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Abstract: Recently, neutrosophic sets are found to be more general and useful to express
incomplete, indeterminate and inconsistent information. The purpose of this paper is to introduce
new aggregation operators based on logarithmic operations and to develop a multi-criteria
decision-making approach to study the interaction between the input argument under the single
valued neutrosophic (SVN) environment. The main advantage of the proposed operator is that it can
deal with the situations of the positive interaction, negative interaction or non-interaction among the
criteria, during decision-making process. In this paper, we also defined some logarithmic operational
rules on SVN sets, then we propose the single valued neutrosophic hybrid aggregation operators as a
tool for multi-criteria decision-making (MCDM) under the neutrosophic environment and discussd
some properties. Finally, the detailed decision-making steps for the single valued neutrosophic
MCDM problems were developed, and a practical case was given to check the created approach and
to illustrate its validity and superiority. Besides this, a systematic comparison analysis with other
existent methods is conducted to reveal the advantages of our proposed method. Results indicate that
the proposed method is suitable and effective for decision process to evaluate their best alternative.

Keywords: single valued neutrosophic sets; logarithmic operational laws; logarithmic aggregation
operators; MCGDM problems

1. Introduction

The information involves, in most of the real-life decision-making problems are often incomplete,
indeterminate and inconsistent. Fuzzy set theory introduced by Zadeh [1] deals with imprecise,
inconsistent information. Although fuzzy set information proved to be very handy but it cannot
express the information about rejection. Atanassov [2] introduced the intuitionistic fuzzy set (IFS) to
bring in non-membership. Non membership function represents degree of rejection. To incorporate
indeterminate and inconsistent information, in addition to incomplete information, the concept of
neutrosophic set (NS) proposed by Smarandache [3]. A NS generalizes the notion of the classic set,
fuzzy set (FS) [1], IFS [2], paraconsistent set [4], dialetheist set, paradoxist set [4], and tautological
set [4] to name a few. In NS, indeterminacy is quantified explicitly, and truth, indeterminacy, and falsity
memberships are expressed independently. The NS generalizes different types of non-crisp sets but
in real scientific and engineering applications the NS and the set-theoretic operators require to be
specified. For a detailed study on NS we refer to [5–17].
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Related Work

Most of the weighted aggregation operators consider situations in which criteria and preferences
of experts are independent, which means that additivity is a main property of these operators.
However, in real life decision-making problems, the criteria of the problems are often interdependent
or interactive.

Most of the weighted average operators are based on the basic algebraic product and algebraic
sum of single valued neutrosophic numbers (SVNNs) which are not the only operations available to
model the intersection and union of SVNNs. The logarithmic algebraic product and sum are two good
alternatives of algebraic operations which can be used the model intersection and union of SVNNs.
Moreover, it is observed that in the literature there is little investigation on aggregation operators
utilizing the logarithmic operations on SVNNs. For a detailed review on the applications of logarithmic
operations, we refer to [10]. As already mentioned that the single valued neutrosophic set (SVNS) is an
effective tool to describe the uncertain, incomplete and indeterminate information. The logarithmic
single valued neutrosophic hybrid and logarithmic generalized single valued neutrosophic algebraic
operators have the ability to express interactions among the criteria and it can replace the weighted
average to aggregate dependent criteria for obtaining more accurate results. Motivated by these,
we find it interesting to develop the logarithmic single valued neutrosophic hybrid aggregation
operators for decision-making with neutrosophic information.

Also, we proposed the possibility of a degree-ranking technique for SVNNs from the probability
point of view, since the ranking of SVNNs is very important for decision-making under the SVN
environment. Furthermore, we proposed a multi-criteria decision-making model based on the
logarithmic single valued neutrosophic hybrid weighted operators. Forstudy the multi-criteria
decision-making models, we refer [18–31].

The aim of writing this paper is to introduce a decision-making method for MCDM problems in
which there exist interrelationships among the criteria. The contributions of this research are:

(1) A novel logarithmic operations for neutrosophic information is defined, which can overcome
the weaknesses of algebraic operations and obtain the relationship between various SVNNs.

(2) Logarithmic operators for IFSs are extended to logarithmic single-valued neutrosophic hybrid
operators and logarithmic generalized single-valued neutrosophic operators, namely, logarithmic
single valued neutrosophic hybrid weighted averaging (L-SVNHWA), logarithmic single valued
neutrosophic hybrid weighted geometric (L-SVNHWG), logarithmic generalized single-valued
neutrosophic weighted averaging (L-GSVNWA) and logarithmic single-valued neutrosophic weighted
geometric (L-GSVNWG) to SVNSs, which can overcome the algebraic operators drawbacks.

(3) A decision-making approach to handle the MCDM problems under the neutrosophic
informations is introduced.

To attain our research goals which are stated above, the arrangement of the paper is offered
as: Section 2 concentrates on basic definitions and operations of existing extensions of fuzzy set
theories. In Section 3, some novel logarithmic operational laws of SVNSs are presented. Section 4
defines the logarithmic hybrid aggregation operators for SVNNs. In Section 5, an algorithm for
handling the neutrosophic MCDM problem based on the developed logarithmic operators is presented.
In Section 5.1, an application to verify the novel method is given and Section 5.2 presents the
comparison study about algebraic and logarithmic aggregation operators. Section 6 consists of the
conclusion of the study.

2. Preliminaries

This section includes the concepts and basic operations of existing extensions of fuzzy sets to
make the study self contained.
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Definition 1. [2] For a set <, by an intuitionistic fuzzy set in <, we have a structure

ζ = {〈Pσ (r) , Nσ (r)〉 |r ∈ <} , (1)

in which Pσ : < → Θ and Nσ : < → Θ indicate the membership and non-membership grades in <, Θ = [0, 1]
be the unit interval. Also the following condition is satisfied by Pσ and Nσ, 0 ≤ Pσ (r) + Nσ (r) ≤ 1; ∀ r ∈ <.
Then ζ is said to be intuitionistic fuzzy set in <.

Definition 2. [32] For a set <, by a neutrosophic set in <, we have a structure

ζ = {〈Pσ (r) , Iσ (r) , Nσ (r)〉 |r ∈ <} , (2)

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate the truth, indeterminacy and falsity memberships
in<, Θ = ]0−, 1+[. Also the following condition is satisfied by Pσ, Iσ and Nσ, 0− ≤ Pσ (r)+ Iσ (r)+ Nσ (r) ≤
3+; ∀ r ∈ <. Then, ζ is said to be neutrosophic set in <.

Definition 3. [33] For a set <, by a single valued neutrosophic set in <, we mean a structure

ζ = {〈Pσ (r) , Iσ (r) , Nσ (r)〉 |r ∈ <} , (3)

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate the truth, indeterminacy and falsity
memberships in <, Θ = [0, 1]. Also the following condition is satisfied by Pσ, Iσ and Nσ, 0 ≤ Pσ (r) + Iσ (r) +
Nσ (r) ≤ 3; ∀r ∈ <. Then, ζ is said to be a single valued neutrosophic set in <. We denote this triplet
ζ = 〈Pσ (r) , Iσ (r) , Nσ (r)〉, in whole study called SVNN.

Ye [14], Wang et al. [33] and [34] proposed the basic operations of SVNNs, which are as follows:

Definition 4. [34] For any two SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

and ζq =〈
Pξq (r) , Iξq (r) , Nξq (r)

〉
in <. The union, intersection and compliment are proposed as:

(1) ζp ⊆ ζq i f f ∀r ∈ <, Pξp (r) ≤ Pξq (r) , Iξp (r) ≥ Iξq (r) and Nξp (r) ≥ Nξq (r);
(2) ζp = ζq i f f ζp ⊆ ζq and ζq ⊆ ζp;

(3) ζp ∪ ζq =
〈

max
(

Pξp , Pξq

)
, min

(
Iξp , Iξq

)
, min

(
Nξp , Nξq

)〉
;

(4) ζp ∩ ζq =
〈

min
(

Pξp , Pξq

)
, max

(
Iξp , Iξq

)
, max

(
Nξp , Nξq

)〉
;

(5) ζc
p =

〈
Nξp , Iξp , Pξp

〉
.

Definition 5. [13,15,33] For any two SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

and ζq =〈
Pξq (r) , Iξq (r) , Nξq (r)

〉
in < and β ≥ 0.Then the operations of SVNNs are proposed as:

(1) ζp ⊕ ζq =
{

Pξp + Pξq − Pξp · Pξq , Iξp · Iξq , Nξp · Nξq

}
;

(2) β · ζp =
{

1− (1− Pξp)
β, (Iξp)

β, (Nξp)
β
}

;

(3) ζp ⊗ ζq =
{

Pξp · Pξq , Iξp + Iξq − Iξp · Iξq , Nξp + Nξq − Nξp · Nξq

}
;

(4) ζ
β
p =

{
(Pξp)

β, 1− (1− Iξp)
β, 1− (1− Nξp)

β
}

.

(5) βζp =


(

β
1−Pξp , 1− β

Iξp , 1− β
Nξp
)

i f β ∈ (0, 1)((
1
β

)1−Pξp , 1−
(

1
β

)Iξp , 1−
(

1
β

)Nξp
)

i f β ≥ 1

Definition 6. [33] For any three SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

, ζq =
〈

Pξq (r) , Iξq (r) , Nξq (r)
〉

and ζl =
〈

Pσl (r) , Iσl (r) , Nσl (r)
〉

in < and β1, β2 ≥ 0. Then, we have
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(1) ζp ⊕ ζq = ζq ⊕ ζp;
(2) ζp ⊗ ζq = ζq ⊗ ζp;
(3) β1(ζp ⊕ ζq) = β1ζp ⊕ β1ζq, β1 > 0;

(4) (ζp ⊗ ζq)β1 = ζ
β1
p ⊗ ζ

β1
q , β1 > 0;

(5) β1ζp ⊕ β2ζp = (β1 + β2)ζp, β1 > 0, β2 > 0;

(6) ζ
β1
p ⊗ ζ

β2
p = ζ

β1+β2
p , β1 > 0, β2 > 0;

(7) (ζp ⊕ ζq)⊕ ζl = ζp ⊕ (ζq ⊕ ζl);
(8) (ζp ⊗ ζq)⊗ ζl = ζp ⊗ (ζq ⊗ ζl).

Definition 7. [33] For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. Then score and accuracy values are
defined as:
(1) S̃(ζp) = Pξp − Iξp − Nξp

(2) Ã(ζp) = Pξp + Iξp + Nξp

The above definitions of score and accuracy funtions suggest which SVNN is greater than other
SVNNs. The comparison technique is defined in following definition.

Definition 8. [33] For any SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2) in <.

Then comparison techniques are proposed as:
(1) If S̃(ζ1) < S̃(ζ2), then ζ1 < ζ2,
(2) If S̃(ζ1) > S̃(ζ2), then ζ1 > ζ2,
(3) If S̃(ζ1) = S̃(ζ2), and
(a) Ã(ζ1) < Ã(ζ2), then ζ1 < ζ2,
(b) Ã(ζ1) > Ã(ζ2), then ζ1 > ζ2,
(c) Ã(ζ1) = Ã(ζ2), then ζ1 ≈ ζ2.

Garg and Nancy [10] proposed some logarithmic-based aggregation operators, which are
as follows:

Definition 9. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single valued

neutrosophic weighted averaging (L-SVNWA) operator is defined as:

L− SVNWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσp Pξp

)βp
,

n
∏

p=1

(
`ogσp

(
1− Iξp

))βp
,

n
∏

p=1

(
`ogσp

(
1− Nξp

))βp


, (4)

where βp (p = 1, 2, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1.
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Definition 10. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of the logarithmic single-valued

neutrosophic-ordered weighted averaging (L-SVNOWA) operator is defined as:

L− SVNOWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσp Pζη(p)

)βp
,

n
∏

p=1

(
`ogσp

(
1− Iζη(p)

))βp
,

n
∏

p=1

(
`ogσp

(
1− Nζη(p)

))βp


, (5)

where βp (p = 1, 2, ..., n) are weighting vector with βp ≥ 0, ∑n
p=1 βp = 1 and pth largest weighted value is

ζη(p) consequently by total order ζη(1) ≥ ζη(2) ≥ ... ≥ ζη(n).

Definition 11. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single-valued

neutrosophic-weighted geometric (L-SVNWG) operator is defined as:

L− SVNWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσp Pξp

)βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Iξp

))βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Nξp

))βp


, (6)

where βp (p = 1, 2, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1.

Definition 12. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single valued

neutrosophic ordered weighted geometric (L-SVNOWG) operator is defined as:

L− SVNOWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσp Pξη(p)

)βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Iξη(p)

))βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Nξη(p)

))βp


, (7)

where βp (p = 1, 2, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth are the largest weighted

value is ζη(p) consequently by total order ζη(1) ≥ ζη(2) ≥ ... ≥ ζη(n).

3. Logarithmic Operational Laws

Motivated by the well growing concept of SVNSs, we introduce some novel logarithmic
operational laws for single valued neutrosophic numbers. As in real number systems `ogσ0 is
meaningless and `ogσ1 is not defined therefore, in our study we take non-empty SVNSs and σ 6= 1,
where σ is any real number.

Definition 13. For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. The logarithmic SVNN is defined as:

`ogσζp =
{〈

1−
(
`ogσPξp (r)

)
, `ogσ

(
1− Iξp (r)

)
, `ogσ

(
1− Nξp (r)

)〉
|r ∈ <

}
, (8)
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in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ are indicated the truth, indeterminacy and falsity
memberships in <, Θ = [0, 1] be the unit interval. Also following condition is satisfied by Pσ, Iσ and Nσ,
0 ≤ Pσ (r) + Iσ (r) + Nσ (r) ≤ 3;∀ r ∈ <. Therefore the truth membership grade is

1−
(
`ogσPξp (r)

)
: < → Θ, such that 0 ≤ 1−

(
`ogσPξp (r)

)
≤ 1, for all r ∈ <

the indeterminacy membership is

`ogσ

(
1− Iξp (r)

)
: < → Θ, such that 0 ≤ `ogσ

(
1− Iξp (r)

)
≤ 1, for all r ∈ <

and falsity membership is

`ogσ

(
1− Nξp (r)

)
: < → Θ, such that 0 ≤ `ogσ

(
1− Nξp (r)

)
≤ 1, for all r ∈ <.

Therefore

`ogσζp =
{〈

1−
(
`ogσPξp (r)

)
, `ogσ

(
1− Iξp (r)

)
, `ogσ

(
1− Nξp (r)

)〉
|r ∈ <

}
0 < σ ≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
≤ 1, σ 6= 1

is SVNS.

Definition 14. For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. If

`ogσζp =




1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 0 < σ ≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1


1−

(
`og 1

σ
Pξp (r)

)
,

`og 1
σ

(
1− Iξp (r)

)
,

`og 1
σ

(
1− Nξp (r)

)
 0 < 1

σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1,

σ 6= 1

(9)

then the function `ogσζp is known to be a logarithmic operator for SVNS, and its value is said to be logarithmic
SVNN (L-SVNN). Here, we take `ogσ0 = 0, σ > 0, σ 6= 1.

Theorem 1. [10] For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <, then `ogσζp is also be SVNN.

Now, we give some discussion on the basic properties of the L-SVNN.

Definition 15. For any two L-SVNNs `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 and `ogσζq =


1−

(
`ogσPξq (r)

)
,

`ogσ

(
1− Iξq (r)

)
,

`ogσ

(
1− Nξq (r)

)
 in < and β ≥ 0.Then the logarithmic operations of L-SVNNs are propose as

(1) `ogσζp ⊕ `ogσζq =


1−

(
`ogσPξp (r)

)
·
(
`ogσPξq (r)

)
,

`ogσ

(
1− Iξp (r)

)
· `ogσ

(
1− Iξq (r)

)
,

`ogσ

(
1− Nξp (r)

)
· `ogσ

(
1− Nξq (r)

)
 ;
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(2) β · `ogσζp =


1−

(
`ogσPξp (r)

)β
,(

`ogσ

(
1− Iξp (r)

))β
,(

`ogσ

(
1− Nξp (r)

))β

 ;

(3) `ogσζp ⊗ `ogσζq =


1−

(
`ogσPξp (r)

)
· 1−

(
`ogσPξq (r)

)
,

1−
(

1− `ogσ

(
1− Iξp (r)

))
·
(

1− `ogσ

(
1− Iξq (r)

))
,

1−
(

1− `ogσ

(
1− Nξp (r)

))
·
(

1− `ogσ

(
1− Nξq (r)

))
 ;

(4)
(
`ogσζp

)β
=



(
1−

(
`ogσPξp (r)

))β
,

1−
(

1− `ogσ

(
1− Iξp (r)

))β
,

1−
(

1− `ogσ

(
1− Nξp (r)

))β

 .

Theorem 2. [10] For any two L-SVNNs `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 (p = 1, 2) in <, with 0 <

σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, β, β1, β2 > 0 be any real numbers. Then

(1) β (`ogσζ1 ⊕ `ogσζ2) = β`ogσζ1 ⊕ β`ogσζ2;
(2) (`ogσζ1 ⊗ `ogσζ2)

β = (`ogσζ1)
β ⊗ (`ogσζ2)

β ;
(3) β1`ogσζ1 ⊕ β2`ogσζ1 = (β1 + β2) `ogσζ1;
(4) (`ogσζ1)

β1 ⊗ (`ogσζ1)
β2 = (`ogσζ1)

(β1+β2) ;

(5)
(
(`ogσζ1)

β1
)β2

= (`ogσζ1)
β1β2 .

Comparison Technique for L-SVNNs

Definition 16. [10] For any L-SVNN `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 in <. Then score and accuracy

values are define as
(1) S̃(`ogσζp) = 1−

(
`ogσPξp (r)

)
− `ogσ

(
1− Iξp (r)

)
−
(
`ogσ

(
1− Nξp (r)

))
(2) Ã(`ogσζp) = 1−

(
`ogσPξp (r)

)
+ `ogσ

(
1− Iξp (r)

)
+
(
`ogσ

(
1− Nξp (r)

))
The above defined score and accuracy values suggest which L-SVNN are greater than other

L-SVNNs. The comparison technique is defined in the following definition.

Definition 17. For any L-SVNNs `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 (p = 1, 2) in <. Then, comparison

technique is proposed as:
(1) If S̃(`ogσζ1) < S̃(`ogσζ2) then `ogσζ1 < `ogσζ2,
(2) If S̃(`ogσζ1) > S̃(`ogσζ2) then `ogσζ1 > `ogσζ2,
(3) If S̃(`ogσζ1) = S̃(`ogσζ2) then
(a) Ã(`ogσζ1) < Ã(`ogσζ2) then `ogσζ1 < `ogσζ2,
(b) Ã(`ogσζ1) > Ã(`ogσζ2) then `ogσζ1 > `ogσζ2,
(c) Ã(`ogσζ1) = Ã(`ogσζ2) then `ogσζ1 ≈ `ogσζ2.
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4. Logarithmic Aggregation Operators for L-SVNNs

Now, we propose novel logarithmic hybrid aggregation operators for L-SVNNs based on
logarithmic operations laws as follows:

4.1. Logarithmic Hybrid Averaging Operator

Definition 18. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic single valued neutrosophic hybrid

weighted averaging (L-SVNHWA) operator is

L− SVNHWA (ζ1, ζ2, ..., ζn) =
n

∑
p=1

ωp`ogσp ζ∗η(p), (10)

where βp (p = 1, ..., n) is the weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) = nβpζη(p), P ∈ N
)

consequently by total order ζ∗
η(1) ≥ ζ∗

η(2) ≥ ... ≥ ζ∗
η(n). Also, the associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Theorem 3. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then by using logarithmic operations and Definition 18,

L− SVNHWA is defined as

L− SVNHWA (ζ1, ζ2, ..., ζn)

=




1−

n
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



1−
n
∏

p=1

(
`og 1

σp
P∗ξη(p)

)ωp

,

n
∏

p=1

(
`og 1

σp

(
1− I∗ξη(p)

))ωp

,

n
∏

p=1

(
`og 1

σp

(
1− N∗ξη(p)

))ωp


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(11)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) = nβpζη(p), P ∈ N
)

consequently by total order ζ∗
η(1) ≥ ζ∗

η(2) ≥ ... ≥ ζ∗
η(n). Also the associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Proof. Using mathematical induction to prove Equation (3), we proceed as:
(a) For n = 2, since

ω1`ogσ1 ζ∗η(1) =


1−

(
`ogσ1 P∗ξη(1)

)ω1
,(

`ogσ1

(
1− I∗ξη(1)

))ω1
,(

`ogσ1

(
1− N∗ξη(1)

))ω1


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and

ω2`ogσ2 ζ∗η(2) =


1−

(
`ogσ2 P∗ξη(2)

)ω2
,(

`ogσ2

(
1− I∗ξη(2)

))ω2
,(

`ogσ2

(
1− N∗ξη(2)

))ω2


Then

L− SVNHWA (ζ1, ζ2) = ω1`ogσ1 ζ∗η(1) ⊕ω2`ogσ2 ζ∗η(2)

=


1−

(
`ogσ1 P∗ξη(1)

)ω1
,(

`ogσ1

(
1− I∗ξη(1)

))ω1
,(

`ogσ1

(
1− N∗ξη(1)

))ω1

⊕


1−
(
`ogσ2 P∗ξη(2)

)ω2
,(

`ogσ2

(
1− I∗ξη(2)

))ω2
,(

`ogσ2

(
1− N∗ξη(2)

))ω2



=


1−

(
`ogσ1 P∗ξη(1)

)ω1 ·
(
`ogσ2 P∗ξη(2)

)ω2
,(

`ogσ1

(
1− I∗ξη(1)

))ω1 ·
(
`ogσ2

(
1− I∗ξη(2)

))ω2
,(

`ogσ1

(
1− N∗ξη(1)

))ω1 ·
(
`ogσ2

(
1− N∗ξη(2)

))ω2



=


1−

2
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


.

(b) Now Equation (3) is true for n = k,

L− SVNHWA (ζ1, ζ2, ..., ζk) =



1−
k

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

k
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


.

(c) Now, we prove that Equation (3) for n = k + 1, that is

L− SVNHWA (ζ1, ζ2, ..., ζk) =
k

∑
p=1

ωp`ogσp ζ∗η(p) + ωk+1`ogσk+1 ζ∗η(k+1)
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L− SVNHWA (ζ1, ζ2, ..., ζk)

=



1−
k

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

k
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


⊕


1−

(
`ogσk+1 P∗ξη(k+1)

)ωk+1
,(

`ogσk+1

(
1− I∗ξη(k+1)

))ωk+1
,(

`ogσk+1

(
1− N∗ξη(k+1)

))ωk+1



=



1−
k+1
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

k+1
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k+1
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


Thus Equation (3) is true for n = z + 1. Hence its satisfies for whole n. Therefore

L− SVNHWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


.

In a similarly way, if 0 < 1
σp
≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, we can also obtain

L− SVNHWA (ζ1, ζ2, ..., ζn) =



1−
n
∏

p=1

(
`og 1

σp
P∗ξη(p)

)ωp

,

n
∏

p=1

(
`og 1

σp

(
1− I∗ξη(p)

))ωp

,

n
∏

p=1

(
`og 1

σp

(
1− N∗ξη(p)

))ωp


which completes the proof.

Remark 1. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− SVNHWA operator is reduced as follows

L− SVNHWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσP∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσ

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσ

(
1− N∗ξη(p)

))ωp


. (12)

Properties

L− SVNHWA operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− SVNHWA (ζ1, ζ2, ..., ζn) = ζ. (13)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp P∗ξp
, maxp I∗ξp

, maxp N∗ξp

〉
and ζ+p =

〈
maxp P∗ξp

, minp I∗ξp
, minp N∗ξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− SVNHWA (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (14)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζη(p) ⊆ ζ∗η(p) for (p = 1, ..., n) , then

L− SVNHWA (ζ1, ζ2, ..., ζn) ⊆ L− SVNHWA (ζ∗1 , ζ∗2 , ..., ζ∗n) . (15)

4.2. Logarithmic Hybrid Geometric Operators

Definition 19. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic single valued neutrosophic hybrid

weighted geometric (L-SVNHWG) operator is

L− SVNHWG (ζ1, ζ2, ..., ζn) =
n

∏
p=1

(
`ogσp ζ∗η(p)

)ωp
(16)

where βp (p = 1, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) =
(

ζη(p)

)nβp
, P ∈ N

)
consequently by total order ζ∗

η(1) ≥ ζ∗
η(2) ≥ ... ≥ ζ∗

η(n). Also associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Theorem 4. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then by using logarithmic operations and Definition 19,

L−SVNHWG define as

L− SVNHWG (ζ1, ζ2, ..., ζn)

=





n
∏

p=1

(
1− `ogσp P∗ξη(p)

)βp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξη(p)

)))βp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− n∗ξη(p)

)))βp


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



n
∏

p=1

(
1− `og 1

σp
P∗ξη(p)

)βp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− I∗ξη(p)

)))βp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− n∗ξη(p)

)))βp


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(17)

where βp (p = 1, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) =
(

ζη(p)

)nβp
, P ∈ N

)
consequently by total order ζ∗

η(1) ≥ ζ∗
η(2) ≥ ... ≥ ζ∗

η(n). Also associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Proof. Using mathematical induction to prove Equation (4), we proceed as:
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(a) For n = 2, since

(`ogσ1 ζ∗1)
ω1 =


(

1− `ogσ1 P∗ξ1

)ω1

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1


and

(`ogσ2 ζ∗2)
ω2 =


(

1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2

 .

Then

L− SVNHWG (ζ1, ζ2) = (`ogσ1 ζ∗1)
ω1 ⊗ (`ogσ2 ζ∗2)

ω2

=


(

1− `ogσ1 P∗ξ1

)ω1

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1

⊗


(
1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2



=


(

1− `ogσ1 P∗ξ1

)ω1 ·
(

1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1 ·
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1 ·
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2



=



2
∏

p=1

(
1− `ogσp P∗ξp

)ωp
,

1−
2

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
2

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


.

(b) Now Equation (4) is true for n = k,

L− SVNHWG (ζ1, ζ2, ..., ζk) =



k
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


,

(c) Now, we prove that Equation (4) for n = k + 1, that is

L− SVNHWG (ζ1, ζ2, ..., ζk, ζk+1) =
k

∏
p=1

(
`ogσp ζp

)ωp
⊗
(
`ogσk+1 ζk+1

)ωk+1
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L− SVNHWG (ζ1, ζ2, ..., ζk, ζk+1)

=



k
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


⊗


(

1− `ogσp P∗ξk+1

)ωk+1

1−
(

1−
(
`ogσp

(
1− I∗ξk+1

)))ωk+1

1−
(

1−
(
`ogσp

(
1− N∗ξk+1

)))ωk+1



=



k+1
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k+1
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k+1
∏

p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


Thus Equation (4) is true for n = z + 1. Hence it is satisfied for all n. Therefore

L− SVNHWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


.

In a similar way, if 0 < 1
σp
≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, we can also obtain

L− SVNHWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `og 1

σp
P∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− N∗ξp

)))ωp


which completes the proof.

Remark 2. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− SVNHWG operator reduced as follows

L− SVNHWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσP∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`ogσ

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`ogσ

(
1− N∗ξp

)))ωp


. (18)

Properties

L− SVNHWG operator satisfies some properties are enlist below;
(1) Idempotency: for any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− SVNHWG (ζ1, ζ2, ..., ζn) = ζ. (19)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− SVNHWG (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (20)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− SVNHWG (ζ1, ζ2, ..., ζn) ⊆ L− SVNHWG (ζ∗1 , ζ∗2 , ..., ζ∗n) . (21)

4.3. Generalized Logarithmic Averaging Operator

Definition 20. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic generalized single-valued

neutrosophic weighted averaging (L-GSVNWA) operator is

L− GSVNWA (ζ1, ζ2, ..., ζn) =

(
n

∑
p=1

βp`ogσp

(
ζp
)γ

) 1
γ

(22)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Theorem 5. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, γ ≥ 1. Then by using logarithmic operations and Definition 20,

L− GSVNWA define as

L− GSVNWA (ζ1, ζ2, ..., ζn)



(
1−

n
∏

p=1

(
1−

(
1−

(
`ogσp Pξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσp

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσp

(
1− Nξp

))γ)βp
] 1

γ


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



(
1−

n
∏

p=1

(
1−

(
1−

(
`og 1

σp
Pξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `og 1

σp

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `og 1

σp

(
1− Nξp

))γ)βp
] 1

γ


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(23)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Apparently, if we use γ = 1, then the L−GSVNWA operator is becomes into L− SVNWA operator.

Proof. Theorem 5 take the form by utilized the technique of mathematical induction and procedure is
eliminate here.
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Remark 3. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− GSVNWA operator reduced as follows

L− GSVNWA (ζ1, ζ2, ..., ζn) =



(
1−

n
∏

p=1

(
1−

(
1−

(
`ogσPξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσ

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσ

(
1− Nξp

))γ)βp
] 1

γ


. (24)

Properties

L− GSVNWA operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− GSVNWA (ζ1, ζ2, ..., ζn) = ζ. (25)

(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− GSVNWA (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (26)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− GSVNWA (ζ1, ζ2, ..., ζn) ⊆ L− GSVNWA (ζ∗1 , ζ∗2 , ..., ζ∗n) . (27)

4.4. Generalized Logarithmic Geometric Operator

Definition 21. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with

0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic generalized single valued

neutrosophic weighted geometric (L-GSVNWG) operator is

L− GSVNWG (ζ1, ζ2, ..., ζn) =

(
n

∑
p=1

(
`ogσp

(
ζp
)γ
)βp

) 1
γ

(28)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.
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Theorem 6. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in<, with 0 < σp ≤

min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, γ ≥ 1. Then by using logarithmic operations and definition (21),

L− GSVNWG define as

L− GSVNWG (ζ1, ζ2, ..., ζn)



1−
[

1−
n
∏

p=1

(
1−

(
`ogσp Pξp

)γ)βp
] 1

γ

,(
1−

n
∏

p=1

(
1−

(
`ogσp

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`ogσp

(
1− Nξp

))γ)βp
) 1

γ


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



1−
[

1−
n
∏

p=1

(
1−

(
`og 1

σp
Pξp

)γ)βp
] 1

γ

,(
1−

n
∏

p=1

(
1−

(
`og 1

σp

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`og 1

σp

(
1− Nξp

))γ)βp
) 1

γ


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(29)

where βp (p = 1, ..., n) is the weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Apparently, if we use γ = 1, then the L−GSVNWG operator is becomes into L− SVNWG operator.

Proof. Theorem 6 takes the form by utilizing the technique of mathematical induction and the
procedure is eliminated here.

Remark 4. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− GSVNWG operator reduced as follows

L− GSVNWG (ζ1, ζ2, ..., ζn) =



1−
[

1−
n
∏

p=1

(
1−

(
`ogσPξp

)γ)βp
] 1

γ

,(
1−

n
∏

p=1

(
1−

(
`ogσ

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`ogσ

(
1− Nξp

))γ)βp
) 1

γ


. (30)

Properties

L− GSVNWG operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− GSVNWG (ζ1, ζ2, ..., ζn) = ζ. (31)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− GSVNWG (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (32)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− GSVNWG (ζ1, ζ2, ..., ζn) ⊆ L− GSVNWG (ζ∗1 , ζ∗2 , ..., ζ∗n) . (33)

5. Proposed Technique for Solving Decision-Making Problems

This section includes the new approach to decision-making based on the single-valued
neutrosophic sets, and we will propose a decision-making matrix as indicated below.

Let H = (h1, h2, ..., hm) be a distinct collection of m probable alternatives and Y = (y1, y2, ..., yn)

be a finite collection of n criteria, where hi indicate the i-th alternatives and yj indicate the j-th criteria.
Let D = (d1, d2, ..., dt) be a finite set of t experts, where dk indicate the k-th expert. The expert dk
supply her appraisal of an alternative hi on an attribute yj as a SVNNs (i = 1, ..., m; j = 1, ..., n).

The expert’s information is represented by the SVNS decision-making matrix Ds =
[

E(s)
ip

]
m×n

. Assume

that βp(p = 1, ..., m) is the weight vector of the attribute yj, where 0 ≤ βp ≤ 1,
n
∑

p=1
βp = 1 and

ψ = (ψ1, ψ2, ..., ψm) be the weights of the decision makers dk such that ψk ≤ 1,
n
∑

k=1
ψk = 1.

When we construct the SVNS decision-making matrices, Ds =
[

E(s)
ip

]
m×n

for decision. Basically,

criteria have two types, one is benefit criteria and other one is cost criteria. If the SVNS decision
matrices have cost-type criteria metricsDs =

[
Es

ip

]
m×n

can be converted into the normalized SVNS

decision matrices, Rs =
[
r(s)ip

]
m×n

, where rs
ip =

{
Es

ip , for benefit criteria Ap

Es
ip , for cost criteria Ap ,

j = 1, ..., n, and Es
ip is

the complement of Es
ip . The normalization is not required, if the criteria have the same type.

Step 1: In this step, we get the neutrosophic information, using the all proposed logarithmic
aggregation operators to evolute the alternative preference values with associated weights, which are
ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn

p=1ωp = 1.

Step 2: We find the score value S̃(`ogσζp) and the accuracy value Ã(`ogσζp) of the cumulative
total preference value hi (i = 1, ..., m).

Step 3: By definition, we give ranking to the alternatives hi (i = 1, ..., m) and choose the best
alternative which has the maximum score value.

5.1. Numerical Example

Assume that there is a committee which selects five applicable emerging technology enterprises
Hg(g = 1, ..., 5), which are given as follows.
(1) Augmented reality (H1),
(2) Personalized medicine (H2) ,
(3) Artificial intelligence (H3),
(4) Gene drive (H4) and
(5) Quantum computing (H5).

They assess the possible rising technology enterprises according to the five attributes, which are
(1) Advancement (D1),
(2) Market risk (D2),
(3) Financial investments (D3),
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(4) Progress of science and technology (D4) and
(5) Designs (D5) .

To avoid the conflict between them, the decision makers take the attribute weights as
β = (0.15, 0.28, 0.20, 0.22, 0.15)T . They construct the SVNS decision-making matrix given in Table 1.

Table 1. Emerging Technology Enterprises D1.

D1 D2 D3 D4 D5

H1 (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.2, 0.2, 0.6) (0.4, 0.2, 0.3) (0.3, 0.3, 0.4)
H2 (0.7, 0.1, 0.3) (0.3, 0.2, 0.7) (0.6, 0.3, 0.2) (0.2, 0.4, 0.6) (0.7, 0.1, 0.2)
H3 (0.5, 0.3, 0.4) (0.4, 0.2, 0.6) (0.6, 0.1, 0.2) (0.3, 0.1, 0.5) (0.6, 0.4, 0.3)
H4 (0.7, 0.3, 0.2) (0.2, 0.2, 0.7) (0.4, 0.5, 0.2) (0.2, 0.2, 0.5) (0.4, 0.5, 0.4)
H5 (0.4, 0.1, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.5) (0.6, 0.3, 0.4) (0.3, 0.2, 0.4)

Since D1, D3 are benefit-type criteria and D2, D4 is cost type criteria, the normalization is required
for these decision matrices. Normalized decision matrices are shown in Table 2.

Table 2. Emerging Technology Enterprises R1.

D1 D2 D3 D4 D5

H1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)
H2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)
H3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)
H4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)
H5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)

Step 1: Now, we apply all the proposed logarithmic aggregation operators to collective
neutrosophic information as follows.

Case 1: Using logarithmic single-valued neutrosophic hybrid weighted averaging aggregation
operator, we obtained the results shown in Table 3.

Table 3. Aggregated information using the logarithmic single valued neutrosophic hybrid weighted
averaging (L-SVNHWA) operator for σ = 0.3.

H1 (0.17624, 0.23432, 0.43885)
H2 (0.66164, 0.16229, 0.21840)
H3 (0.52788, 0.18347, 0.32224)
H4 (0.49410, 0.30962, 0.20985)
H5 (0.22496, 0.12393, 0.39318)

Case 2: Using Logarithmic single valued neutrosophic hybrid weighted geometric aggregation
operator, we obtainedthe results shown in Table 4.

Table 4. Aggregated information using logarithmic single valued neutrosophic hybrid weighted
geometric (L-SVNHWG) operator for σ = 0.1.

H1 (0.52472, 0.12638, 0.24189)
H2 (0.81968, 0.10633, 0.11764)
H3 (0.74946, 0.11782, 0.17620)
H4 (0.70685, 0.18942, 0.11685)
H5 (0.58497, 0.07427, 0.23305)

Step 2: We find the score index S̃(`ogσζp) and the accuracy index Ã(`ogσζp) of the cumulative
overall preference value hi (i = 1, 2, 3, 4, 5).
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Case 1: Using the score of aggregated information for L-SVNHWA operator, we obtained the
results shown in Table 5.

Table 5. Score of aggregated information for L-SVNHWA operator.

S̃(`og0.3H1) −1.14345 Ã(`og0.3H1) 0.25985
S̃(`og0.3H2) 0.30519 Ã(`og0.3H2) 1.0087
S̃(`og0.3H3) −0.02207 Ã(`og0.3H3) 0.96078
S̃(`og0.3H4) −0.08895 Ã(`og0.3H4) 0.91781
S̃(`og0.3H5) −0.76389 Ã(`og0.3H5) 0.28571

Case 2: Score of Aggregated information for L-SVNHWG Operator, we obtained the results shown
in Table 6.

Table 6. Score of aggregated information for L-SVNHWG operator.

S̃(`og0.1H1) 0.540979 Ã(`og0.1H1) 0.89888
S̃(`og0.1H2) 0.810463 Ã(`og0.1H2) 1.01683
S̃(`og0.1H3) 0.736126 Ã(`og0.1H3) 1.01338
S̃(`og0.1H4) 0.704159 Ã(`og0.1H4) 0.994506
S̃(`og0.1H5) 0.618387 Ã(`og0.1H5) 0.903179

Step 3: We find the best (suitable) alternative which has the maximum score value from the
set of alternatives hi (i = 1, 2, 3, 4, 5). Overall preference value and ranking of the alternatives are
summarized in Table 7.

Table 7. Overall preference value and ranking of the alternatives.

S̃(H1) S̃(H2) S̃(H3) S̃(H4) S̃(H5) Ranking

L− SVNHWA −1.143 0.305 −0.022 −0.088 −0.763 H2 > H3 > H4 > H5 > H1
L− SVNHWG 0.540 0.810 0.736 0.704 0.618 H2 > H3 > H4 > H5 > H1

5.2. Comparison with Existing Methods

This section consists of the comparative analysis of several existing aggregation operators of
neutrosophic information with the proposed logarithmic single valued hybrid weighted aggregation
operators. Existing methods for aggregated neutrosophic information are shown in Table 8–11.

Table 8. Average aggregated SVN information.

SVNWA [35] SVNOWA [35] NWA [14]

H1 (0.3779, 0.2259, 0.4002) (0.3820, 0.2449, 0.4071) (0.3779, 0.2314, 0.4223)
H2 (0.6615, 0.2052, 0.2381) (0.6663, 0.1801, 0.2430) (0.6615, 0.2426, 0.2446)
H3 (0.5656, 0.1763, 0.3131) (0.5597, 0.1838, 0.3122) (0.5656, 0.2109, 0.3272)
H4 (0.5722, 0.2929, 0.2219) (0.5706, 0.3145, 0.2219) (0.5722, 0.3348, 0.2338)
H5 (0.4165, 0.1413, 0.3607) (0.3960, 0.1373, 0.3696) (0.4165, 0.1633, 0.4131)

Table 9. Average aggregated SVN information.

SVNFWA [12] SVNHWA [11] γ = 2

H1 (0.3755, 0.2262, 0.4018) (0.3725, 0.2264, 0.4033)
H2 (0.6611, 0.2072, 0.2385) (0.6608, 0.2086, 0.2388)
H3 (0.5652, 0.1779, 0.3141) (0.5648, 0.1790, 0.3149)
H4 (0.5692, 0.2956, 0.2225) (0.5663, 0.2978, 0.2230)
H5 (0.4159, 0.1422, 0.3646) (0.4151, 0.1427, 0.3680)
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Table 10. Average aggregated SVN information.

SVNHWA [11] γ = 3 L-SVNWA [10]

H1 (0.3693, 0.2266, 0.4048) (0.3130, 0.1753, 0.3544)
H2 (0.6604, 0.2099, 0.2390) (0.6486, 0.1989, 0.2313)
H3 (0.5645, 0.1800, 0.3157) (0.4989, 0.1733, 0.3321)
H4 (0.5635, 0.3000, 0.2234) (0.5585, 0.2736, 0.1942)
H5 (0.4143, 0.1432, 0.3714) (0.2849, 0.1249, 0.3758)

Table 11. Average aggregated SVN information.

L-SVNOWA [10]

H1 (0.3229, 0.1926, 0.3607)
H2 (0.6549, 0.1719, 0.2368)
H3 (0.4896, 0.1823, 0.3303)
H4 (0.5561, 0.2975, 0.1942)
H5 (0.2442, 0.1209, 0.3834)

Now, we analyze the ranking of the alternatives according to their aggregated information (in
Table 12).

Table 12. Overall ranking of the alternatives.

Existing Operators Ranking

NWA [14] H2 > H3 > H4 > H5 > H1
SVNWA [35] H2 > H3 > H4 > H5 > H1

SVNOWA [35] H2 > H3 > H4 > H5 > H1
SVNWG [35] H2 > H3 > H4 > H5 > H1

SVNOWG [35] H2 > H3 > H4 > H5 > H1
SVNFWA [12] H2 > H3 > H4 > H5 > H1

SVNHWA [11] γ = 2 H2 > H3 > H4 > H5 > H1
SVNHWA [11] γ = 3 H2 > H3 > H4 > H5 > H1

NWG [14] H2 > H3 > H4 > H5 > H1
SVNFWG [12] H2 > H3 > H4 > H5 > H1

SVNHWG [11] γ = 2 H2 > H3 > H4 > H5 > H1
SVNHWG [11] γ = 3 H2 > H3 > H4 > H5 > H1

SNWEA [15] H2 > H3 > H5 > H4 > H1
L-SVNWA [10] H2 > H4 > H3 > H5 > H1

L-SVNOWA [10] H2 > H4 > H3 > H5 > H1
L-SVNWG [10] H2 > H4 > H3 > H1 > H5

L-SVNOWG [10] H2 > H3 > H4 > H5 > H1

Proposed Operators Ranking

L-SVNHWA H2 > H3 > H4 > H5 > H1
L-SVNHWG H2 > H3 > H4 > H5 > H1
L-GSVNWA H2 > H4 > H3 > H5 > H1
L-GSVNWG H2 > H4 > H3 > H1 > H5

The bast alternative was H2. The obtained results utilizing logarithmic single valued neutrosophic
hybrid weighted operators and logarithmic generalized single valued neutrosophic weighted operators
were same as results shows existing methods. Hence, this study proposed novel logarithmic
aggregation operators to aggregate the neutrosophic information more effectively and efficiently.
Utilizing the proposed logarithmic aggregation operators, we sound the best alternative from a set of
alternatives given by the decision maker. Hence the proposed MCDM technique based on logarithmic
operators lets us find the best alternative as an applications in decision support systems.
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6. Conclusions

In this work, an attempt has been made to present different kinds of logarithmic weighted
averaging and geometric aggregation operators based on the single-valued neutrosophic set
environment. Earlier, it has been observed that the various aggregation operators are defined under
the SVNSs environment where the aggregation operators based on the algebraic or Einstein t-norm
and t-conorm. In this paper, we proposed novel logarithmic hybrid aggregation operators and also
logarithmic generalized averaging and geometric aggregation operators. Aggregation operators,
namely L-SVNHWA, L-SVNHWG, L-GSVNWA and L-GSVNWA are developed under the SVNSs
environment and we have studied their properties in detail. Further, depending on the standardization
of the decision matrix and the proposed aggregation operators, a decision-making approach is
presented to find the best alternative to the SVNSs environment. An illustrative example is taken
for illustrating the developed approach, and their results are compared with some of the existing
approaches of the SVNSs environment to show the validity of it. From the studies, we conclude that
the proposed approach is more generic and suitable for solving the stated problem.

In the future, we shall link the proposed operators with some novel fuzzy sets, like as type 2
fuzzy sets, neutrosophic sets, and so on. Moreover, we may examine if our constructed approach
can also be applied in different areas, such as personal evaluation, medical artificial intelligence,
energy management and supplier selection evaluation.
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