
{4, 3, 3}

40
{4, 3}

80
{4} 80 32 {3} {3, 3} {3, 3, 3}

5-orthoplex
(Pentacross) {3, 3, 3, 4}

32
{3, 3, 3}

80
{3, 3}

80
{3} 40 10 {4} {3, 4} {3, 3, 4}

Each 5D RP {p, q, r, s} has a dual RP {s, p, q, r}. They share the same reflection symmetry group,
which is usually denoted by [p, q, r, s]. The five-simplex {3, 3, 3, 3} is self-dual and corresponds to
the reflection symmetry group [3, 3, 3, 3], which is usually denoted as B5. The other two 5D RPs,
five-cube {4, 3, 3, 3} and five-orthoplex {3, 3, 3, 4}, are dual and share the same reflection symmetry
group [3, 3, 3, 4], called D5. B5 and D5 have 3840 and 1920 symmetries, respectively.

Group [p, q, r, s] is generated by five proper reflections s1, s2, s3, s4, s5. The abstract
representation of group B5 = [3, 3, 3, 3] is:

s2
1 = · · · = s2

5 = (s1s2)
3 = · · · = (s4s5)

3 = (s1s3)
2 = (s2s4)

2 = (s3s5)
2 = 1,

where the last one represents the unit element. The abstract representation of group D5 = [3, 3, 3, 4] is:

s2
1 = · · · = s2

5 = (s1s2)
3 = (s2s3)

3 = (s3s4)
3 = (s3s5)

3 = (s1s3)
2 = (s2s4)

2 = (s4s5)
2 = 1.

Assume ~v is a nonzero normal vector with respect to hyperplane P, then the reflection Π~v
associated with P is:

Π~v(~x) = ~x− 2
(~x,~v)
(~v,~v)

~v,

where (·, ·) denotes the inner product of vectors. Obviously, Π~v(~x) = ~x if ~x ∈ P and Π~v(~x) = −~x
if ~x ∈ PT (the orthogonal space of P). The fundamental root system with respect to [p, q, r, s] is
a vector set formed by certain vectors so that the associated reflections are precisely generators of
[p, q, r, s]. In this paper, the fundamental root system associated with [p, q, r, s] is denoted by ∆[p,q,r,s] =

{~v1,~v2,~v3,~v4,~v5}. The fundamental root systems of B5 and D5 are listed in Table 2 [20].
The fundamental region under group [p, q, r, s] is a connected set, whose transformed copies

under the action of [p, q, r, s] cover the entire space without overlapping except at boundaries [1].
The fundamental region of 5D RP can be elegantly described by the fundamental root system [20]: it is
a closed set of points in R5 satisfying:
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D[p,q,r,s] = {~ξ ∈ R5|(~ξ, ~vk) ≥ 0, ∀ ~vk ∈ ∆[p,q,r,s]}.

Table 2. Fundamental root system with respect to symmetry group [p, q, r, s].

Name Schläfli Symbol
{p, q, r, s}

Reflection Symmetry Group
[p, q, r, s]

Fundamental Root System
∆[p,q,r,s] = {~v1,~v2,~v3,~v4,~v5}

Order of
[p, q, r, s]

B5
5-simplex

(Hexateron) {3, 3, 3, 3} [3, 3, 3, 3]
(1, -1, 0, 0,0), (0, 1, -1, 0, 0),
(0, 0, 1, -1, 0), (0, 0, 0, 1,-1),

(0, 0, 0, 0, 1)
3840

D5

5-cube
(Penteract) {4, 3, 3, 3}

[3, 3, 3, 4]
(1, -1, 0, 0,0), (0, 1, -1, 0, 0),
(0, 0, 1,-1, 0), (0, 0, 0, 1,-1),

(0, 0, 0, 1, 1)
1920

5-orthoplex
(Pentacross) {3, 3, 3, 4}

Assume P~vi
is the hyperplane passing through the origin with normal vector ~vi (i = 1, 2, ..., 5).

Then, geometrically, the fundamental region D[p,q,r,s] is a 5D cone surrounded by hyperplanes P~vi

whose vertex is the origin. Though it is a little bit difficult to imagine the appearance of D[p,q,r,s],
the 3D cone is familiar; see a 3D example illustrated in Figure 2.

(a) (b)

Figure 2. (a) Let Q ∈ D[p,q,r,s] and x0 /∈ D[p,q,r,s] be points on the different sides of plane P. Then,
x1 = Π~v(x0) and Q will lie on the same side of P, and the distance between x1 and Q is smaller than
x0 and Q. (b) A 3D schematic illustration that shows how Theorem 2.2 transforms x0 /∈ D[p,q,r,s] into
D[p,q,r,s] symmetrically. In this case, Q ∈ D[p,q,r,s] and x0 /∈ D[p,q,r,s]. Point x0 is first reflected about
plane OAB to point x1 /∈ D[p,q,r,s]. Then, point x1 is reflected about plane OBC to point x2 ∈ D[p,q,r,s].

For ~x0 ∈ R5 outside D[p,q,r,s], there is a fast algorithm to transform ~x0 symmetrically into the
fundamental region D[p,q,r,s]. To show how this algorithm works, we first introduce a lemma.

Lemma 1. Assume ~v is a nonzero normal vector with respect to the hyperplane P. Points~α0 and~α1 are points
on different sides of P, i.e., {

(~α0,~v) < 0
(~α1,~v) > 0

or

{
(~α0,~v) > 0
(~α1,~v) < 0

(1)
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where (·, ·) denotes the inner product of vectors. Then:

||Π~v(~α0)−~α1||2 < ||~α0 −~α1||2, (2)

where Π~v is the reflection associated with P and || · ||2 is the Euclidean norm.

Proof. It is obvious that:

||Π~v(~α0)−~α1||22 = ||
(
~α0 − 2

(~α0,~v)
(~v,~v)

~v
)
−~α1||22

=

(
~α0 −~α1 − 2

(~α0,~v)
(~v,~v)

~v,~α0 −~α1 − 2
(~α0,~v)
(~v,~v)

~v
)

= (~α0 −~α1,~α0 −~α1) + 4
(~α0,~v)(~α1,~v)

(~v,~v)

= ||~α0 −~α1||22 + 4
(~α0,~v)(~α1,~v)

(~v,~v)
.

By (1), we see (~α0,~v)(~α1,~v)
(~v,~v) < 0. Thus, we have (2).

We use a diagram to explain the geometric meaning of Lemma 1. In Figure 2a, assume Q ∈ D[p,q,r,s]
and x0 /∈ D[p,q,r,s] are points on different sides of a plane P. Then, x1 = Π~v(x0) and Q lie on the same
side of P. Lemma 1 says that the distance between x1 and Q is smaller than x0 and Q. In other words,
for two points on the different sides of a plane, the reflection transformation associated with P can
shorten their distance.

Theorem 1. Let D[p,q,r,s] be the fundamental region with respect to group [p, q, r, s]. For a point ~x0 outside
D[p,q,r,s], there exists a transformation Γn ∈ [p, q, r, s] and a symmetrically-placed point ~xn such that
~xn = Γn(~x0) ∈ [p, q, r, s].

Proof. Assume Q is an interior point of the fundamental region D[p,q,r,s]. For x0 /∈ D[p,q,r,s], recalling
the definition of D[p,q,r,s], there must exist a k ∈ {1, · · · , 5} so that (~x0,~vk) < 0. In other words, x0 and
Q lie on different sides of the hyperplane P~vk

(P~vk
is the hyperplane passing through the origin with

normal vector ~vk); denoted by ~x1 = Π~vk
(~x0). By Lemma 1, we have:

||~Q−Π~vk
(~x0)||2 < ||~Q−~x1||2.

If x1 /∈ D[p,q,r,s], there exists a Π~vj
so that ||~Q−Π~vj

(~x1)||2 < ||~Q−~x2||2, where ~x2 = Π~vj
(~x1).

Thus, each time a chosen reflection Π~vk
is employed, the transformed ~xi = Π~vk

(~xi−1) will get
nearer to Q and eventually fall into D[p,q,r,s]. Let n be the reflection times and Γn be the product of the
employed Π~vk

, then ~xn = Γn(~x0) ∈ [p, q, r, s].

Theorem 1 describes an algorithm that transforms points into D[p,q,r,s] symmetrically. Figure 2b
illustrates an example of how Theorem 1 works. For convenience, we call it the fundamental region
algorithm (FRA) and summarize the corresponding pseudocode in Algorithm 1 so that the interested
readers can create their own projection patterns. Essentially, it is the kaleidoscope principle in higher
dimension Euclidean space [1–3].
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Algorithm 1 Fundamental region algorithm (FRA).

Input: Point ~x0 ∈ R5 and fundamental root system {~v1,~v2,~v3,~v4,~v5}
Output: Point ~xn ∈ D[p,q,r,s] and reflection number n

1: Let n = 0
2: Compute sign: sign = 0
3: for k = 1–5 do

4: if (~x0,~vk) > 0 then

5: sign = sign + 1
6: end if
7: end for
8: while sign < 5 do

9: n = n + 1
10: for k = 1 to 5 do

11: if (~xn−1,~vk) < 0 then

12: ~xn = Π~vk
(~xn−1) = ~xn−1 − 2 (~xn−1,~vk)

(~vk ,~vk)
~vk

13: Πn = Π~vk
14: Compute sign: sign = 0
15: for i = 1 to 5 do

16: if (~xn,~vi) > 0 then

17: sign = sign + 1
18: end if
19: end for
20: break
21: end if
22: end for
23: end while
24: n is the repeated Steps 8–23, then point ~xn = Γn(~x0) = Πn ×Πn−1 × · · · ×Π1(~x0) ∈ D[p,q,r,s].

3. Visualizations of 5D RPs from Generalized Stereographic Projection

In this section, we first introduce the generalized stereographic projection. Then, we describe 2D
or 3D visualization methods for 5D RPs.

Denote by Sn = {(x1, x2, ..., xn+1) ∈ Rn+1|∑n+1
j=1 x2

j = 1} the unit sphere and Q = (0, 0, · · · , 0, 1) ∈ Sn.

Suppose E = {(x1, x2, ..., xn, xn+1) ∈ Rn+1|xn+1 = 0} is a hyperplane. Then, the stereographic
projection of a point p ∈ Sn \ {Q} is the intersection point q between line Qp and E. Figure 3 demonstrates
the situation of 2D and 3D stereographic projections. Assume p = (x1, x2, · · · , xn+1) ∈ Sn \ {Q}.
According to the stereographic projection, the relation between q and p is:

q = (X1, X2, · · · , Xn) = φn(p) =
1

1− xn+1
(x1, x2, · · · , xn). (3)

Let:

θ2 =
n

∑
j=1

X2
j . (4)

Then, the inverse of the stereographic projection is:

p = (x1, x2, · · · , xn+1) = φ−1
n (q) =

1
θ2 + 1

(
2X1, · · · , 2Xn, θ2 − 1

)
. (5)

It is easy to check that x2
1 + x2

2 + · · · + x2
n+1 = 1, which means that the pre-image of

(X1, X2, · · · , Xn) under projection φn always lies on Sn.
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(a)

E

q

p

Q

(b)

Figure 3. (a) Case of the stereographic projection in R3. (b) Case of the stereographic projection in R2.

For a point (X1, X2, X3) ∈ R3, we can compute the corresponding point (x1, x2, x3, x4, x5) ∈ R5 by
using stereographic projection twice, that is:

(x1, x2, x3, x4, x5) = r4 · φ−1
4

(
r3 · φ−1

3 (X1, X2, X3)
)

=
1

θ2
4 + 1

(
4X1r3r4

θ2
3 + 1

,
4X2r3r4

θ2
3 + 1

,
4X3r3r4

θ2
3 + 1

,
2r4(θ

2
3 − 1)

θ2
3 + 1

, θ2
4 − 1

)
(6)

=
1

θ2
4 + 1

· r3r4

θ2
3 + 1

(
4X1, 4X2, 4X3,

2(θ2
3 − 1)
r3

,
(θ2

3 + 1)(θ2
4 − 1)

r3r4

)

where:

θ2
3 =

3

∑
j=1

r2
3X2

j , θ2
4 =

(
r4

θ2
3 + 1

)2( 3

∑
j=1

(2r3Xj)
2 + (θ2

3 − 1)2

)
, (7)

and rk is the parameters specifying the radii of (k + 1)-dimensional sphere Sk.
Assume N is the number of steps employed in FRA. On average, each point of S4 will be

transformed into the fundamental region D[p,q,r,s] of 5D RPs within 10–13 times, a little larger than 4D
RPs (8–10 times [8]) and regular polyhedra (4–7 [7]). According to N odd or even, one can use two
colors to color a 3D point (X1, X2, X3) and obtain a two-color interlaced image of 5D RPs. We next use
this scheme to create some projection patterns in R2 and R3.

In the first situation, by fixing r3 = 2 and varying r4, Figure 4 shows the sphere projections of 5D
RPs. In the second situation, by fixing r4 = 0.5 and varying r3, Figures 5 and 6, respectively, illustrate
the sphere projections of B5 and D5. As the order of B5 is twice that of D5, it is easy to see that the
projection of B5 is more complex than D5. The value of r3 can be sensitive to small changes, so in
these two images, we have chosen certain values so that the change of projections is relatively obvious.
We observe an interesting phenomenon: at first, projections tend to be complex as r3 increases; however,
projections become simpler once r3 exceeds a certain threshold.

Figures 7 and 8, respectively, display the effect of unit solid sphere projections of 5D RPs, where
1/8 and 1/4 of the spherical solids are cut off so that they exhibit some inner details. For clarity, several
colors are used in the sections.
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[3,3,3,3] r4 = 0.4 r4 = 0.5 r4 = 0.6 r4 = 0.7 r4 = 0.9 r4 = 1.1

[3,3,3,4] r4 = 0.4 r4 = 0.5 r4 = 0.6 r4 = 0.7 r4 = 0.8 r4 = 0.9

Figure 4. Using Projection (7), symmetrical patterns of 5D RPs on the unit sphere with r3 = 2.

r3 = 0.4 r3 = 0.5 r3 = 0.6 r3 = 0.7 r3 = 0.8

r3 = 0.9 r3 = 1.2 r3 = 1.3 r3 = 1.4 r3 = 1.5

r3 = 1.6 r3 = 1.7 r3 = 1.8 r3 = 1.9 r3 = 2.0

r3 = 2.1 r3 = 2.2 r3 = 2.3 r3 = 2.4 r3 = 2.5

Figure 5. Using Projection (7), symmetrical patterns of [3,3,3,3] on the unit sphere with r4 = 0.5.

We next consider 2D projections of 5D RPs. For a point (X1, X2) ∈ R2, we can similarly
compute its corresponding point (x1, x2, x3, x4, x5) ∈ R5 by using stereographic projection three
times. More precisely,

(x1, x2, x3, x4, x5) = r4 · φ−1
4

(
r3 · φ−1

3

(
r2 · φ−1

2 (X1, X2)
))

= r3r4
(θ2

2+1)(θ2
3+1)(θ2

4+1)

(
8r2X1, 8r2X2, 4(θ2

2 − 1), 2(θ2
2+1)(θ2

3−1)
r3

, (θ
2
2+1)(θ2

3+1)(θ2
4−1)

r3r4

)
,

(8)
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where:

θ2
2 = ∑2

j=1 r2
2X2

j , θ2
3 =

(
r3

θ2
2+1

)2 (
∑2

j=1(2r2Xj)
2 + (θ2

2 − 1)2
)

,

θ2
4 =

(
r4

θ2
3+1
· r3

θ2
2+1

)2
(

∑2
j=1(4r2Xj)

2 +
(
2(θ2

2 − 1)
)2

+

(
(θ2

2+1)(θ2
3−1)

r3

)2
) (9)

and rk are parameters specifying the radii of the (k + 1)-dimensional sphere. By fixing r2 = 1 and
varying r3 and r4 separately, Figures 9 and 10 demonstrate the 2D projections of 5D RPs. Again, we see,
as r3 or r4 is increasing, those projections will first change from simple to complex and then back
to simple.

r3 = 0.1 r3 = 0.3 r3 = 0.4 r3 = 0.5 r3 = 0.6 r3 = 0.7

r3 = 0.8 r3 = 0.9 r3 = 1.1 r3 = 1.2 r3 = 1.3 r3 = 1.4

r3 = 1.5 r3 = 1.6 r3 = 1.7 r3 = 1.8 r3 = 1.9 r3 = 2.0

r3 = 2.1 r3 = 2.2 r3 = 2.3 r3 = 2.4 r3 = 2.5 r3 = 3.0

Figure 6. Using Projection (7), symmetrical patterns of [3,3,3,4] on the unit sphere with r4 = 0.5.

[3,3,3,3] r4 = 0.4 r4 = 0.5 r4 = 0.7 r4 = 0.9

[3,3,3,4] r4 = 0.4 r4 = 0.5 r4 = 0.7 r4 = 0.8

Figure 7. Using Projection (7), unit solid sphere projections of 5D RPs with radius r3 = 2.
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[3,3,3,3] r3 = 0.4 r3 = 0.6 r3 = 1.3 r3 = 1.7 r3 = 2.0 r3 = 2.4

[3,3,3,4] r3 = 0.4 r3 = 0.6 r3 = 1.3 r3 = 1.7 r3 = 2.0 r3 = 2.4

Figure 8. Using Projection (7), unit solid sphere projections of 5D RPs with r4 = 0.5.

[3,3,3,3] r4 = 0.1 r4 = 0.5 r4 = 0.9 r4 = 1.5 r4 = 2.0 r4 = 2.5

[3,3,3,4] r4 = 0.1 r4 = 0.5 r4 = 0.9 r4 = 1.5 r4 = 2.0 r4 = 2.5

Figure 9. Using Projection (8), symmetrical patterns of 5D RPs on the unit disc with r3 = 0.5.

[3,3,3,3] r3 = 0.1 r3 = 0.5 r3 = 0.9 r3 = 1.5 r3 = 2.0 r3 = 2.5

[3,3,3,4] r3 = 0.1 r3 = 0.5 r3 = 0.9 r3 = 1.5 r3 = 2.0 r3 = 2.5

Figure 10. Using Projection (8), symmetrical patterns of 5D RPs on the unit disc with r4 = 0.5.

4. Conclusions

Based on the geometrical meaning of RPs, this paper presents a convenient strategy to visualize
5D RPs, which could be extended to treat n-dimensional RPs (n > 5). We first introduced their
structure, Schläfli symbol, group representation, and fundamental root system. Then, we proved
the generalized kaleidoscope principle that transforms an arbitrary point of R5 into a fundamental
region symmetrically. For convenience, the kaleidoscope principle was summarized in Algorithm 1.
Using the algorithm, we finally presented the visualization implementations of 5D RPs.
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The foundations of RPs were laid by the Greeks over two thousand years ago. Over the past two
hundred years, many excellent mathematicians around the world have made a systematic, extensive,
and in-depth study of RPs. In the bibliography of the classic Regular Polytopes, H.S.M.Coxeter
listed the name of 110 mathematicians: 30 German, 27 British, 12 American, 11 French, 7 Dutch,
8 Swiss, 4 Italian, 2 Austrian, 2 Hungarian, 2 Polish, 2 Russian, 1 Norwegian, 1 Danish, and 1 Belgian.
He commented that “the chief reason for studying regular polyhedra is still the same as in the time of
the Pythagoreans, namely, that their symmetrical shapes appeal to one’s artistic sense”. The first
edition of the Regular Polytopes was published in 1948, but there has been no major change in the
following. Due to the early completion of the book—the computer had just been born–much of the
visualization study of RPs is not discussed in depth.

The fundamental root system and fundamental region, which in practice helped H.S.M. Coxeter
to complete the classification of irreducible reflective groups [20], constituted the core theoretical
tool of this study. In this paper, we saw that those tools can be used easily to create infinite exotic
spherical tilings. Generally speaking, the construction of spherical tilings is not easy. For the past
decade, many very complex methods have been reported to construct spherical tilings; see [21,22] and
the references therein. In the future, we plan to investigate the relation between Algorithm 1 and the
associated spherical tilings, which aims to present a simple and efficient approach to construct rich
spherical tilings.
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